《概率论与数理统计》笔记(考研特别版)
考研数学三必背知识点:概率论与数理统计
概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+德摩根律B A B A =+ B A AB +=2、概率的定义及其计算公式名称公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式) ∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P伯努力概型公式 n k p p C k P k n kk n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k二项分布),(p n Bn k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P nNkn MN k M +===--3..续型随机变量分布名称密度函数 分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ 正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ ⎰∞---=xt t ex F d21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x 2221)(πϕ⎰∞---=xt t ex F d21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p - 二行分布),(p n B np)1(p np -泊松分布)(λP λλ几何分布)(p G p1 21pp -超几何分布),,(n M N H N M n1)1(---N mN N M N M n均匀分布),(b a U 2b a + 12)(2a b - 正态分布),(2σμN μ2σ指数分布)(λEλ1 21λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
2021年《概率论与数理统计》考研复习笔记与辅导讲义
2021年《概率论与数理统计》考研复习笔记与辅导讲义第1章随机事件和概率一、考研辅导讲义1.随机现象与样本空间(1)随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.(2)样本空间随机现象的一切可能的基本结果,组成的集合,称是由基本结果构成的样本空间,记作,又称样本点.(3)随机事件样本空间的子集称为随机事件,简称事件,常用大写字母A,B,C等表示.注:①随机事件是由样本空间中的样本点组成,由一个样本点组成的子集是最简单件,称为基本事件.②随机事件既然由样本点组成,因此,随机事件是由基本事件组成.③如果一次试验的结果为某一基本事件出现,就称该基本事件出现或发生.如果组成事件A的一个基本事件出现或发生,也称事件A出现或发生.④把Ω看成一事件,则每次试验必有Ω中某一基本事件(即样本点)发生,也就是每次试验Ω必然发生,称Ω为必然事件.⑤把不包含任何样本点的空集看成一个事件,称为不可能事件.(4)随机变量表示随机现象结果的变量称为随机变量,常用大写字母X,Y,Z,或者ξ,η等表示.2.事件间的关系(1)包含关系如果事件A发生必然导致事件B发生,则称事件B包含事件A,或称事件A包含于事件B,记为或.(2)事件相等若与同时成立,则称事件A与事件B相等,记作A=B.(3)互斥事件(互不相容事件)若事件A与事件B满足关系,即A与B同时发生是不可能事件,则称事件A和事件B为互斥或互不相容,即两互斥事件没有公共样本点.注:事件的互斥可以推广到有限多个事件或可数无穷多个事件的情形:①若n个事件中任意两个事件均互斥,即,i≠j,i,j =1,2,…,n,则称这n个事件是两两互斥或两两互不相容.②如果可数无穷多个事件…中任意两个事件均互斥,即,i≠j,i,j=1,2,…,n,…,则称这可数无穷个事件是两两互斥或两两互不相容.【例】对任意两个互不相容的事件A与B,必有().A.如果P(A)=0,则P(B)=0B.如果P(A)=0,则P(B)=1C.如果P(A)=1,则P(B)=0D.如果P(A)=1,则P(B)=1【答案】C查看答案【解析】.(4)对立事件如果事件A与事件B有且仅有一个发生,则称事件A与事件B为对立事件或互逆事件,记为或.注:①如果A与B为对立事件,则A,B不能同时发生,且必有一个发生,即A、B满足A∪B=Ω且.②在样本空间中,集合是由所有不属于事件A的样本点构成的集合.【例】设随机事件A和B满足条件,则().A.B.C.D.【答案】A查看答案【解析】,所以即而,故,也就有即A∪B=Ω.3.事件间的运算(1)事件的交(积)如果事件A与事件B同时发生,则称这样的一个事件为事件A与事件B的交或积,记为A∩B或AB,即集合A∩B是由同时属于A与B的所有公共样本点构成.注:事件的交可以推广到有限多个事件或可数无穷多个事件的情形:(2)事件的并如果事件A与事件B至少有一个发生,则称这样一个事件为事件A与事件B的并或和,记为A∪B,即集合A ∪B是由属于A与B的所有样本点构成.注:事件的并可推广到有限多个事件或可数无穷多个事件的情形:(3)完备事件组如果有限个事件满,且,则称为Ω的一个完备事件组或完全事件组.注:可以推广完备事件组到可数无穷多个事件的情形:且.(4)事件的差事件A发生而事件B不发生的事件称为事件A与事件B的差,记为A-B.即在样本空间中集合A-B是由属于事件A而不属于事件B的所有样本点构成的集合.显然.(5)事件的运算规律交换律结合律分配律对偶律【例】A,B,C为任意三随机事件,则事件(A-B)∪(B-C)等于事件().A.A-CB.A∪(B-C)C.(A∪B)-CD.(A∪B)-BC【答案】D查看答案【解析】因,故.而图1-14.概率的概念及基本性质(1)概率的公理化定义设为一个样本空间,F为的某些子集组成的一个事件域.如果对任一事件F,定义在F上的一个实值函数满足:①非负性公理:若F,则,②正则性公理:③可列可加性公理:若互不相容,则,则称为事件A的概率,称三元素F为概率空间.(2)概率性质①;②若两两互斥,则有③;④,则P(A)≤P(B);⑤0≤P(A)≤1【例】若A,B为任意两个随机事件,则().【2015数一、数三】A.B.C.D.【答案】C查看答案【解析】由于,按概率的基本性质,有且,从而.(3)事件独立性设A,B两事件满足等式P(AB)=P(A)P(B),则称A与B相互独立.注:对n个事件,如果对任意k(1<k≤n),任意满足等式则称为相互独立的事件.事实上,n个事件相互独立需要个等式成立.(4)相互独立的性质①A与B相互独立A与或与B或与相互独立.将相互独立的n个事件中任何几个事件换成它们相应的对立事件,则新组成的n个事件也相互独立.【例】设,,为三个随机事件,且与相互独立,与相互独立,则与相互独立的充分必要条件是().[数三2017研]A.与相互独立B.与互不相容C.与相互独立 D.与互不相容【答案】C查看答案【考点】相互独立【解析】由,得.【例】已知随机事件A,B,C中,满足P(AB)=1.则事件().A.相互独立B.两两独立,但不一定相互独立C.不一定两两独立D.一定不两两独立【答案】A查看答案【解析】讨论事件的独立性,可等价的考虑A,B,C的独立性.因为P(AB)=1.可知P(A)=P(B)=1,而概率等于1的事件与所有的事件相互独立.所以成立:P(AB)=P(A)P(B);P(AC)=P(A)P(C);P (BC)=P(B)P(C).又因P(AB)=1.所以事件AB与C也相互独立,P(ABC)=P(AB)P(C)=P(A)P(B)P(C).总之A,B,C相互独立.②当0<P(A)<1时,A与B独立P(B|A)=P(B)或成立.③若相互独立,则必两两独立,反之,若两两独立,则不一定相互独立.④当相互独立时,它们的部分事件也是相互独立的.【例】设随机事件A与B相互独立,且,则().A.0.1B.0.2C.0.3D.0.4【答案】B查看答案【解析】因为事件A,B相互独立,则.故于是,则.(5)概率的运算公式①加法公式P(A∪B)=P(A)+P(B)-P(AB);P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P (ABC).②减法公式P(A-B)=P(A)-P(AB);③乘法公式当P(A)>0时,P(AB)=P(A)P(B|A);当>0时,有④全概率公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,有【例】甲袋中有2个白球3个黑球,乙袋中一半白球一半黑球.现从甲袋中任取2球与从乙袋中任取一球混合后,再从中任取一球为白球的概率为().A.B.C.D.【答案】C查看答案【解析】设事件A为最后取出的球为白球,事件B为球来自甲袋,显然,为球来自乙袋.且B,构成一个Ω的完备事件组,由全概率公式,因为最后三个球中二个球是从甲袋中来.所以取出的球来自甲袋概率为,当然.,这是因为已知取出的球来自甲袋的条件下,取出的为白球的概率,就相当于从甲中取出一白球的概率,甲中5个球2个为白,故,同理.因为乙中半白半黑,总之⑤贝叶斯公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,且P (A)>0有【例】设A、B为随机概率,若,则的充分必要条件是().[数一2017研]A.B.C.D.【答案】A查看答案【考点】概率公式计算【解析】因为,得,化简得.A项,,因为,所以.5.古典概型、几何概型、条件概率及伯努利试验(1)古典型概率当试验结果为有限n个样本点,且每个样本点的发生具有相等的可能性,称这种有限等可能试验为古典概型.此时如果事件A由个样本点组成,则事件A的概率称P(A)为事件A的古典型概率.【例】袋中有1个红球,2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.求P{X =1︱Z=0};解:由于本题是有放回地取球,则基本事件总数为.(2)几何型概率当试验的样本空间是某区域(该区域可以是一维,二维或三维等等),以L(Ω)表示样本空间Ω的几何度量(长度、面积、体积等等).L(Ω)为有限,且试验结果出现在Ω中任何区域的可能性只与该区域几何度量成正比.称这种拓广至几何度量上有限等可能试验为几何概型.此时如果事件A的样本点表示的区域为,则事件A的概率称这种P(A)为事件A的几何型概率.【例】在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为______.【答案】【解析】本题是几何型概率.不妨假定随机地取出两个数分别为X和Y.显然X与Y是两个相互独立的随机变量.如果把(X,Y)看成平面上的一个点的坐标,则由于0<X<1,0<Y<1,所以(X,Y)为平面上正方形0<X<1,0<Y<1中的一个点.而X与Y两个数之差的绝对值小于的点(X,Y)对应于正方形中的区域.图1-2在区间(0,1)中随机选取的所有可能的两个数X和Y.这些(X,Y)点刚好是图1-3单位正方形中满足的点的区域,就是图中阴影标出的区域D.根据几何型概率(3)条件概率设A,B为两事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率.【例】设A、B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则().【2016数三】【答案】A查看答案【解析】根据条件得P(AB)=P(B),则【例】设A,B,C是随机事件,A与C互不相容,P(AB)=,P=,则P(AB|)=______.【答案】【解析】由条件概率的定义知,P(AB︱)=,其中P()=1-P (C)=1-=,P(AB)=P(AB)-P(ABC)=-P(ABC),由于A,C互不相容,即AC=Ø,ABC AC,得P(ABC)=0,代入得P(AB)=,故将P()=和P(AB)=,代入公式,得P(AB)==.(4)伯努利试验如果试验E只有两个可能的结果:A及,并且P(A)=p,(其中0<p<1),把E独立地重复n次的试验就构成了一个试验,这个试验称作n重伯努利试验,又称n次独立重复试验,并记作B.一个伯努利试验的结果可以记作ω=(ω1,ω2,…,ωn)其中的ωi(1≤i≤n)的全体就是这个伯努利试验的样本空间Ω,对于ω=(ω1,ω2,…,ωn)∈Ω,如果ωi(1≤i≤n)中有k个为A,则必有n-k个为,于是由独立性即得如果要求“n重伯努利试验中事件B出现k次”这一事件的概率为【例】设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为.【2016数三】【答案】【解析】根据题意,取球次数恰好为4,则前三次恰好取到三种颜色中的两种,第四次取到剩下一种颜色的球.故前三次中取到的两种颜色取到的次数分别为1次和2次.综上,取球次数恰好为4的概率为【例】在伯努利试验中,每次试验成功的概率为p,则在第n次成功之前恰失败了m次的概率为______.图1-3【答案】【解析】为了分析试验的结构,可以作图形分析:“第n次成功之前失败了m次”这事件意味着第n次成功前有(n-1)次成功和m次失败.总共做了(n +m)次试验.最后一次是成功,前n+m-1次试验中有m次失败和(n-1)次成功,故事件的概率应为。
概率论与数理统计重点笔记
概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。
在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。
重点理解事件的概率定义、概率的性质和
概率的运算法则。
2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。
还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。
3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。
4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。
5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。
6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。
总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。
希望以上内容能够帮助你更好地理解概率论与数理统计。
《概率论与数理统计》学习笔记十一
σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一
即
θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若
概率论与数理统计第二章笔记
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
概率论与数理统计笔记(重要公式)
r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0
设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba
考研数学三必背知识点:概率论与数理统计
概率论与数理统计必考知识点一、随机事件和概率1、随机事件与其概率2、概率的定义与其计算二、随机变量与其分布1、分布函数性质bP=≤)FX(b)()P-aX≤b<=)F(()bF(a2、离散型随机变量3..连续型随机变量三、多维随机变量与其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()(+∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E =)()]([X E X E E =)()(X CE CX E =(2))()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()()()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =±2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov =),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+),(),(Y X abCov d bY c aX Cov =++8五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念定义:随机试验E的每个结果样本点组成样本空间S,S的子集为E的随机事件,单个样本点为基本事件.事件关系:1.A⊂B,A发生必导致B发生.2.A Y B和事件,A,B至少一个发生,A Y B发生.3.A I B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,A发生,B不发生,A-B发生.5.A I B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A Y B=S且A I B=Ø,A与B互为逆事件或对立事件,A与B中必有且仅有一个发生,记B=ASA-=.事件运算:交换律、结合律、分配率略.德摩根律:BABA IY=,BABA YI=.概率:概率就是n趋向无穷时的频率,记P(A).概率性质: 1.P(Ø)=0.2.(有限可加性)P(A1Y A2Y…Y A n)=P(A1)+P(A2)+…+P(A n),A i互不相容.3.若A⊂B,则P(B-A)=P(B)-P(A).4.对任意事件A,有)A(1)A(PP-=.5.P(A Y B)=P(A)+P(B)-P(AB).泊松分布:记X~π(λ),!}{kekXPkλλ-==,Λ,2,1,0=k.泊松定理:!)1(limkeppCkknkknnλλ--∞→=-,其中λ=np.当20≥n,05.0≤p应用泊松定理近似效果颇佳.随机变量分布函数:}{)(xXPxF≤=,+∞<<∞-x.)()(}{1221xFxFxXxP-=≤<.连续型随机变量:⎰∞-=x ttfxF d)()(,X为连续型随机变量,)(x f为X的概率密度函数,简称概率密度.概率密度性质:1.0)(≥xf;2.1d)(=⎰+∞∞-xxf;3.⎰=-=≤<21d)()()(}{1221xxxxfxFxFxXxP;4.)()(xfxF=',f(x)在x点连续;5.P{X=a}=0.均匀分布:记X~U(a,b);⎪⎩⎪⎨⎧<<-=其它,,1)(bxaabxf;⎪⎩⎪⎨⎧≥<≤--<=bxbxaabaxaxxF,,,1)(.性质:对a≤c<c+l≤b,有abllcXcP-=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,1)(xexfxθθ;⎩⎨⎧>-=-其它,,1)(xexFxθ.无记忆性:}{}{tXPsXtsXP>=>+>.正态分布:记),(~2σμNX;]2)(ex p[21)(22σμσπ--=xxf;ttxF x d]2)(ex p[21)(22⎰∞---=σμσπ.性质:1.f(x)关于x=μ对称,且P{μ-h<X≤μ}=P{μ<X≤μ+h};2.有最大值f(μ)=(σπ2)-1.标准正态分布:]2exp[21)(2xx-=πϕ;⎰∞--=Φx ttx d]2ex p[21)(2π.即μ=0,σ=1时的正态分布X~N(0,1)性质:)(1)(xxΦ-=-Φ.正态分布的线性转化:对),(~2σμNX有)1,0(~NXZσμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=xxXPxXPxF.正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<xxxXxP;1)(2)()(}{-Φ=-Φ-Φ=+<<-ttttXtPσμσμ.3σ法则:P=Φ(1)-Φ(-1)=68.26%;P=Φ(2)-Φ(-2)=95.44%;P=Φ(3)-Φ(-3)=99.74%,P多落在(μ-3σ,μ+3σ)内.上ɑ分位点:对X~N(0,1),若zα满足条件P{X>zα}=α,0<α<1,则称点zα为标准正态分布的上α分位点.常用0.001 0.005 0.01 0.025 0.05 0.10上ɑ分位点:3.090 2.576 2.326 1.960 1.645 1.282Y服从自由度为1的χ2分布:设X密度函数f X(x),+∞<<∞-x,若Y=X2,则⎪⎩⎪⎨⎧≤>-+=)]()([21)(yyyfyfyyf XXY,,若设X~N(0,1),则有⎪⎩⎪⎨⎧≤>=--21)(221yyeyyfyY,,π定理:设X密度函数f X(x),设g(x)处处可导且恒有g′(x)>0(或g′(x)<0),则Y=g(X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,)()]([)(βαyyhyhfyf XYh(y)是g(x)的反函数;①若+∞<<∞-x,则α=min{g(−∞),g(+∞)},β=max{g(−∞),g(+∞)};②若f X(x)在[a,b]外等于零,g(x)在[a,b]上单调,则α=min{g(a),g(b)},β=max{g(a),g(b)}.应用:Y=aX+b~N(aμ+b,(|a|σ)2).第二章多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(yYxXPyxF≤≤=I,记作:},{yYxXP≤≤.),(),(),(),(},{112112222121yxFyxFyxFyxFyYyxXxP+--=≤<≤<.F(x,y)性质:1.F(x,y)是x和y的不减函数,即x2>x1时,F(x2,y)≥F(x1,y);y2>y1时,F(x,y2)≥F(x,y1).2.0≤F(x,y)≤1且F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1.3.F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即F(x,y)关于x右连续,关于y也右连续.4.对于任意的(x1,y1),(x2,y2),x2>x1,y2>y1,有P{x1<X≤x2,y1<Y≤y2}≥0.离散型(X,Y):≥ijp,111=∑∑∞=∞=ijjip,ijyyxxpyxFii∑∑=≤≤),(.连续型(X,Y):vuvufyxF y x dd),(),(⎰⎰∞-∞-=.f(x,y)性质:1.f(x,y)≥0.2.1),(dd),(=∞∞=⎰⎰∞∞-∞∞-Fyxyxf.3.yxyxfGYXPG⎰⎰=∈dd),(}),{(.4.若f(x,y)在点(x,y)连续,则有),(),(2yxfyxyxF=∂∂∂.n维:n维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布:F x(x),F y(y)依次称为二维随机变量(X,Y)关于X和Y的边缘分布函数,F X(x)=F(x,∞),F Y(y)=F(∞,y).离散型:*ip和j p*分别为(X,Y)关于X和Y的边缘分布律,记}{1iijjixXPpp==∑=∞=*,}{1jijijyYPpp==∑=∞=*.连续)(xfX ,)(yfY为(X,Y)关于X和Y的边缘密度函数,记型:⎰∞∞-=yy x f x f X d ),()(,⎰∞∞-=xy x f y fYd ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y .离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布: 条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布:若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布.独立定若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的.义:独立条件或可等价为:连续型:f(x,y)=f x(x)f y(y);离散型:P{X=x i,Y=y j}=P{X=x i}P{Y=y j}.正态独立:对于二维正态随机变量(X,Y),X和Y相互对立的充要条件是:参数ρ=0.n维延伸:上述概念可推广至n维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n-1元)的.定理:设(X1,X2,…,X m)和(Y1,Y2,…,Y n)相互独立,则X i和Y j相互独立.又若h,g是连续函数,则h(X1,X2,…,X m)和g(Y1,Y2,…,Y n)相互独立.Z=X +Y分布:若连续型(X,Y)概率密度为f(x,y),则Z=X+Y为连续型且其概率密度为⎰∞∞-+-=yyyzfzfYXd),()(或⎰∞∞-+-=xxzxfzfYXd),()(.f X和f Y的卷积公式:记⎰∞∞-+-==yyfyzfzfffYXYXYXd)()()(*⎰∞∞--=xxzfxfYXd)()(,其中除继上述条件,且X和Y相互独立,边缘密度分别为f X(x)和f Y(y).正态卷积:若X和Y相互独立且X~N(μ1,σ12),记Y~N(μ2,σ22),则对Z=X+Y有Z~N(μ1+μ2,σ12+σ22).1.上述结论可推广至n个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布: 记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(te t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=xxz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X XY d )()(1)(.大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望:简称期望或均值,记为E (X );离散型:kkk p x X E ∑=∞=1)(.连续型:⎰∞∞-=xx xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数). 1.若X 是离散型,且分布律为kk k p x g Y E )()(1∑=∞=. 2.若X 是连续型,概率密度为⎰∞∞-=xx f x g Y E d )()()(.P{X=x k}=p k,则:f(x),则:定理推广:设Z是随机变量X,Y的函数:Z=g(X,Y)(g是连续函数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型:⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(期望性质:设C是常数,X和Y是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.E(X+Y)=E(X)+E(Y).4.又若X和Y相互独立的,则E(XY)=E(X)E(Y).方差:记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)= .通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xxfxExXD d)()]([)(2.标准化变量:记σμ-=xX*,其中μ=)(XE,2)(σ=XD,*X称为X的标准化变量.)(*=XE,1)(*=XD.方差性质:设C是常数,X和Y1.D(C)=0.2.D(CX)=C2D(X),D(X+C)=D(X).3.D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-)(xD是随机变量,则:E(Y))},若X,Y相互独立D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是P{X=E(X)}=1.正态线性变换:若),(~2iiiNXσμ,i C是不全为0的常数,则),(~22112211iiniiininnCCNXCXCXCσμ∑∑+++==Λ.切比雪夫不等式:22}{εσεμ≤≥-XP或221}{εσεμ-≥<-XP,其中)(X E=μ,)(2XD=σ,ε为任意正数.协方差:记)]}()][({[),Cov(YEYXEXEYX--=.X与Y的相关系数:)()(),Cov(YDXDYXXY=ρ.D(X+Y)=D(X)+D(Y)+2Cov(X,Y),Cov(X,Y)=E(XY)-E(X)E(Y).性质:1.Cov(aX,bY)=ab Cov(X,Y),a,b是常数.2.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).系数性质:令e=E[(Y-(a+bX))2],则e取最小值时有)()1(]))([(22minYDXbaYEeXYρ-=+-=,其中)()(XEbYEa-=,)(),Cov(0XDYXb=.1.|ρXY|≤1.2.|ρXY|=1的充要条件是:存在常数a,b使P{Y=a+bX}=1.|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnncccccccccΛMMMΛΛ212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπΛ,T21T21),,,(),,,(nnxxxμμμΛΛ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(Xk)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Y n ,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心定理设X1,X2,…,Xn,…相互独立σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).~近似的极限定理一:并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有定理二:设X1,X2,…,Xn,…相互独立且E(X k)=μ k,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~p n bnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组图形特点:外轮廓接近宽,纵坐标为高的跨越横轴的几个小矩形.距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR 或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准2SS=样本k阶kinikXnA11=∑=,k≥1样本k阶kinikXXnB)(11-∑==,k≥2min Q1 M Q3 max差: (原点)矩:中心矩:经验分布函数: )(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布: 记χ2~χ2(n ),222212nX X X +++=Λχ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点: 对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.自由度为n 的t 分布:记t ~t (n ),n Y Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n充分大时,t 分布近似于N (0,1)分布.t 分布对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n tα为)(n t 的上α的分位点:分位点.由h(t)对称性可知t1-α(n)=-tα(n).当n>45时,tα(n)≈zα,zα是标准正态分布的上α分位点.自由度为(n1,n2)的F分布:记F~F(n1,n2),21nVnUF=,其中U~χ2(n1),V~χ2(n2),X,Y相互独立.1/F~F(n2,n1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,]1)[2()2()](2)([)(2)(21211)2(221212111xnynnnynnnny nnnnψF分布的分位点:对于0<α<1,满足αψαα==>⎰∞yynnFFPnnF),(2121d)()},({,则称),(21n nFα为),(21nnF的上α分位点.重要性质:F1-α(n1,n2)=1/Fα(n1,n2).定理一:设X1,X2,…,X n 是来自N(μ,σ2)的样本,则有),(~2nNXσμ,其中X是样本均值.定理二:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有1.)1(~)1(222--nSnχσ;2.X与2S相互独立.定理三:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有)1(~--ntnSXμ.定理设X1,X2,…,X n1与X,Y,21S,22S,则有四: Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 1.)1,1(~2122212221--n n F S Sσσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t nn S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2wwS S=.第七章 参数估计定义:估计量:),,,(ˆ21nX X X Λθ,估计值:),,,(ˆ21nx x x Λθ,统称为估计.矩估计法: 令)(llX E =μ=li n i l X n A 11=∑=(kl ,,2,1Λ=)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ.最大似然估计法:似然函数:离散:);()(1θθini x p L =∏=或连续:);()(1θθini x f L =∏=,)(θL 化简可去掉与θ无关的因式项. θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得.当多个未知参数θ1,θ1,…,θk时:可由方程组0d d=L iθ或0ln d d=L iθ(k i ,,2,1Λ=)求得.最大似然估计的不变性:若u=u(θ)有单值反函数θ=θ(u),则有)ˆ(ˆθuu=,其中θˆ为最大似然估计.截尾样本取样:定时截尾样本:抽样n件产品,固定时间段t0内记录产品个体失效时间(0≤t1≤t2≤…≤t m≤t0)和失效产品数量.定数截尾样本:抽样n件产品,固定失效产品数量数量m记录产品个体失效时间(0≤t1≤t2≤…≤t m).结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e(θ),θ即产品平均寿命.产品t i时失效概率P{t=t i}≈f(t i)d t i,寿命超过t m的概率θm tmettF-=>}{,则)(}){()(1imimnmmntPttFCL=-∏>=θ,化简得)(1)(m t sm eL---=θθθ,由0)(lndd=θθL得:m t s m)(ˆ=θ,其中s(t m)=t1+t2+…+t m+(n-m)t m,称为实验总时间.定时截尾样本:与定数结尾样本讨论类似有s(t0)=t1+t2+…+t m+(n-m)t0,)(01)(t sm eL---=θθθ,m t s)(ˆ0=θ,.无偏性:估计量),,,(ˆ21nXXXΛθ的)ˆ(θE存在且θθ=)ˆ(E,则称θˆ是θ的无偏估计量.有效性:),,,(ˆ211nXXXΛθ与),,,(ˆ212nXXXΛθ都是θ的无偏估计量,若)ˆ()ˆ(21θθDD≤,则1ˆθ较2ˆθ有效.相合性:设),,,(ˆ21nXXXΛθθ的估计量,若对于任意0>ε有1}|ˆ{|lim=<-∞→εθθPn,则称θˆ是θ的相合估计量.置信区间:αθθθ-≥<<1)},,,(),,,({2121nnXXXXXXPΛΛ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态设X1,枢轴量W W分布a,b不等其中样本置信区间:X2,…,X n是来自总体X~N(μ,σ2)的样本,则有μ的置信区间:式置信水平置信区间)1,0(~NnXσμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12znXP⇒)(2ασznX±zα/2为上α分位点θ置信区间的求解:1.先求枢轴量:即函数W=W(X1,X2,…,X n;θ),且函数W的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a,b使P{a<W<b}=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n>50时,⇒--∞→)1,0(~)1()(lim NpnpnpXnn{}⇒-≈<--αα1)1()(2zpnpnpXnP)2()(222222<++-+XnpzXnpznαα⇒若令22αzna+=,)2(22αzXnb+-=,2X nc=,则有置信区间(aacbb2)4(2---,aacbb2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P或αθθ-≥<1}{P,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估其他枢轴量W的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~NnXZσμ-=)(2ασznX±ασμznX+=,ασμznX-=μσ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,αμtnSX-=σ2μ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,222)1(αχσSn-=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2221212122212121nnzYXnnzYXσσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2未知)2(~)()(21121121-++---=--nntnnSYXtwμμ2)1()1(212222112-+-+-=nnSnSnSw()12112--+±-nnStYXwα2wwSS=121121121121----+--=-++-=-nnStYXnnStYXwwααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0. 正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域 1 σ2已知 μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0 |z |≥z α/2 2 σ2未知 μ≤μ0 μ>μ0 nS X t 0μ-=t ≥t α(n -1)μ≥μ0μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1) 3σ1,σ2 已μ1-μ1-222121n n Y X Z σσδ+--=z ≥z α μ1-μ1-z ≤-z α μ1-μ1-|z |≥z α/2 4 σ12μ1-μ1-1211--+--=nn S Y X t w δt ≥t α(n 1+n 2-2)=σ22μ1-μ1-2)1()1(212222112-+-+-=n n S n S n S wt ≤-t α(n 1+n 2-2) μ1-μ1-|t |≥t α/2(n 1+n 2-2) 5 μ未知 σ2≤σ02 σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1) σ2≥σ02 σ2<σ02χ2≤χ21-α(n -1) σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1) 6 μ1,μ2 未知 σ12≤σ22σ12>σ22 2221S S F =F ≥F α(n 1-1,n 2-1) σ12≥σ22σ12<σ22F ≤F 1-α(n 1-1,n 2-1)σ12=σ22σ12≠σ22F ≥F α/2(n 1-1,n 2-1)或F ≤F 1-α/2(n 1-1,n 2-1) 7 成对 数据μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -1)μD ≥0μD <0 t ≤-t α(n -1) μD =0μD ≠0|t |≥t α-2(n -1)检验方法选择: 主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X 和Y 之间存在一一对应关系,而3和4一般指X 和Y 相互对立,但针对同一实体.关系: 置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
概率论与数理统计笔记
第一章 概率论的基本概念随机试验:1.可以在相同的条件下重复进行2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果3.进行一次试验之前不能确定哪个结果会出现样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 随机事件:试验E 的样本空间S 的子集,简称事件基本事件:由一个样本点(E 的每个结果)组成的单点集 频率:事件A 发生次数和试验次数的比值n A /n ,记作f n (A)概率:对事件A 赋予实数,P(A) 非负性,规范性,可列可加性性质i P(∅)=0.性质ii(有限可加性) 若A1,A2,…,An 是两两互不相容的事件,则有P(A 1⋃A 2⋃…⋃A n )=P (A 1)+P (A 2)+⋯+P(A n ).性质iii 设A,B 是两个事件,若A ⊂B,则有P(B-A)=P(B)-P(A);P(B)≥P(A). 性质iv 对于任一事件A,P(A)≤1.性质v(逆事件的概率) 对于任一事件A,有P(A )=1-P(A).性质vi(加法公式) 对于任意两事件 A,B 有P(A ⋃B)=P(A)+P(B)-P(AB). 古典概型:样本空间只包含有限个元素,每个基本事件可能性相同A 的对立事件A̅及其概率:也称逆事件 两个互不相容事件的和事件的概率:两事件不能同时发生,概率的有限可加性 概率的加法定理:P(A ⋃B )=P(A)+P(B)-P(AB)条件概率:在事件A 发生的条件下事件B 发生的P(B|A)=P(AB)P(A).概率的乘法公式:P(ABC)=P(C|AB)P(B|A)P(A) 全概率公式:P (A )=∑P (A |B i )n i=1P(B i ) B i 是试验E 的S 的划分,A 为E 的事件 贝叶斯公式:P (B i |A )=P(A|B i )P(B i )∑P(A|B j )P(B j )nj=1,i=1,2,…,n.事件的独立性:P(AB)=P(A)P(B),互相独立与互不相容不能同时成立设n 个事件,如果对于其中任意2个,任意3个,…,任意n 个事件的积事件的概率都等于各事件概率之积,则称n 个事件相互独立实际推断原理:概率很小的事件在一次实验中实际上几乎是不发生的第二章 随机变量及其分布随机变量:设E 的样本空间S={e},X=X(e)是定义在样本空间S 上的单值函数,称随机变量分布函数:X 是随机变量,x 是任意实数,F (x )=P {X ≤x },−∞<x <∞称为X 的分布函数任意实数x 1,x 2(x 1<x 2),有 P {x 1<X ≤x 2}=P {X ≤x 2}−P {X ≤x 1}=F (x 2)−F(x 1) 基本性质:不减函数,0≤F(x)≤1且F(-∞)=0,F(∞)=1离散型随机变量:全部可能取到的值是有限个或可列无限多个其分布律: P {X =x k }=p k ,k =1,2,… 连续性随机变量:F (x )=∫f(t)dt x−∞ 非负可积函数f (x )概率密度:f(x)性质:f (x )≥0;∫f (x )dx ∞−∞=1伯努利试验:试验E 只有两个可能结果:A 及A(0−1)分布: P {X =k }=p k (1−p)1−k ,k =0,1 (0<p <1) 记为X ~b(1,p) n 重伯努利试验:将伯努利试验E 独立重复地进行n 次,以C i 为A 或A ,i=1,2,…,n.独立:P (C 1C 2…C n )=P (C 1)P (C 2)…P(C n )二项分布:P {X =k }=(n k )p k (1−p)n−k ,k =0,1,2,…,n. 记为X ~b(n,p) 泊松分布:P {X =k }=λk e −λk!,k =0,1,2,…,λ是常数,记为X ~π(λ)指数分布:f (x )={1θe −xθ,x >00,otherwise,记为X ~η(θ)均匀分布:f (x )={1b−a ,a <x <b,0,otherwise.,记为X ~U(a,b)正态分布:f (x )=√2πσ−(x−μ)22σ2,-∞<x<∞,其中μ,σ(σ>0)是常数,记作X ~N (μ,σ2)标准正态分布:X ~N(0,1),概率密度为φ(x),分布函数为Φ(x) 引理:若X ~N(μ,σ2),则Z =X−μσ~N(0,1)随机变量函数的分布:Y=g(X),分布函数法(先求分布函数,再对分布函数求导)第三章 多维随机变量及其分布二维随机变量(X ,Y ):设X=X(e),Y=Y(e)是定义在样本空间S 上的随机变量构成的向量 (X ,Y )的分布函数:联合分布函数:F (x,y )=P {(X ≤x )∩(Y ≤y )}≝P{X ≤x,Y ≤y}边缘分布函数:F X (x )=P {X ≤x }=P {X ≤x,Y <∞}=F(x,∞),F Y (y )=F(∞,y) 离散型随机变量(X ,Y )的分布律:P{X =x i ,Y =y j }=p ij ,i,j =1,2,… 联合分布律 连续型随机变量(X ,Y )的概率密度:f(x,y) 联合概率密度1. f (x,y )≥02. ∫∫f(x,y)dxdy ∞−∞=F (∞,∞)=1∞−∞3. 设G 是xOy 平面上的区域,点(X,Y)落在G 内的概率为∬f(x,y)dxdyG . 4. 若f(x,y)在点(x,y)连续,则有∂2yF(x,y)∂x ∂y=f(x,y)离散型随机变量(X ,Y )的边缘分布律:P {X =x i }=∑p ij ∞i=0,i =1,2,…, Y 一样 连续型随机变量(X ,Y )的边缘概率密度:f X (x )=∫f(x,y)dy ∞−∞,Y 一样 条件分布函数:F X|Y (x |y )=P {X ≤x |Y =y }=∫f(x,y)f X (x)dy y −∞ 在Y=y 条件下X 的条件分布函数条件分布律:P {X =x i |Y =y i }=P{X=x i ,Y=y i }P{Y=y i }=p ij p .j,i =1,2,… 在Y=y j 条件下X 的条件分布律条件概率密度:f X|Y (x |y )=f(x,y)f Y (y)在Y=y 的条件下X 的条件概率密度两个随机变量X ,Y 的独立性:F (x,y )=F X (x)F Y (y)对二维正态随机变量变量(X,Y),X 和Y 相互独立的充要条件是参数ρ=0 Z=X+Y 、Z=Y/X 、Z=XY 的概率密度:Z=X+Y:f X+Y (z )={∫f X (z −y)f Y (y)dy∞−∞∫f X (x)f Y (z −x)dx∞−∞ Z=Y/X:f Y X(z )=∫|x|f(x,xz)dx ∞−∞=∫|x|f X (x)f Y (xz)dx ∞−∞Z=XY:f XY (z )=∫1|x|f(x,z x)dx ∞−∞=∫1|x|f X (x)f Y (zx)dx ∞−∞M=max{X ,Y},N=min{X ,Y}的概率密度:分布函数:F max (z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}=F X (z)F Y (z).F min (z)=P{N≤z}=1-P(N>z)=1-P{X>z,Y>z}=1-P{X>z}∙P{Y>z}=1-[1-F X (z)][1-F Y (z)].第四章 随机变量的数字特征数学期望:E (X )=∑x k p k ∞k=1E (X )=∫xf(x)∞−∞dx (积分绝对收敛)随机变量函数的数学期望:Y=g(X)(g 是连续函数)E(Y)=E[g(X)]=∑g(x k )∞k=1p k E(Y)=E[g(X)]=∫g(x)f(x)dx ∞−∞E(Z)=E[g(X,Y)]=∑∑g(x i ,y j )p ij ∞i=1∞j=1E(Z)=E[g(X,Y)]=∫∫g(x,y)f(x,y)∞−∞dxdy ∞−∞数学期望的性质:1.设C 是常数,则有E(C)=C.2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X).3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y).(可推广到任意有限个随机变量之和)4.设X,Y 是相互独立的随机变量,则有E(XY)=E(X)+E(Y).(可推广到任意有限个相互独立随机变量之积)方差:D(X)=Var(X)=E{[X-E(X)]2}. 标准差:σ(x)=√D(X)方差的性质:1.设C 是常数,则D(C)=0.2.设X 是随机变量,C 是常数,则有D(CX)=C 2D(X),D(X+C)=D(X).3.设X,Y 是两个随机变量,则有D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(X))}. 若X,Y 相互独立,则有D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是X 以概率1取常数E(X),即P{X=E(X)}=1. 标准化的随机变量:X ∗=X−μσ.(数学期望为0,方差为1)协方差:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}. 相关系数:ρXY =√D(X)D(Y)相关系数的性质:1.|ρXY |≤1.2.|ρXY |=1的充要条件是,存在常数a,b 使P{Y=a+bX}=1. X ,Y 不相关:当ρXY =0时.切比雪夫不等式:设随机变量X 具有E(X)=μ,方差D(X)=σ2,则对任意正数ε,不等式 P{|X −μ|≥ε}≤σ2ε2成立几种重要分布的数学期望和方差:(推导)矩:k 阶原点矩:E(X k ),k=1,2,…k 阶中心矩:E([X-E(X)]k ),k=2,3,… k+l 阶混合矩:E(X k Y l ),k,l=1,2,…k+l 阶混合中心矩:E([X-E(X)]k [Y-E(Y)]l ),k,l=1,2,…协方差矩阵:C =(c ij )=(Cov(X i ,Y j ))=E{[X i -E(X i )][X j -E(X j )]},i,j=1,2,…,n.第五章 大数定律及中心极限定理依概率收敛:设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数.若对于任意正数ε,有lim n→∞P {|Y n −a |<ε}=1,则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a,记为Y n P→a.伯努利大数定理:P(A)=P,频率nA n(n 次重复独立试验),对∀ε>0,lim n→∞P {|n A n−P|<ε}=1.辛钦大数定理:已知R.V . X 1,X 2,…,X n ,…相互独立且E(X i )=μ.(i=1,2,…)则∀ε>0,lim n→∞P {|1n ∑X k −μn k=1|<ε}=1.独立同分布的中心极限定理:设R.V .序列:X 1,X 2,…,X n ,…相互独立,并且E(X k )=μ, D(X k )=σ2,k=1,2,…则k n k=1√nσ2̃N(0,1) 标准正态分布(高斯分布)近似计算 李雅普诺夫中心极限定理:棣莫弗-拉普拉斯中心极限定理:设R.V. ηn ~B(n,p),则对任意x 有{η−np √np (1−p )≤x}≈Φ(x) 二项分布(n→∞)→ 正态分布第六章 样本及抽样分布总体:试验的全部可能的观察值.简单随机样本:设X 是具有分布函数F 的随机变量,若X 1,X 2,…,X n 是具有同一分布函数F 的、相互独立的随机变量,则称X 1,X 2,…,X n 为从分布函数F 得到的容量为n 的简单随机样本,简称样本.统计量:不含未知参数的样本的函数g(X 1,X 2,…,X n ).样本平均值:X̅=1n∑X i ni=1 样本方差:S 2=1n −1∑(X i −X ̅)2n i=1=1n −1(∑X i 2ni=1−nX̅2) 样本k 阶原点矩:A k =1n∑X i k ni=1,k =1,2,…样本k 阶中心矩:B k =1n∑(X i −X̅)k ni=1,k =1,2,… χ2分布:χ2=X 12+X 22+⋯+X n 2,服从自由度为n 的χ2分布,记为χ2~χ2(n).χ2(n)分布的概率密度为f (y )={12n 2Γ(n 2)yn 2−1e −y 2,y >0 0, otℎerwiseGamma 函数:Γ(x )=∫e −t t x−1dt +∞0,(x >0)t 分布:设X ~N(0,1),Y ~χ2(n),且X,Y 相互独立随机变量t=√n,服从自由度为n 的t 分布.记为t ~t(n).t(n)分布的概率密度函数为h (t )=Γ(n +12)√πnΓ(n 2)(1+t 2n )−n+12F 分布:设U ~χ2(n 1),V ~χ2(n 2),且U,V 相互独立随机变量F=Un 1V n 2,服从自由度为(n 1,n 2)的F 分布,记为F ~F(n 1,n 2). 密度函数为ψ(y).密度函数图形轮廓:χ2分布,F 分布类似,t 分布对称上α分位点:χα2(n),t α(n),F α(n 1,n 2) F 1-α(n 1,n 2)=1Fα(n 1,n 2):F 分布上分位点的重要性质,用来求表中未列出的常用上α分位点.关于样本均值、样本方差的重要结果1.设X 1,X 2,…,X n 是来自总体X(不管服从什么分布,只要它的均值和方差存在)的样本,且有E(X)=μ,D(X)=σ2n .2.设总体X~N(μ,σ2),X1,X2,…,X n是来自X的样本,则有);1)X̅~N(μ,σ2n~χ2(n−1);2)(n−1)S2σ23)X̅与S2相互独立;~t(n−1);4)X̅−μS√n3.对于两个正态总体X~N(μ1,σ12),Y~N(μ2,σ22),有定理四的重要结果.第七章 参数估计矩估计量:θ̂i =θi(A 1,A 2,…,A k ),i=1,2,…,k 作为θi 的估计量,A i 是样本矩. 最大似然估计量:θ̂(X 1,X 2,…,X n ),使L(x 1,x 2,…x n ;θ̂)=max θ∈ΘL(x 1,x 2,…,x n ;θ) 估计量的评选标准:无偏性:若估计量θ̂=θ̂(X 1,X 2,…,X n )的数学期望E(θ̂)存在,且对于任意θ∈~Θ有E(θ̂)=θ. 有效性:θ̂1=θ̂1(X 1,X 2,…,X n )与 θ̂2=θ̂2(X 1,X 2,…,X n )都是θ的无偏估计量,若对于任意θ∈Θ,有D(θ̂1)≤D(θ̂2)且至少对于某一个θ∈Θ上式中的不等号成立. 相合性:设θ̂(X 1,X 2,…,X n )为参数θ的估计量,若对与任意θ∈Θ,当n →∞时θ̂(X 1,X 2,…,X n )依概率收敛于θ.参数θ的置信水平为1-α的置信区间:θ的两个矩估计量θ=θ(X 1,X 2,…,X n )θ=θ(X 1,X 2,…,X n )给定的值α(0<α<1)有 P{θ<θ<θ}=1-α. 称(θ,θ)为置信水平为(1-α)的置信区间.枢轴量:一个样本和参数的函数W(X 1,X 2,…,X n ;θ),W 的分布不依赖于θ及其它未知参数. 参数θ的单侧置信上限和单侧置信下限P{θ>θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信下限. P{θ<θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信上限. 单个正态总体均值置信区间:若σ2已知,找U=X−μσ√n~N(0,1),得到μ的一个置信水平为1-α的置信区间为(X √nz α2)若σ2未知,E(S 2)=σ2,将σ换成S=√S 2找T=X−μS √n~t(n −1),得到μ的一个置信水平为1-α的置信区间为(X ±√nt α2(n −1))单个正态总体方差置信区间:σ2的无偏估计为S 2,(n −1)S 2σ2~χ2(n −1) P{χ1−α22(n −1)<(n −1)S 2σ2<χα22(n −1)}=1−α P {(n −1)S 2χα22(n −1)<σ2<(n −1)S 2χ1−α22(n −1)}=1−α 得到σ2的一个置信水平为1-α的置信区间为((n −1)S 2χα22(n −1),(n −1)S 2χ1−α22(n −1)) 单侧置信上限与单侧置信下限σ2已知,关于μ的单侧置信区间选U=X−μσ√n~N(0,1)单侧置信上限为μ=X √n α单侧置信下限为μ=X√nασ2未知,选T=X−μS√n~t(n−1)单侧置信上限为μ=X√nα(n−1)单侧置信下限为μ=X√nα(n−1)关于σ2,选(n−1)S 2σ2~χ2(n−1)单侧置信上限为σ2=(n−1)S 2χ1−α2(n−1)单侧置信下限为σ2=(n−1)S 2χα2(n−1)两个正态总体均值差、方差比的置信区间、单侧置信上限与单侧置信下限第八章 假设检验原假设:H 0:μ=μ0备择假设:H 1:μ≠μ0(原假设被拒绝后可供选择的假设) 检验统计量:Z =X−μ0σ√n单边检验:(右边检验)H 0:μ=μ0,H 1:μ>μ0(左边检验)H 0:μ=μ0,H 1:μ<μ0 双边检验:形如H 0:μ=μ0, H 1:μ≠μ0的检验显著性水平:关于x 与μ0有无差异的判断是在显著性水平α之下作出的. 拒绝域:区域C 中取某个值时拒绝原假设,如|z|>z α2.显著性检验:只对犯第I 类错误的概率加以控制,而不考虑犯第II 类错误的概率的检验. 一个正态总体的参数的检验:μ的检验σ2已知:利用统计量Z=X−μ0σ√n~N(0,1)确定拒绝域|Z|≥z α2σ2未知:|t|=|X−μ0S √n|~t(n-1)σ2的检验:χ2分布χ2=(n−1)S 2σ02~χ2(n −1)k 1=χ1−α22(n −1),k 2=χα22(n −1) 拒绝域为(n−1)S 2σ02≤k 1 或(n−1)S 2σ02≥k 2。
概率论与数理统计笔记
第一章 概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =, 称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。
为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ⊂,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。
若A B ⊂且B A ⊂,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的.,{,{,,A A S A A SA A AB AA AB ===∅=∅的逆事件记为若则称互逆,互斥.6.,A B A B A B AB 当且仅当同时发生时,事件发生.也记作.,A B A B A B AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件 “A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率 反映了事件A 发生的频繁程度. 2.频率的性质:10()12()1n n kkf A f S ≤≤=。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
概率论与数理统计重点笔记
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果.随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) .对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 11121 …+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==n i i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()k k i i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2).(3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1).二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx e x f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π , Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k y X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y 其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i j ij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x y y ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2 (4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) .(X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 },{j i j i p y Y x X P ==P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛) 方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2 =E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p),}{},{•=====i j i i j i p p x X P y Y x X P2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,…随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如: 样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i k i k X X n B 1)(1( k=1,2,…) 二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) . 2.χ2分布 (1)定义 若X ~N (0,1 ) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=n Y X ~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时,n S X μ-~ t (n-1) . ③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③) 22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 ))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计 笔记
概率论与数理统计笔记概率论的公理化定义1. 相关基本概念:我们首先定义以下概念:至此,我们将试验、事件等概念与集合的概念相联系,显然,我们会有以下的运算性质:2. 事件之间的关系以及运算(本质为集合运算)经过简单的推导可以得出以下运算性质:3. 事件的运算性质经过以上铺垫,我们可以引出频率、概率的定义:4. 频率 (frequency)定义:设随机事件a在n次重复试验中发生了m次,则称比值为事件a在n次重复试验中发生的「频率」。
频率越大,事件a发生就越频繁,可以用频率来预测事件a的发生的可能性大小。
当重复试验次数越多,n越大时,频率越逐渐趋于稳定于某个常数。
5. 概率的公理化定义(前苏联柯尔莫哥洛夫首次提出)设是随机试验的样本空间,对于每个事件,赋予一个实数,记为,称为事件a的「概率」,如果集合函数满足一下三个条件:理解:概率的本质一种映射,是一种将每个事件映射给一个实数的映射。
并且满足以上三个性质。
另外,注意一个常记的技巧:由以上概率的公理化定义推导出的性质:1.不可能事件的概率为02.有限可加性3.逆事件有4.减法公式5.单调性6.容斥原理,可推广至多个事件古典概型与几何概型古典概型是概率论的经典研究内容。
古典概型是指,如果一个随机试验,其中包含有限个样本点,并且所有样本点的概率都相等,那么我们就称该随机试验为古典概型。
而几何概型与以上定义基本相同,只不过包含了无限个样本点(对于几何图形来说,一块区域也包含了无穷个点)我们很容易就能够得到古典概型的计算公式(由可列可加性)关于古典概型的具体例题与技巧在此不再赘述。
如何定性认识古典概型的概率?我们可以认为,这种概率代表了一个试验中事件发生的可能性,可以认为是“ 进行无穷次试验之后事件发生频率的趋近值”。
利用这种可能性,我们可以最优化实际的决策。
条件概率与乘法公式条件概率的引入,是为了解决在某事件已经发生(或者指定某条件)的情况下具体事件的概率。
考研数学概率论与数理统计知识点终极梳理
考研数学概率论与数理统计知识点终极梳理概率论与数理统计是硕士研究生入学考试(除数二)的一个重要组成部分,从研究必然问题到研究随机问题,不仅大多数初学者感到困难, 即使是对于曾学过这门学科的考生也有不少问题,特别是在做习题以及解决实际问题方面遇到的困难会更多一些。
从近几年硕士研究生入学考试数学阅卷结果来看,概率论这一部分得分率普遍较低。
在最后几天,建议大家,加强数学基本计算联系,熟练、严谨、规范非常至关重要。
此外,要注意回顾一遍大纲考点,查漏补缺。
第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基木性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维林德伯格定理、棣莫弗拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验。
概率论与数理统计读书笔记
概率论与数理统计读书笔记概率论与数理统计是一门基础而重要的学科,涵盖了很多实际问题的分析和解决方法。
在本次阅读中,我对概率论与数理统计的相关知识有了更深刻的理解。
一、概率论部分1.概率论的基本概念概率论是研究事件发生的可能性的学科,与我们日常生活息息相关。
在概率论的基本概念中,概率是其核心之一,它是一个在0和1之间的数值,反映出某个事件发生的可能性大小。
2.随机变量与概率分布随机变量是一个将事件映射到实数上的函数,一般表示为X,通过它可以对事件空间进行量化和分析。
概率分布是随机变量的取值和对应概率的对应关系,定义了随机变量的所有可能取值以及它们发生的概率大小。
3.常见概率分布常见的概率分布包括离散型概率分布和连续型概率分布。
离散型概率分布例如二项分布、泊松分布等,而连续型概率分布则包括正态分布、指数分布等等。
二、数理统计部分1.统计学的基本概念统计学是一个非常广泛的学科,主要研究如何通过搜集数据和样本,来推导总体特征和情况,推断出总体的性质和规律。
在统计学的基本概念中,总体和样本是其中两个重要的概念,总体是由我们想要分析的所有对象组成的集合,样本则是总体的一个部分。
2.描述统计与推论统计在统计学中,描述统计和推论统计都是非常重要的概念,它们的作用不同。
描述统计是通过对样本数据的统计描述,来探究数据的均值、方差、标准差等参数,来描述数据集的总体情况;而推论统计则是根据样本数据推论总体特征,来确定整体情况的分析方法。
3.假设检验和置信区间在推论统计中,假设检验和置信区间是两个非常重要的工具。
假设检验是一种能够根据样本得到的研究结果,来推论总体特征的方法。
而置信区间则是关于一个参数值的一定程度置信的一个区间,也称为置信水平区间。
综上所述,概率论与数理统计对于我们理解概率与统计的基本功能、场景及一些相关知识做出了详细的阐述与分析,非常实用。
对于学术研究、工程领域及相关行业人员而言,掌握概率论与数理统计的核心概念与方法是非常必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》笔记(考研版)一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.应用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
设甲戏院需设m 个座位,定义⎝⎛=否则个观众选甲戏院,第,i x i 01 ,i =1,2,…,500依题意,50021 5001,,,i ,.)x (P )x (P i i =====若用x 表示选择甲戏院的观众总数,则∑==5001i ix x ,问题化为求m使950050.)m x (P ,.)m x (P ≤≤≤≥即因为E(x i )=D(x i )=0.5 ,由中心极限定理近似地),(N ~..x 1025050050500⨯⨯- 故 95055250.)m ()m x (P ≥-Φ=≤, 查标准正态分布表知65155250.m ≥-,从而解得 269≥m ,即每个戏院至少应该设多少269个座位。
各章的重点难点第一章 事件与概率古典概率全概率公式与贝叶斯公式(*)独立试验序列第二章离散型随机变量离散随机变量的概率分布分布函数常用分布:超几何分布H(n,M,N)、二项分布B(n,p)、泊松分布P(λ)随机变量的数学期望与方差的概念及性质第三章连续型随机变量连续随机变量的概率密度、均匀分布U[a,b]、指数分布e(λ)、正态分布N(μ,σ2)分布函数二维随机变量的分布(联合分布)边际分布随机变量函数的数学期望常用分布的数学期望与方差相关矩与相关系数随机变量的和的分布切比雪夫不等式第四章大数定律与中心极限定理大数定律(辛钦定理、伯努里定理)中心极限定理(列维定理、德莫威尔-拉普拉斯定理)第五章数理统计的基本知识总体与样本的概念常用统计量:样本均值、样本方差、修正样本方差数理统计中的常用分布:χ2分布、t分布、F分布(*)正态总体的统计量分布:定理1~定理4第六章点估计参数的矩估计:极大似然法无偏估计第七章假设检验正态总体均值的假设检验正态总体标准差的假设检验正态总体均值的区间估计正态总体方差的区间估计(未知μ)二、学习方法指导本课程是研究随机现象的统计规律性的数学学科。
因为研究对象,所以在学习方法上与分析数学、线性代数等其它课程有很大不同。
在学习过程中,会遇到较多的、独特的概念和分析方法,初学者可能会感到很不习惯,入门会有一定困难,但是只要肯于钻研并掌握较好的学习方法,多数学生不仅能达到考核的基本要求,而且还会产生较大的学习兴趣。
这是因为概率论与数理统计与社会生活实际的联系十分紧密,应用特别广泛,因而容易激发人们的兴趣。
下面,结合本课程的特点,介绍某些行之有效的学习方法供学生参考。
1.学习概率论的基本概念时,首先要注意这些概念的统计背景。
概率论部分的基本概念比较多,特别从第二章“随机变量及其分布”开始,似乎“高难动作”一个接着一个来。
如果对基本概不能很好理解,势必影响自学的信心。
实际上,概率论的许多基本概念来源于统计实践,因此弄清其统计背景乃是入门的向导。
例如,概率来源于频率,它是大量独立重复试验时频率的稳定值。
因此,频率是概率的先导。
而概率又是频率的抽象和发展。
进而可理解概率的某些基本特性也是相应的频率特性的高度概括和抽象。
又如,连续随机变量的概率密度的统计背景是统计直方图;随机变量的分布函数实质上是一种“累计概率”,它来源于统计中的经验分布函数;而随机变量的期望概念则是样本均值的抽象,在提供了频率分布的前提下,样本均值实际上是一种加权平均值(“权”就是频数),而离散随机变量的期望恰恰是这种加权平均值概念的提升和推广,即将频率提升为概率,将有限推广到无限等等。
2.重视概念的甄别,即弄清某些容易混淆的概念之间的区别。
在概率论中存在许多容易混淆的概念,如果不能认真区分,仔细加以甄别,就不能正确理解这些重要概念,在应用时就会产生各种各样的错误。
互不相容事件与相互独立事件是最容易混淆的一对概念“互不相容”是指两个事件不能同时发生。
而“相互独立”则是指一个事件发生与否对另一事件发生的概率没有影响。
随机变量的独立性与不相关性是两个既有区别又有联系的概念。
两个随机变量相互独立 不相关条件概率P(A|B)与乘积概率P(AB) 也是容易混淆的一对概念条件概率是已知某事件发生条件下,另一事件发生的概率,而乘积概率中所涉及的事件都没有“已经发生”的假定。
两者的关系为P(AB)=P(B)P(A|B)3.善于识别一些重要的概率模型并能正确进行计算是提高分析和解决概率实际问题能力的关键。
在概率论中有许多经长期实践概括出的重要概率模型(简称“概型”),学生必须了解其背景、特点和适用范围,要熟记计算公式,以便能正确应用。
例如:(1)古典概型:一类具有有限个“等可能”发生的基本事件的概率模型。
(2)完备事件组模型:若干个两两互不相容的事件在一次试验中有且仅有一个发生的一类概率模型。
它主要用于某些复杂事件的计算——全概率公式,以及某些条件概率的计算——贝叶斯公式。
(3)贝努利概型与二项分布模型:贝努利概型是关于独立重复试验序列的一类重要的概率模型,其特点是各个重复试验是独立进行的,且每次试验中仅有两个对立的结果:事件A 发生或不发生,则在n 次独立重复试验中,事件A 恰好发生m 次的概率为m n m m n n p p C m P --=)1()( ,其中p=P(A).(4)泊松分布:物理上存在一种质点流,称为泊松流,它是由源源不断的随机出现的许多质点构成的一种随机质点流。
例如,电话交换台所接到的呼唤形成一呼唤流,到某商店去购物的顾客形成一顾客流,经过某块天空的流星形成流星流,放射性物质不断放出的质点形成质点流等等。
泊松流的主要特征之一就是在任意两个不相交的时间区间内各自出现的质点个数是相互独立的。
加上另一些特征,即可导出泊松流的概率模型.(5)正态分布——最重要的概率模型:根据中心极限定理的意义可知:无数微小的,又相互独立作用的随机因素,如果它们同分布,则它们累加起来的总效应必定服从正态分布。
这是正态分布应用最为广泛的根本原因。
例如人体的身高、体重,测量的误差等都服从正态分布。
(6)均匀分布——“等可能”取值的连续化模型:如果连续随机变量ξ仅在某有限区间[a ,b]内取值,且具有概率密度⎪⎩⎪⎨⎧≤≤-=其它 ,0 ,1)(b x a a b x ϕ则称ξ服从区间[a ,b]上的均匀分布。
除以上6种常见的概率模型外,还有指数分布,随机变量的函数等模型,不再—一列举,可参看教材有关内容。
4.对于某些难度较大的特殊算法要在理解的基础上进行“典例复算”学生普遍反映本课程自学较难,除概念抽象外,恐怕一些特殊的计算方法也会带来不少学习上的困难。
要突破这一点,最好的方法是将有关的典型例题读完后,合上书,认真复算一遍,边算边加深理解。
例如,关于已知随机变量的分布列或概率密度,求分布函数的方法。
从分布函数的定义}{)(x P x F <=ξ出发,可得出关于离散随机变量和连续随机变量分布函数的计算公式,分别为∑∑<<=<=x x ix x i i i p x P x F }{)(ξ和⎰∞-=x dt t x F )()(ϕ困难在于这两个公式的具体应用。
5.学习数理统计部分,最重要的是要领会各种统计方法内在的统计思想,其次是要熟练掌握操作步骤。
例如,极大似然估计法的主要统计思想是:如果在一次试验中,某个样本x1, x2,…,x n一旦出现,就有理由认为该样本出现的概率最大。
具体操作时,只要利用总体的已知分布(其中包含待估的本知参数)构造样本的联合分布,即似然函数,再应用微积分的极值原理找出最大值点,即得极大似然估计量。
又如,区间估计实际上是以一定的把握(置信概率)去估计未知参数所落入的范围(置信区间)。
区间估计方法最主要的统计思想是:设法构造一个与待估未知参数有关的统计量,利用它的抽样分布,在给定的置信概率下确定临界值,再作适当的概率恒等变形即可获得置信区间。
简言之,就是以统计量及其抽样分布为武器,达到用样本推断总体的目的。
数理统计既然是用部分去推断总体,特别是区间估计和假设检验都只是根据一次抽样所得的样本值去下结论,这就不可能不犯错误,于是就产生了区间估计的可靠性(置信概率)和假设检验的两类错误问题。
这就是说,数理统计工作者对实际问题下结论时往往不是简单地回答“是”或“非”,而是带有一定的犯错误的概率。