卡尔曼滤波两例题含matlab程序汇总
扩展卡尔曼滤波算法的matlab程序
clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2)0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。
扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)
扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)⽂章⽬录我们上篇提到的 (参见我的另⼀篇⽂章: )是⽤于线性系统,预测(运动)模型和观测模型是在假设⾼斯和线性情况下进⾏的。
简单的卡尔曼滤波必须应⽤在符合⾼斯分布的系统中,但是现实中并不是所有的系统都符合这样 。
另外⾼斯分布在⾮线性系统中的传递结果将不再是⾼斯分布。
那如何解决这个问题呢?扩展卡尔曼滤波就是⼲这个事的。
理论讲解扩展卡尔曼滤波(Extended Kalman Filter,EKF)通过局部线性来解决⾮线性的问题。
将⾮线性的预测⽅程和观测⽅程进⾏求导,以切线代替的⽅式来线性化。
其实就是在均值处进⾏⼀阶泰勒展开。
数学中,泰勒公式是⼀个⽤函数在某点的信息描述其附近取值的公式( ⼀句话描述:就是⽤多项式函数去逼近光滑函数 )。
如果函数⾜够平滑的话,在已知函数在某⼀点的各阶导数值的情况之下,泰勒公式可以⽤这些导数值做系数构建⼀个多项式来近似函数在这⼀点的邻域中的值。
泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
表⽰ 在第 阶导数的表达式,带⼊⼀个值计算后得到的结果(注意,它是个值)是⼀个系数(⼀个值),每⼀项都不同,第⼀项 ,第⼆项 …… 依此类推是⼀个以为⾃变量的表达式 。
是泰勒公式的余项,是 的⾼阶⽆穷⼩KF 和EKF 模型对⽐⾸先,让卡尔曼先和扩展卡尔曼滤波做⼀个对⽐。
在对⽐过程中可以看出,扩展卡尔曼是⼀个简单的⾮线性近似滤波算法,指运动或观测⽅程不是线性的情况,在预测模型部分,扩展卡尔曼的预测模型和量测模型已经是⾮线性了。
为了简化计算,EKF 通过⼀阶泰勒分解线性化运动、观测⽅程。
KF 与EKF 具有相同的算法结构,都是以⾼斯形式描述后验概率密度的,通过计算贝叶斯递推公式得到的。
最⼤的不同之处在于,计算⽅差时,EKF 的状态转移矩阵(上⼀时刻的状态信息)和观测矩阵(⼀步预测)都是状态信息的雅克⽐矩阵( 偏导数组成的矩阵)。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
matlab扩展卡尔曼滤波实例
matlab扩展卡尔曼滤波实例在MATLAB中实现卡尔曼滤波的过程。
第一步:准备数据要使用卡尔曼滤波算法,首先需要准备尽可能准确的测量数据。
我们假设我们正在跟踪一个匀速运动的物体,我们使用一个简单的模型来生成数据。
以下是一个MATLAB代码示例:matlab生成匀速运动数据t = 0:0.1:10; 时间范围v = 2; 速度x_true = 5 + v*t; 真实位置x_meas = x_true + 0.5*randn(size(t)); 测量位置(加入噪声)上述代码生成了10秒钟内物体的真实位置(x_true)和加入高斯噪声的测量位置(x_meas)。
第二步:初始化卡尔曼滤波器在开始使用卡尔曼滤波器之前,需要初始化滤波器的状态估计和协方差矩阵。
以下是一个示例代码:matlab初始化卡尔曼滤波器参数x_est = 0; 状态估计P_est = 1; 协方差矩阵Q = 1; 过程噪声方差R = 0.5; 测量噪声方差在上述代码中,我们初始化了状态估计(x_est)、协方差矩阵(P_est)、过程噪声方差(Q)和测量噪声方差(R)。
第三步:卡尔曼滤波迭代卡尔曼滤波的核心是迭代过程,其中包含两个关键步骤:预测和更新。
预测步骤是使用系统模型来预测下一时刻的状态和协方差矩阵。
更新步骤将测量值与预测结果进行比较,以改进状态估计和协方差矩阵。
以下是一个MATLAB代码示例:matlab卡尔曼滤波迭代for k = 1:length(t)预测步骤x_pred = x_est;P_pred = P_est + Q;更新步骤K = P_pred / (P_pred + R);x_est = x_pred + K*(x_meas(k) - x_pred);P_est = (1 - K)*P_pred;保存状态估计结果x_est_hist(k) = x_est;end在上述代码中,我们首先进行预测步骤,计算预测状态(x_pred)和预测协方差矩阵(P_pred)。
卡尔曼滤波 matlab算法
卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。
在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。
2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。
其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。
3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。
4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。
需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。
此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。
总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。
希望以上内容能够对你有所帮助。
卡尔曼滤波计算举例全
卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。
系统的起始变量x [0]为随机变量,其均值为零,方差为。
2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。
220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。
容积卡尔曼滤波 matlab
容积卡尔曼滤波matlab摘要:1.容积卡尔曼滤波简介2.容积卡尔曼滤波算法原理3.容积卡尔曼滤波算法在MATLAB 中的实现4.容积卡尔曼滤波算法的应用案例5.结论正文:一、容积卡尔曼滤波简介容积卡尔曼滤波(Cubature Kalman Filter,简称CKF)是一种基于卡尔曼滤波理论的非线性滤波算法。
它通过将非线性系统的状态空间模型和观测模型进行离散化,采用立方插值方法对系统状态进行预测和更新,从而实现对非线性系统的状态估计。
相较于传统的卡尔曼滤波,容积卡尔曼滤波具有更好的性能和鲁棒性,被广泛应用于导航定位、目标跟踪、机器人控制等领域。
二、容积卡尔曼滤波算法原理容积卡尔曼滤波算法主要包括两个部分:预测阶段和更新阶段。
1.预测阶段在预测阶段,首先对系统的状态向量进行初始化,然后通过系统动态模型和观测模型,对系统的状态向量进行预测。
具体来说,根据系统的状态转移矩阵、控制矩阵、观测矩阵和过程噪声协方差矩阵,计算预测状态向量的均值和协方差矩阵。
2.更新阶段在更新阶段,根据预测的观测值和观测协方差矩阵,计算观测均值和协方差矩阵。
然后,利用卡尔曼增益公式,结合预测状态向量和观测均值,更新系统的状态向量和协方差矩阵。
三、容积卡尔曼滤波算法在MATLAB 中的实现在MATLAB 中,可以通过以下步骤实现容积卡尔曼滤波算法:1.导入所需库:`import numpy as np;`2.初始化状态向量和协方差矩阵:`x = np.zeros((2,1)); p =np.zeros((2,2));`3.设置系统参数:`F = np.array([[1, 0.1], [0, 1]]); Q = np.array([[0.1, 0], [0, 0.1]]); H = np.array([[1, 0], [0, 1]]);`4.预测阶段:`F_pred = F; Q_pred = Q; x_pred = F_pred @ x; S_pred = F_pred @ P @ F_pred.T + Q_pred;`5.更新阶段:`y=H@x;S_update=H@*****+R;`6.计算卡尔曼增益:`K=*****@np.linalg.inv(S_update);`7.更新状态向量和协方差矩阵:`x = x + K @ (y - H @ x); P = (np.eye(2) - K @ H) @ P;`四、容积卡尔曼滤波算法的应用案例容积卡尔曼滤波算法在各种领域都有广泛应用,例如:1.导航定位:利用GPS、惯性导航等传感器的数据,实现对飞行器、船舶等移动设备的精确定位。
卡尔曼滤波器例题
卡尔曼滤波器是一种递归滤波器,它使用测量数据和系统状态方程来估计一个动态系统的状态。
下面是一个简单的卡尔曼滤波器例题:假设我们有一个一维系统,其状态方程为:X(k) = X(k-1) + 1其中X(k) 表示系统在时刻k 的状态,X(k-1) 表示系统在时刻k-1 的状态。
测量方程为:Z(k) = X(k) + 2 * R * randn()其中Z(k) 表示在时刻k 的测量值,R 表示测量噪声的方差,randn() 表示随机数生成函数,用于生成符合标准正态分布的随机噪声。
现在,我们使用卡尔曼滤波器来估计系统在时刻k 的状态X(k)。
在卡尔曼滤波器中,我们需要定义以下几个变量:P(k|k-1):表示在时刻k-1 时对时刻k 的状态估计的不确定性。
K(k):表示卡尔曼增益,用于将测量值和估计值结合起来。
P(k):表示在时刻k 时对状态估计的不确定性。
X(k):表示在时刻k 的状态估计值。
在初始状态下,我们设定X(0|0)=0 和P(0|0)=1。
然后,我们使用以下递归公式来更新这些变量:P(k|k-1) = P(k-1|k-1) + Q,其中Q 表示过程噪声的方差。
K(k) = P(k|k-1) / (P(k|k-1) + R),其中R 表示测量噪声的方差。
X(k) = X(k|k-1) + K(k) * (Z(k) - X(k|k-1)),其中Z(k) 是测量值。
P(k) = (1 - K(k)) * P(k|k-1)。
下面是一个使用Python 实现的卡尔曼滤波器示例代码:import numpy as npfrom scipy.linalg import inv# 定义系统参数和测量参数Q = 0.01 # 过程噪声方差R = 0.25 # 测量噪声方差X_true = np.arange(1, 10) # 真实状态序列Z_measured = X_true + 2 * R * np.random.randn(len(X_true)) # 测量序列# 初始化卡尔曼滤波器参数X_est = np.zeros_like(X_true) # 初始状态估计值P_est = np.ones_like(X_true) # 初始状态估计的不确定性X_est[0] = X_true[0] # 初始状态估计值为真实值P_est[0] = 1 # 初始不确定性设为1K = np.zeros_like(X_true) # 卡尔曼增益数组for k in range(1, len(X_true)):# 预测步骤:根据上一时刻的状态和过程方程预测当前时刻的状态和不确定性P_est[k] = P_est[k-1] + Q # P预测= P上一时刻+ QX_est[k] = X_est[k-1] + 1 # X预测= X上一时刻+ 1# 更新步骤:根据当前时刻的测量值和卡尔曼增益更新状态估计和不确定性K[k] = P_est[k] / (P_est[k] + R) # 卡尔曼增益计算公式X_est[k] = X_est[k] + K[k] * (Z_measured[k] - X_est[k]) # 状态估计更新公式P_est[k] = (1 - K[k]) * P_est[k] # 不确定性更新公式。
(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
卡尔曼姿态解算matlab程序
卡尔曼姿态解算matlab程序【原创版】目录一、卡尔曼滤波器的应用背景二、卡尔曼滤波器的基本原理三、使用 MATLAB 实现卡尔曼姿态解算的步骤四、卡尔曼姿态解算的优点与局限性五、结论正文一、卡尔曼滤波器的应用背景卡尔曼滤波器是一种线性滤波器,广泛应用于控制、导航、计算机视觉和时间序列计量经济学等领域。
其主要目的是通过对一系列观测数据进行处理,估计状态变量的最优值,从而实现对系统状态的跟踪和预测。
二、卡尔曼滤波器的基本原理卡尔曼滤波器是一种递归滤波器,它通过在线性系统模型的基础上,不断地更新系统的状态估计值和协方差矩阵,从而实现对系统状态的跟踪和预测。
卡尔曼滤波器的基本原理可以概括为两个步骤:预测和更新。
预测步骤使用系统模型和先前的状态估计值来预测当前状态的估计值和协方差矩阵;更新步骤使用观测数据和先前的预测值来修正状态估计值和协方差矩阵。
三、使用 MATLAB 实现卡尔曼姿态解算的步骤1.首先,需要安装 MATLAB 的计算机视觉库,以便使用相关函数实现图像处理和特征提取。
2.导入相关库和函数,定义卡尔曼滤波器的系统模型和观测模型。
系统模型通常包括物体的初始姿态、运动模型和噪声模型;观测模型通常包括摄像机的内参和外参、图像处理和特征提取函数等。
3.编写卡尔曼滤波器的预测和更新函数,实现对物体姿态的跟踪和预测。
预测函数使用系统模型计算当前姿态的预测值和协方差矩阵;更新函数使用观测模型和预测值计算当前姿态的更新值和协方差矩阵。
4.使用 MATLAB 的循环结构,对图像序列进行处理,实现卡尔曼姿态解算。
在每一帧图像中,首先使用特征提取函数提取物体的特征点,然后使用摄像机的内参和外参将特征点转换为三维坐标系中的点,最后使用卡尔曼滤波器计算物体的姿态。
四、卡尔曼姿态解算的优点与局限性卡尔曼滤波器在姿态解算方面的优点包括:1.对噪声具有较强的鲁棒性,能够有效地处理观测数据中的噪声。
2.能够实现对系统状态的实时跟踪和预测,具有较好的实时性。
卡尔曼滤波原理及应用-matlab仿真代码
一、概述在信号处理和控制系统中,滤波是一种重要的技术手段。
卡尔曼滤波作为一种优秀的滤波算法,在众多领域中得到了广泛的应用。
其原理简单而高效,能够很好地处理系统的状态估计和信号滤波问题。
本文将对卡尔曼滤波的原理及其在matlab中的仿真代码进行介绍,以期为相关领域的研究者和工程师提供一些参考和帮助。
二、卡尔曼滤波原理1.卡尔曼滤波的基本思想卡尔曼滤波是一种递归自适应的滤波算法,其基本思想是利用系统的动态模型和实际测量值来进行状态估计。
在每次测量值到来时,根据当前的状态估计值和测量值,通过递推的方式得到下一时刻的状态估计值,从而实现动态的状态估计和信号滤波。
2.卡尔曼滤波的数学模型假设系统的状态方程和观测方程分别为:状态方程:x(k+1) = Ax(k) + Bu(k) + w(k)观测方程:y(k) = Cx(k) + v(k)其中,x(k)为系统的状态向量,u(k)为系统的输入向量,w(k)和v(k)分别为状态方程和观测方程的噪声向量。
A、B、C为系统的参数矩阵。
3.卡尔曼滤波的步骤卡尔曼滤波的具体步骤如下:(1)初始化首先对系统的状态向量和协方差矩阵进行初始化,即给定初始的状态估计值和误差协方差矩阵。
(2)预测根据系统的状态方程,利用上一时刻的状态估计值和协方差矩阵进行状态的预测,得到状态的先验估计值和先验协方差矩阵。
(3)更新利用当前时刻的观测值和预测得到的先验估计值,通过卡尔曼增益计算出状态的后验估计值和后验协方差矩阵,从而完成状态的更新。
三、卡尔曼滤波在matlab中的仿真代码下面是卡尔曼滤波在matlab中的仿真代码,以一维线性动态系统为例进行演示。
定义系统参数A = 1; 状态转移矩阵C = 1; 观测矩阵Q = 0.1; 状态方程噪声方差R = 1; 观测噪声方差x0 = 0; 初始状态估计值P0 = 1; 初始状态估计误差协方差生成系统数据T = 100; 时间步数x_true = zeros(T, 1); 真实状态值y = zeros(T, 1); 观测值x_est = zeros(T, 1); 状态估计值P = zeros(T, 1); 状态估计误差协方差初始化x_est(1) = x0;P(1) = P0;模拟系统动态for k = 2:Tx_true(k) = A * x_true(k-1) + sqrt(Q) * randn(); 生成真实状态值y(k) = C * x_true(k) + sqrt(R) * randn(); 生成观测值预测x_pred = A * x_est(k-1);P_pred = A * P(k-1) * A' + Q;更新K = P_pred * C' / (C * P_pred * C' + R);x_est(k) = x_pred + K * (y(k) - C * x_pred);P(k) = (1 - K * C) * P_pred;end绘制结果figure;plot(1:T, x_true, 'b', 1:T, y, 'r', 1:T, x_est, 'g');legend('真实状态值', '观测值', '状态估计值');通过上面的matlab代码可以实现一维线性动态系统的状态估计和滤波,并且绘制出真实状态值、观测值和状态估计值随时间变化的曲线。
卡尔曼滤波原理及应用matlab
卡尔曼滤波原理及应用matlab什么是卡尔曼滤波?卡尔曼滤波(Kalman Filter)是一种递归滤波算法,用于估计系统的状态变量,同时能够考虑到系统中的测量噪声和过程噪声。
它被广泛应用于信号处理、控制系统、导航系统等领域。
1. 卡尔曼滤波原理卡尔曼滤波的基本原理可以简单概括为:先预测系统的状态变量,再通过测量数据对预测结果进行校正,得到更准确的状态估计。
具体步骤如下:(1)初始化:设定系统的初始状态估计值和协方差矩阵。
(2)预测状态:基于系统的动态模型,通过前一时刻的状态估计值和控制输入(如果有),利用状态方程预测当前时刻的状态和协方差。
(3)状态更新:根据当前时刻的测量数据,通过测量方程计算状态的残差,然后利用卡尔曼增益对预测的状态估计进行校正,得到更新后的状态和协方差。
(4)返回第二步,重复进行预测和更新。
卡尔曼滤波的核心在于通过系统模型和测量数据不断进行预测和校正,利用预测的结果和测量数据之间的差异来修正状态估计,从而对真实状态进行有效的估计。
2. 卡尔曼滤波的应用卡尔曼滤波在实际应用中有广泛的领域,下面介绍一些常见的应用场景。
(1)信号处理:在信号处理领域,卡尔曼滤波可用于降噪、信号提取、信号预测等工作。
通过将测量噪声和过程噪声考虑进来,卡尔曼滤波能够对信号进行更精确的估计和分离。
(2)控制系统:在控制系统中,卡尔曼滤波可用于状态估计,即根据系统的输入和输出,通过滤波算法估计系统的状态变量。
这对于控制系统的稳定性和性能提升具有重要意义。
(3)导航系统:卡尔曼滤波在导航系统中被广泛应用。
由于导航系统通常包含多个传感器,每个传感器都有测量误差,卡尔曼滤波能够通过融合多个传感器的测量数据,获得更准确的位置和速度估计。
(4)图像处理:卡尔曼滤波也可用于图像处理中的目标跟踪和运动估计。
通过将目标的位置和速度作为状态变量,将图像的测量数据带入卡尔曼滤波算法,可以实现对目标运动的预测和跟踪。
3. 使用MATLAB实现卡尔曼滤波MATLAB是一种强大的数学建模和仿真工具,也可以用于实现卡尔曼滤波算法。
卡尔曼滤波matlab代码
卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。
它利用模型估计和更新未知状态,以达到估计未知状态的目的。
步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。
步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。
步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。
步骤4:在滤波器中实现卡尔曼滤波:。
卡尔曼滤波原理及应用matlab
卡尔曼滤波原理及应用matlab卡尔曼滤波是一种最优线性滤波算法,经常应用于估计系统的状态,特别是在有观测误差和系统动态噪声的情况下。
它是由卡尔曼于1960年提出的,常用于航天、制导导航控制等领域。
卡尔曼滤波的核心思想是通过将系统的测量值与模型预测值进行加权平均,得到对系统状态的最优估计。
它的主要特点是能够自适应地估计系统的状态,并且对于含有噪声的测量值具有较好的抗扰动能力。
在卡尔曼滤波中,系统的状态通常用状态向量表示,用一个线性方程组表示系统的动态演化,如下所示:x(k) = A * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)表示系统的状态向量,A和B是状态转移矩阵和输入控制矩阵,u(k-1)表示输入控制向量,w(k-1)表示系统动态噪声。
系统的测量模型可以表示为:z(k) = H * x(k) + v(k)其中,z(k)为测量值,H为测量矩阵,v(k)表示观测噪声。
卡尔曼滤波的基本步骤如下:1. 预测状态:根据上一时刻的状态估计值和状态转移矩阵进行预测,得到对当前状态的预测估计。
x^(k k-1) = A * x^(k-1 k-1) + B * u(k-1)P(k k-1) = A * P(k-1 k-1) * A' + Q(k-1)2. 更新观测:根据当前的测量值和测量模型进行更新,得到对当前状态的最优估计。
K(k) = P(k k-1) * H' * inv(H * P(k k-1) * H' + R(k))x^(k k) = x^(k k-1) + K(k) * (z(k) - H * x^(k k-1))P(k k) = (I - K(k) * H) * P(k k-1)3. 输出最优估计:使用更新后的状态估计和协方差矩阵作为当前时刻的最优估计结果。
x(k) = x^(k k)P(k) = P(k k)其中,P(k k-1)和P(k k)是协方差矩阵,Q(k-1)和R(k)是系统动态噪声和观测噪声的协方差矩阵。
卡尔曼滤波 matlab代码
卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。
它广泛应用于导航、定位、机器人控制等领域。
二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。
预测阶段:1.初始化状态变量和协方差矩阵。
2.根据系统动态模型,预测系统的状态变量和协方差矩阵。
更新阶段:1.测量系统的状态变量,得到观测数据。
2.根据观测数据和预测的状态变量,计算卡尔曼增益。
3.使用卡尔曼增益,更新状态变量和协方差矩阵。
三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。
卡尔曼滤波器matlab代码
卡尔曼滤波器matlab代码卡尔曼滤波器是一种常用的状态估计算法,它能够根据系统的状态方程和测量方程,以及预测的误差和测量的误差,计算出最优的状态估计值和误差协方差矩阵,从而提高系统的精度和鲁棒性。
以下是卡尔曼滤波器的matlab代码:% 系统模型:% x(k) = A * x(k-1) + B * u(k) + w(k)% y(k) = H * x(k) + v(k)% 初始化模型参数:% 状态转移矩阵:A = [1, 1; 0, 1];% 控制输入矩阵:B = [0.5; 1];% 系统噪声方差:Q = [0.01, 0; 0, 0.1];% 测量噪声方差:R = 1;% 观测矩阵:H = [1, 0];% 初始化状态向量和协方差矩阵:x0 = [0; 0];P0 = [1, 0; 0, 1];% 设置时间和增量:dt = 0.1;t = 0:dt:10;u = sin(t);% 初始化输出向量和卡尔曼增益矩阵:x = zeros(2,length(t));y = zeros(1,length(t));K = zeros(2,length(t));% 执行卡尔曼滤波算法:x(:,1) = x0;for k = 2:length(t)% 预测状态和协方差:x_pre = A * x(:,k-1) + B * u(k-1);P_pre = A * P0 * A' + Q;% 计算卡尔曼增益:K(:,k) = P_pre * H' / (H * P_pre * H' + R);% 更新状态和协方差:x(:,k) = x_pre + K(:,k) * (y(k-1) - H * x_pre); P0 = (eye(2) - K(:,k) * H) * P_pre;% 计算输出:y(k) = H * x(:,k);end% 绘制结果:subplot(2,1,1)plot(t,x(1,:),'r',t,x(2,:),'b')legend('位置','速度')title('状态估计')subplot(2,1,2)plot(t,y,'g',t,u,'m')legend('测量值','控制输入')title('卡尔曼滤波')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度0h 和速度0V 也是高斯分布的随机变量,且0000019001000,var 10/02Eh h m P EV m s V ⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦。
试求该物体高度和速度随时间变化的最优估计。
(2/80.9s m g =) 解:1. 令()()()h k X k v k ⎡⎤=⎢⎥⎣⎦t=1 R (k )=1 Q(k)=0 根据离散时间卡尔曼滤波公式,则有: (1)(1,)()()X k k k X k U k φ+=++ (1)(1)(1)(1)Y k H k X k V k +=++++(1,)k k φ+= 11t -⎡⎤⎢⎥⎣⎦ ()U k = 20.5gt gt ⎡⎤-⎢⎥⎣⎦(1)H k +=[]10 滤波初值:^1900(0|0)(0)10X EX ⎡⎤==⎢⎥⎣⎦0100(0|0)var[(0)]2P X P ⎡⎤===⎢⎥⎣⎦一步预测:^^(1|)(1,)(|)()X k k k k X k k U k φ+=++ (1|)(1,)(|)(1,)TP k k k k P k k k k φφ+=++滤波增益:1(1)(1|)(1)[(1)(1|)(1)(1)]TTK k P k k H k H k P k k H k R k -+=+++++++ 滤波计算:^^^(1|1)(1|)(1)[(1)(1)(1|)]X k k X k k K k Y k H k X k k ++=++++-++ (1|1)[(1)(1)](1|)P k k I K k H k P k k ++=-+++ 2. 实验结果高度随时间变化估计速度随时间变化的最优估计高度协方差速度协方差从以上的结果,可以得到高度和速度的估计值,再通过所得到的高度协方差和速度协方差,可见用卡尔曼滤波法,虽然刚开始的初始高度协方差很大为100,但通过2步之后减小到不超过1,逐渐接近于0, 同样的速度协方差刚开始的时候也比较大,为2,但是通过5步之后迅速减小,到10步之后接近于0。
3. 有关参数的影响(例如初始条件、噪声统计特性对滤波结果的影响等);1)初始条件改变时,改变初始高度值,和速度值 00230030/Eh m EV m s ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦由实验结果分析可得度滤波值和速度滤波值在开始几步接近初始值,协方差值基本不变。
2)当初始协方差值改变时,改为0001500var 010h P V ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦实验结果分析高度和速度滤波值基本不变,速度协方差和高度协方差开始要接近速度协方差和高度协方差的初始值。
但是经过几步之后,都趋于0。
二.同样考虑自由落体运动的物体,用雷达(和物体落地点在同一水平面)进行测量,如图所示。
如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200050005var ,/1200519950000000V h d P s m m m EV Eh Ed ,且雷达测距和测角的测量噪声是高斯白噪声随机序列,均值为零、方差阵⎥⎦⎤⎢⎣⎡=01.00004.0R ,试根据下列测量数据确定物体的高度和速度随时间变化的估计值。
时间[s]*1000 斜距[km] 俯仰角[rad]*1000 0.00050000000000 2.82741643781891 0.00075850435876 0.00100000000000 2.82519811729771 0.00083282260478 0.00150000000000 2.82066686966236 0.000678082416390.00200000000000 2.81487233105901 0.00085279036802 0.00250000000000 2.80671786536244 0.00072900768452 0.00300000000000 2.79725268974089 0.00080072481819 0.00350000000000 2.78664273475039 0.00075095576213 0.00400000000000 2.77320365026313 0.00065762725379 0.00450000000000 2.75919535464551 0.00081186148545 0.00500000000000 2.74331288628195 0.00079783727034 0.00550000000000 2.72538888482812 0.00073060712986 0.00600000000000 2.70664967712312 0.00063242006530 0.00650000000000 2.68632403406473 0.00063656524495 0.00700000000000 2.66386533852220 0.00080659845639 0.00750000000000 2.64093529707333 0.00067704740069 0.00800000000000 2.61621111727357 0.00076573767706 0.00850000000000 2.59038109850785 0.00054955759081 0.00900000000000 2.56298794272843 0.00058487913971 0.00950000000000 2.53498317950797 0.00055602747368 0.01000000000000 2.50647589372246 0.00033550412588 0.01050000000000 2.47571075016386 0.00056012688452 0.01100000000000 2.44560676000982 0.00056694491978 0.01150000000000 2.41403690772088 0.00059380631025 0.01200000000000 2.38252228611696 0.00053681916544 0.01250000000000 2.35016501182332 0.00065871960781 0.01300000000000 2.31790939837137 0.00068598344328 0.01350000000000 2.28597616656453 0.00060922471348 0.01400000000000 2.25418431681401 0.00057086018918 0.01450000000000 2.22259320219535 0.00041308535708 0.01500000000000 2.19237398969466 0.00047302026281 0.01550000000000 2.16290177997271 0.00030949309972 0.01600000000000 2.13441725793706 0.00040552624986 0.01650000000000 2.10811064690727 0.00037545033142 0.01700000000000 2.08322179823195 0.00017282319262 0.01750000000000 2.06148109026767 0.00020758327980 0.01800000000000 2.04219885094031 0.00037186464579 0.01850000000000 2.02610235314357 0.00018082163465 0.01900000000000 2.01290326863579 0.00023323830160 0.01950000000000 2.00463157388395 -0.00004536186964 0.02000000000000 2.00058143251913 0.00003246284068解: 1.令()()()d X k h k v k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦t=0.5 0.04()0.01R k ⎡⎤=⎢⎥⎣⎦ Q(k)=0 ()()()l k Y k k θ⎡⎤=⎢⎥⎣⎦根据离散时间扩展卡尔曼滤波公式,则有:状态方程:(1)(1,)()()()X k k k X k U k W k φ+=+++ 20()0.5U k gt gt ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦(1,)k k φ+=111t ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦测量方程:(1)()()arctan Y k V k h k d +=+⎢⎥⎢⎥⎣⎦辅助方程:^(1)(1|)[(1),1](1)|(1)x k x k k h X k k H k X k +=+∂+++=∂+^22^^22^22^^22(1|)0(1|)(1|)0(1|)(1|)(1|)h k k dh k k d h k k d d h k k h k k d h k k d ⎡⎤+⎢⎥⎢⎥++++⎢⎥=⎢⎥⎢⎥-+⎢⎥⎢⎥++++⎣⎦一步预测:^^(1|)(1,)(|)()X k k k k X k k U k φ+=++ (1|)(1,)(|)(1,)TP k k k k P k k k k φφ+=++滤波增益:1(1)(1|)(1)[(1)(1|)(1)(1)]TTK k P k k H k H k P k k H k R k -+=+++++++ 滤波计算:^^^(1|1)(1|)(1)[(1)((1|),1)]X k k X k k K k Y k h X k k k ++=++++-++(1|1)[(1)(1)](1|)P k k I K k H k P k k ++=-+++滤波初值: ^1995(0|0)20051X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 5(0|0)52P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2. 实验结果高度随时间变化估计速度随时间变化的估计高度协方差:速度协方差估计实验结果分析:根据图,可得高度和速度的估计值,通过扩展卡尔曼滤波法,高度协方差和速度协方差,刚开始的值比较大,但是迅速减小,在几步之后逐渐趋近于0。
3. 有关参数的影响(例如初始条件、噪声统计特性对滤波结果的影响等);1)初始条件发生变化,改变高度和速度的初始值为^1995 (0|0)230010 X⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦分析:高度和速度在刚开始的时候波动比较大,不过经过10步之后,逐渐趋于平稳,高度协方差收敛变快,速度协方差基本不变2)初始噪声改变,1 ()1 R k⎡⎤=⎢⎥⎣⎦分析:高度和速度滤波值基本不变,速度协方差也基本不变,高度协方差刚开始的时候有波动,10步之后趋于稳定。