混合动力电动汽车能量管理策略研究

合集下载

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究随着汽车行业的快速发展和环境问题的日益突出,混合动力汽车作为一种创新的汽车动力系统,引起了广泛的关注。

混合动力汽车的能量管理策略对于其性能和燃油经济性至关重要。

本篇文章将探讨混合动力汽车能量管理策略的研究进展,重点关注了自适应能量管理策略、优化能量管理策略和预测能量管理策略。

自适应能量管理策略是混合动力汽车能量管理研究的重要方向之一。

这种策略通过实时监控车辆的状态和驾驶员行为,以及预测车辆未来的工作模式,来动态地分配动力系统中的内燃机和电动机的功率。

自适应能量管理策略的目标是最大化混合动力汽车的燃油经济性和性能。

许多研究者使用机器学习算法来开发自适应能量管理策略,例如神经网络、遗传算法和模糊逻辑。

这些算法可以根据实时数据进行学习和优化,从而实现最佳的能量管理策略。

优化能量管理策略是通过数学模型和优化算法来设计最佳的能量管理策略。

这种策略基于车辆的动力需求和动力系统的特性,通过优化算法来确定最有效的功率分配和能量流控制策略,以提高混合动力汽车的性能和能源利用效率。

常见的优化算法包括动态规划、二次规划、模型预测控制等。

优化能量管理策略能够在不同的工况下实现最优的能量管理,并且具有较高的鲁棒性和可靠性。

预测能量管理策略是通过预测未来的驾驶和路况信息,来制定最佳的能量管理策略。

这种策略利用传感器和智能算法来预测驾驶员的行为、路况和交通状况等因素。

通过精确的预测,混合动力汽车可以提前做出适当的响应,实现最优的功率分配和能源利用。

常用的预测算法包括马尔可夫模型、人工神经网络和支持向量机等。

预测能量管理策略可以显著提高混合动力汽车的燃油经济性和行驶性能。

综上所述,混合动力汽车能量管理策略研究涉及到自适应能量管理策略、优化能量管理策略和预测能量管理策略。

这些策略的共同目标是提高混合动力汽车的性能和燃油经济性。

自适应能量管理策略通过实时监控和学习来动态调整功率分配策略;优化能量管理策略利用数学模型和优化算法来设计最佳策略;预测能量管理策略通过预测未来信息来制定最优策略。

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究混合动力汽车是近年来汽车行业的一个热门话题,它结合了传统内燃机与电动机的优势,在节能减排方面更加出色。

然而,混合动力汽车的能量管理策略对于实现最佳燃油经济性和性能的平衡至关重要。

本文将探讨混合动力汽车能量管理策略的研究现状、发展趋势以及未来的挑战。

一、混合动力汽车能量管理策略的研究现状混合动力汽车的能量管理策略主要涉及两个方面:内燃机和电动机之间的协同控制,以及动力系统中能量的分配与优化。

目前,学界和汽车制造商对于混合动力汽车能量管理策略进行了广泛的研究与开发。

内燃机与电动机之间的协同控制研究主要集中在电动机的启停和能量回收方面。

通过准确捕捉驾驶员的需求和路况信息,可以在启动和停止时实现内燃机和电动机的最佳切换,以提高燃油效率和驾驶质量。

同时,电动机在制动过程中的能量回收也是提高能量利用率的重要策略。

能量分配与优化方面的研究则更加复杂。

这包括确定内燃机和电动机的工作状态,以及它们之间的功率分配。

一般来说,为了提高燃油经济性和性能,能量管理系统应该根据当前的驾驶条件和电池状态进行最优化的决策。

以往的研究主要采用规则控制算法和优化算法来实现能量管理策略。

然而,由于混合动力汽车动力系统的复杂性和非线性特性,现有的算法仍然有待改进和优化。

二、混合动力汽车能量管理策略的发展趋势未来的混合动力汽车能量管理策略将更加灵活和智能。

随着大数据和人工智能的快速发展,混合动力汽车可以通过实时监测和分析驾驶条件、电池状态和交通状况来实现更精确的能量管理。

例如,基于机器学习和模型预测的控制算法可以根据历史数据和实时信息做出更合适的决策,从而提高能效和驾驶体验。

此外,随着电动汽车技术的不断进步,未来的混合动力汽车将更多地依赖电动动力,减少对内燃机的依赖。

这将带来更高的能量管理效率和更低的尾气排放。

同时,电池技术和充电基础设施的改进也将为混合动力汽车的发展提供更多的支持。

三、混合动力汽车能量管理策略的挑战混合动力汽车能量管理策略在研究和实践中仍面临一些挑战。

基于动态规划的混合动力汽车能量管理策略研究

基于动态规划的混合动力汽车能量管理策略研究

基于动态规划的混合动力汽车能量管理策略研究混合动力汽车是一种集电动和内燃机动力系统于一体的汽车。

其能源管理策略是指如何根据当前驾驶条件和需求,合理地分配电动机和内燃机的功率输出,以最大化车辆的燃料效率和性能。

首先,需要建立动态规划模型。

该模型需要考虑到驾驶条件、车辆状态和能量需求等因素。

驾驶条件包括驾驶速度、路段坡度和交通状况等。

车辆状态包括电池电量、燃料油箱剩余量和电动机/发动机工作模式等。

能量需求包括车辆加速、制动、起动和巡航等。

接下来,需要建立状态转移方程。

状态转移方程描述了车辆在不同驾驶条件下,从一个状态转移到另一个状态所需的功率输出。

例如,在起动过程中,电动机需要提供额外的功率来帮助发动机。

在巡航状态下,电动机可以利用回收制动能量来充电。

然后,需要定义驾驶条件和能量需求的代价函数。

代价函数用于衡量不同驾驶条件和能量需求对于燃料效率的影响。

例如,在高速驾驶过程中,内燃机的功率输出增加,燃料效率下降。

代价函数可以将这种关系量化,并作为动态规划模型的优化目标。

最后,使用动态规划算法求解最优能量管理策略。

动态规划算法通过计算每一个时间步长的最优状态和控制策略,以实现全局最优。

具体步骤包括初始化动态规划表、递归计算每个状态下的最优值和控制策略,并最终确定最优的能量管理策略。

动态规划的混合动力汽车能量管理策略研究具有以下优势。

首先,它可以考虑到多种因素对燃料效率的影响,如驾驶条件、车辆状态和能量需求等。

其次,它可以寻求最优解,以实现最大的燃料效率和性能。

最后,动态规划算法具有较高的计算效率和实时性,可以在实际驾驶中实时调整能量管理策略。

总之,基于动态规划的混合动力汽车能量管理策略研究可以帮助优化能源分配,提高燃料效率和性能。

随着混合动力汽车的普及和技术的发展,这一研究领域具有重要的理论和实践价值。

混合动力汽车动力系统能量管理策略研究

混合动力汽车动力系统能量管理策略研究

混合动力汽车动力系统能量管理策略研究随着环保和可持续发展的要求日益增强,混合动力汽车作为一种具有高效能源利用和低排放的汽车技术,逐渐成为汽车行业的研究热点。

混合动力汽车动力系统的能量管理策略是关键技术,对实现最佳燃料经济性和性能提升至关重要。

本文将针对混合动力汽车动力系统能量管理策略进行研究。

一、混合动力汽车动力系统概述混合动力汽车动力系统包括汽油发动机、电动机、电池和电子控制单元等重要组成部分。

其工作原理是通过汽油发动机和电动机的协同作用,在不同行驶和工况状态下选择最佳的能量转换方式,以达到降低燃料消耗和排放的目的。

二、混合动力汽车能量管理原理混合动力汽车能量管理的基本原理是根据车辆当前工况的需求以及不同动力单元的性能特点,合理地调度能量的分配和转换过程。

其中,电子控制单元起到关键的作用,通过对各个部分的控制和优化,实现能量的高效利用。

1. 能量转换策略对于混合动力汽车,最常见的能量转换策略是串级和并级两种。

串级是指将发动机和电动机按顺序连接,发动机为主要能源供应,电动机作为辅助;并级则是将发动机和电动机同时提供动力,发动机负责提供额外的功率补充。

选择合适的能量转换策略对于提高燃料经济性和性能至关重要。

2. 能量分配策略能量分配策略是指根据车辆当前工况和驾驶需求,合理地分配汽油发动机和电动机之间的能量转换比例。

根据市区、高速等不同行驶环境,以及加速、制动等不同驾驶操作,动力系统的能量分配需要进行不断调整和优化。

三、混合动力汽车能量管理策略研究方法针对混合动力汽车能量管理策略的研究,可以采用多种方法进行分析和优化。

1. 基于规则的能量管理策略基于规则的能量管理策略是最简单直观的方法,通过事先设定的规则和逻辑来进行能量的控制和分配。

这种方法相对容易实现,但是对于复杂的驾驶工况和能量转换策略可能不够灵活和精细。

2. 基于经验的能量管理策略基于经验的能量管理策略是结合实际车辆运行数据和经验规律进行能量管理的方法。

混合动力汽车能量管理策略

混合动力汽车能量管理策略

混合动力汽车能量管理策略
混合动力汽车是一种结合了传统燃油发动机和电动机的汽车,它可以在不同的驾驶模式下自动切换使用燃油和电力,以达到更高的燃油效率和更低的排放。

而混合动力汽车的能量管理策略则是实现这种自动切换的关键。

混合动力汽车的能量管理策略主要包括以下几个方面:
1. 能量回收
混合动力汽车在行驶过程中,会通过制动器将动能转化为电能,存储在电池中,以便在需要时使用。

这种能量回收的方式可以有效地提高能量利用率,减少能量浪费。

2. 能量分配
混合动力汽车的能量管理系统会根据当前的驾驶模式和驾驶条件,自动分配燃油和电力的使用比例。

例如,在低速行驶时,电动机会更多地参与驱动,以提高燃油效率;而在高速行驶时,燃油发动机会更多地参与驱动,以提供更大的动力输出。

3. 能量优化
混合动力汽车的能量管理系统还可以通过优化发动机和电动机的工作状态,进一步提高能量利用率。

例如,在启动时,电动机可以先
将车辆加速到一定速度,然后再由燃油发动机接管驱动,以减少燃油的消耗。

4. 能量储存
混合动力汽车的电池是储存能量的关键部件,因此能量管理系统需要对电池进行有效的管理和维护,以确保其性能和寿命。

例如,系统会监测电池的充电状态和温度,以避免过度充电或过度放电,从而延长电池的使用寿命。

混合动力汽车的能量管理策略是实现高效能量利用和低排放的关键。

随着技术的不断进步和应用的不断推广,混合动力汽车将成为未来汽车发展的重要方向。

混合动力汽车能量管理控制策略

混合动力汽车能量管理控制策略

混合动力汽车能量管理控制策略摘要混合动力汽车是一种通过利用内燃机和电动机的相互配合来提高燃油经济性和减少排放的先进技术。

能量管理控制策略是混合动力汽车中关键的技术之一,其主要作用是合理分配和利用汽车系统中的能量,以实现最佳的能效和驾驶性能。

本文将详细探讨混合动力汽车能量管理控制策略的原理、方法和挑战,并介绍当前研究的热点和未来发展方向。

一、能量管理控制策略的基本原理能量管理控制策略是指在混合动力汽车中对内燃机和电动机之间的能量流进行控制和优化调度的方法。

其基本原理是通过实时监测车辆的动力需求和能量状态,合理地选择使用内燃机、电动机或两者的组合模式,以最大程度地提高能源利用率和驾驶性能。

能量管理控制策略的核心是能量管理算法。

常用的能量管理算法包括规则型算法、优化算法和神经网络算法。

规则型算法是一种基于规则和经验的控制策略,通常根据驾驶条件和车辆状态来选择内燃机和电动机的工作模式。

优化算法是一种通过数学模型和计算方法来寻找最优解的策略,常用的优化算法有动态规划、遗传算法和模型预测控制算法。

神经网络算法则是通过模拟人脑的神经网络结构来实现能量管理的策略。

二、常用的能量管理控制策略1. 静态规则型策略静态规则型策略是一种基于预设规则的能量管理控制策略。

它根据车辆驾驶模式和能量状态进行判断,确定内燃机和电动机的工作模式。

常见的静态规则包括纯电动模式、混合模式和纯内燃机模式。

纯电动模式下,车辆只使用电动机提供动力;混合模式下,车辆通过内燃机和电动机的组合来提供动力;纯内燃机模式下,车辆只使用内燃机提供动力。

静态规则型策略的优点是简单易懂、易实现,并且适用于驾驶条件相对固定的情况。

缺点是不能适应复杂的驾驶环境和动力需求变化,无法实现最优的能效和驾驶性能。

2. 动态规则型策略动态规则型策略是一种根据实时驾驶需求和能量状态进行判断的能量管理控制策略。

它通过车辆动力需求的实时变化来调整内燃机和电动机的工作模式。

常见的动态规则包括启停控制策略、能量回收策略和能量分配策略。

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》一、引言随着能源危机的加剧和环境问题的突出,混合动力汽车因其高效率、低排放的特点受到了广泛关注。

混联式混合动力汽车(Hybrid Electric Vehicle, HEV)作为一种重要的混合动力汽车类型,其能量管理策略对于提高整体效率和延长电池寿命至关重要。

本文将研究基于模糊PI控制的混联式混合动力汽车的能量管理策略,以提升车辆性能和节能效果。

二、混联式混合动力汽车概述混联式混合动力汽车采用发动机和电机共同驱动的架构,根据不同工作条件灵活调整发动机和电机的输出功率,实现最佳能量利用。

这种车型具有高效能、低排放和良好的驾驶性能等优点。

然而,如何合理分配发动机和电机的输出功率,以达到最佳的能量管理效果,是混联式混合动力汽车面临的重要问题。

三、传统能量管理策略的局限性传统的能量管理策略通常基于规则或优化算法进行控制,如基于逻辑门限值、基于模糊控制等。

这些策略在特定条件下可以取得较好的效果,但在复杂多变的工作环境中,往往难以实现最优的能量管理。

因此,需要研究更为先进的能量管理策略,以适应不同工况下的需求。

四、基于模糊PI控制的能量管理策略为了解决上述问题,本文提出了一种基于模糊PI控制的混联式混合动力汽车能量管理策略。

该策略结合了模糊控制和比例积分(PI)控制的优势,通过模糊控制器对PI控制器的参数进行在线调整,以适应不同工况下的需求。

(一)模糊控制器设计模糊控制器是本策略的核心部分,它根据车辆的运行状态(如车速、电池荷电状态、发动机转矩等)以及驾驶员的意图等信息,实时调整PI控制器的参数。

模糊控制器的设计包括输入变量的选择、模糊规则的制定以及输出变量的确定等步骤。

(二)PI控制器设计PI控制器用于实现发动机和电机之间的功率分配。

它根据模糊控制器输出的控制信号,调整发动机和电机的输出功率,以达到最佳的能量利用效果。

PI控制器的设计包括比例系数和积分系数的选择等步骤。

混合动力电动汽车能量管理策略研究开题报告

混合动力电动汽车能量管理策略研究开题报告

开题报告题的研究进展及现状进行了全面总结,从不同角度对混合动力电动汽车的能量管理问题进行描述,并对主要能量管理策略进行了分析和对比研究,指出各种控制方法的优点及其存在的问题与不足,最后对混合动力电动汽车能量管理策略研究的未来发展方向进行了展望[6]。

面对能源和环境的巨大压力,混合动力汽车已成为世界汽车产业重点发展领域,其中,能量管理系统是相关研究领域的重点和难点.根据算法,现阶段的能量管理策略可以分为基于确定规则的控制策略、基于模糊规则的控制策略、基于瞬时优化的控制策略、基于全局优化的控制策略四种[7]文中分析并比较这四种能量管理策略,基于模糊规则的控制策略自适应性强和基于瞬时优化的控制策略精确度高,应给予关注。

燃料电池/蓄电池混合动力电动汽车存在动力的耦合和分离过程,能量管理策略比较复杂。

为了进一步合理分配燃料电池和蓄电池之间的动力输出,增强其能量管理策略的鲁棒性,从理论上分析了燃料电池/蓄电池双能源电动汽车的功率分配方法[8],用Matlab/Simulink建立了功率跟随模式控制策略的仿真模型,利用ADVISOR2002的并联框架完成燃料电池/蓄电池双能源混合动力汽车能量管理的建模与仿真。

结果表明该电动汽车动力传动系统参数匹配合理,能满足动力性设计指标要求。

能源管理系统[9]是混合动力电动车的一个重要管理系统.该系统全面管理能源在电动车上的释放、存储、分配与回收,是实现混合动力电动车的关键技术之一.和其他同类系统相比,本系统具有抗干扰性好、可靠性高、控制简单、成本低等特点.该系统已经研制成功,试运行情况良好。

电动汽车电能供给方式、电动汽车充电站建设典型模式、系统功能需求,以形成系统服务体系的框架,结合物联网、多代理等新技术,从硬件设备及通信角度设计了能量管理系统的开发方案,使充电站结合自身的情况,在电网稳定的前提下尽可能地满足电动车的要求,统筹好电网、充电站、电动汽车三者的利益。

研究成果对于促进电动汽车产业化进程具有重要的意义[10]。

混合动力汽车能量管理与优化策略研究

混合动力汽车能量管理与优化策略研究

混合动力汽车能量管理与优化策略研究随着全球能源需求和环境问题日益严峻,混合动力汽车作为一种新兴的交通工具,承载着减少能源消耗和尾气排放的期望。

能量管理和优化策略是混合动力汽车的核心问题之一,它对于提高燃油经济性和车辆性能至关重要。

本文将介绍混合动力汽车能量管理和优化策略的研究现状和关键技术。

一、混合动力汽车能量管理的研究现状混合动力汽车能量管理是指如何合理地分配内燃机和电动机的能量输出,以最大限度地提高车辆的综合效能。

目前,混合动力汽车能量管理的研究主要集中在两个方面:优化控制策略和能量储存系统。

1. 优化控制策略优化控制策略的目标是在保证动力性能和驾驶体验的前提下,尽量降低能源消耗和排放。

常用的策略包括基于规则的能量管理策略、基于经验规则的能量管理策略和模型预测的能量管理策略。

这些策略通过调整内燃机和电动机之间的协调性来实现对能量的优化利用。

2. 能量储存系统能量储存系统是混合动力汽车能量管理的关键组成部分,主要包括电池组、超级电容器和动力电子控制装置等。

目前,锂离子电池是最常用的能量储存装置。

未来的研究方向包括改进电池容量和寿命、提高超级电容器的能量密度和功率密度等。

二、混合动力汽车能量管理的优化策略1. 智能能量管理策略智能能量管理策略利用先进的算法和模型来实时分析和预测车辆的能源需求,从而实现对车辆能量输出的智能化控制。

例如,采用模糊控制算法可以实现对不确定性的适应性控制,提高车辆在不同路况下的能效表现。

2. 协同控制策略协同控制策略是指内燃机和电动机之间的有效协调,以提高整车性能和能源利用效率。

这种策略可以通过智能控制算法和实时信息的交互来实现,例如,优化电池充电和放电策略,实时调整内燃机的功率输出等。

3. 能量回收和储存技术能量回收和储存技术是提高混合动力汽车能量管理效率的关键技术之一。

通过回收和储存制动能量、惯性能量和废热能量等,可以有效提高能量利用效率,并延长能量储存系统的寿命。

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》一、引言随着全球对环保和能源效率的关注日益增强,混联式混合动力汽车(Hybrid Electric Vehicle, HEV)作为节能减排的重要手段,其能量管理策略的研究显得尤为重要。

混联式混合动力汽车结合了串联和并联混合动力系统的优点,通过复杂的能量流控制,实现燃油经济性和排放性能的优化。

本文旨在研究基于模糊PI控制的混联式混合动力汽车的能量管理策略,以提高其能源利用效率和驾驶性能。

二、混联式混合动力汽车概述混联式混合动力汽车是一种采用内燃机和电动机作为动力源的汽车。

其核心特点在于,发动机和电动机可以根据驾驶需求和工况进行协同工作,实现能量的优化利用。

然而,如何合理分配内燃机和电动机的能量输出,以及如何协调两种动力源的工作,是混联式混合动力汽车面临的主要挑战。

三、传统能量管理策略的局限性传统的混联式混合动力汽车能量管理策略多采用基于规则或优化的方法。

这些方法在特定工况下可能表现出较好的性能,但在复杂多变的路况和驾驶需求下,其性能可能会受到影响。

此外,这些策略往往缺乏对不确定性和非线性因素的考虑,导致能量利用效率不高。

四、模糊PI控制理论为了解决上述问题,本文引入了模糊PI控制理论。

模糊PI 控制是一种结合了模糊逻辑和PI控制器的控制策略。

它能够根据系统的实时状态和目标,通过模糊逻辑对系统进行实时调整,实现系统的优化控制。

在混联式混合动力汽车的能量管理策略中,模糊PI控制可以实现对内燃机和电动机的能量输出的精准控制,提高能源利用效率。

五、基于模糊PI控制的能量管理策略研究本研究首先建立了混联式混合动力汽车的动力学模型和能量管理模型。

然后,通过模糊PI控制算法对内燃机和电动机的能量输出进行优化。

具体而言,我们根据车辆的实时状态(如车速、加速度、电池电量等)和目标(如燃油经济性、排放性能等),通过模糊逻辑对PI控制器的参数进行实时调整,实现对内燃机和电动机的精准控制。

新能源汽车动力系统的能量管理策略研究

新能源汽车动力系统的能量管理策略研究

新能源汽车动力系统的能量管理策略研究随着汽车尾气排放和环境污染问题的日益突出,新能源汽车已经成为解决能源和环境问题的重要方案之一。

而新能源汽车的核心组成部分之一就是动力系统,因此对于新能源汽车动力系统的能量管理策略的研究和优化显得异常重要。

本文将围绕这一主题展开,从能量管理策略的定义、分类与优势、算法原理、市场应用等方面进行探讨。

一、能量管理策略的定义能量管理策略是指在新能源汽车动力系统中,合理地调配和利用不同能源之间的转换关系,以达到最佳的能量利用效率和性能表现。

换言之,通过对能量的合理控制和优化配置,能够提高新能源汽车的综合表现,最大限度地延长电池寿命,并提升车辆的续航里程。

常见的能量管理策略包括动力分配策略、能量回收策略、能量存储策略等。

二、能量管理策略的分类与优势根据不同的应用需求和技术原理,新能源汽车动力系统的能量管理策略主要分为三类:纯电驱动策略、混合动力策略和燃料电池策略。

纯电驱动策略是指完全依靠电能驱动新能源汽车,将传统燃油动力系统完全替代。

这种策略能够实现零排放和静音驾驶,对环境友好,但在续航里程和充电时间等方面存在一定的局限性。

混合动力策略是指将燃油发动机与电动机无缝结合,实现两者之间的协同工作。

这种策略可以充分利用两种能量形式,延长续航里程,同时达到低排放的目标,具有较好的灵活性和经济性。

燃料电池策略是指新能源汽车采用燃料电池作为主要能源,通过氢气和氧气的反应产生电能,驱动电动机工作。

这种策略不仅可实现零排放和长续航里程,而且充电时间短,但目前仍面临着技术和成本等方面的挑战。

三、能量管理策略的算法原理为了实现新能源汽车动力系统的高效能量管理,各种算法和控制策略被提出和研究。

常见的算法原理包括模型预测控制、基于规则的控制、优化算法等。

模型预测控制是基于对汽车动力系统进行建模和预测的方法,通过对车辆行驶状态和动力需求的预测,优化能量转换策略,以达到最佳的能量利用效率。

基于规则的控制方法是根据不同的驾驶环境和动力需求,设定一系列基于规则的能量管理策略。

混合动力电动汽车的能量管理与优化策略

混合动力电动汽车的能量管理与优化策略

混合动力电动汽车的能量管理与优化策略混合动力车是结合了传统内燃机和电动机的一种汽车类型。

它将内燃机和电动机的优点结合在一起,实现了汽车能量的高效利用和减少尾气排放的目标。

能量管理和优化策略是混合动力电动汽车的关键技术之一,它能够有效提高混合动力车辆的燃油经济性和驾驶性能。

本文将着重探讨混合动力电动汽车的能量管理与优化策略。

能量管理是指对车辆能量进行合理规划和调度,以提高整车的能量利用效率。

混合动力车辆的能量系统包括内燃机、电动机、电池和储能器等部分,能量管理主要涉及到这些部分的控制和协调。

以下是一些常用的混合动力车辆能量管理与优化策略:1. 电力分配策略:电力分配策略是指根据实时道路条件和电池状态等信息,合理分配电力系统中的能量。

例如,在高速公路上行驶时,可以使用内燃机提供的能量来驱动车辆,同时将电池充电。

而在低速行驶和城市道路行驶时,可以使用电动机驱动车辆,以提高燃油经济性。

通过合理分配能量的使用方式,能够最大限度地提高燃油利用效率。

2. 内燃机启停策略:内燃机启停策略是指根据实时行驶条件和电池状态等信息,合理控制内燃机的启停。

例如,在短时间停车等待红绿灯时,可以通过关闭内燃机来节省能量。

而在需要急加速的情况下,可以及时启动内燃机提供额外的动力。

通过合理控制内燃机的启停,能够减少燃油的消耗,提高混合动力车辆的燃油经济性。

3. 能量回收策略:能量回收策略是指通过电动机将制动能量或行驶能量转化为电能并存储到电池中。

例如,在制动过程中,电动机可以将制动能量转化为电能并存储到电池中,以供后续行驶使用。

通过能量回收策略,能够最大程度地减少制动能量的浪费,提高能量利用效率。

4. 调度策略:调度策略是指根据电池状态、行驶路线和驾驶习惯等信息,合理调度电池的使用和充电。

例如,在长时间高速行驶后,电池的储能可能较低,此时可以选择将车辆行驶至电池充电站进行充电。

通过合理调度电池的使用和充电,能够提高电池的寿命,并最大程度地利用电池提供动力。

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》范文

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》范文

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》篇一一、引言随着全球对环境保护和能源利用效率的日益关注,混联式混合动力汽车作为一种能够同时实现高效能源利用和低排放的交通工具,已经引起了广泛的研究兴趣。

混联式混合动力汽车集成了串联式和并联式混合动力系统的优点,使得其在多种驾驶条件下均能展现出优秀的能源管理性能。

然而,为了确保高效的能量流动和系统稳定,一个先进的能量管理策略是不可或缺的。

本研究致力于探索基于模糊PI控制的混联式混合动力汽车的能量管理策略,以提升系统的性能和能源利用效率。

二、混联式混合动力汽车概述混联式混合动力汽车是一种结合了串联和并联混合动力系统特性的汽车。

它通常包括一个内燃机(ICE)、一个或多个电动机(EM)、一个能量存储系统(如电池或超级电容器)以及一套控制系统。

这种系统的优点在于其灵活性,可以根据驾驶条件和需求,灵活地切换动力源,从而实现最佳的能源利用效率和驾驶性能。

三、模糊PI控制理论介绍模糊PI控制是一种基于模糊逻辑和比例积分(PI)控制策略的混合控制方法。

它能够根据系统状态的实时变化,自动调整控制参数,以实现对系统的最优控制。

这种方法在处理非线性和不确定性的系统时,表现出强大的适应性和鲁棒性。

四、基于模糊PI控制的能量管理策略研究本研究提出了一种基于模糊PI控制的混联式混合动力汽车的能量管理策略。

该策略通过模糊逻辑系统对系统状态进行实时感知和判断,然后根据这些信息,通过PI控制器调整系统的能源分配和动力源切换策略。

首先,我们建立了混联式混合动力汽车的动力学模型和能源管理系统模型。

然后,我们利用模糊逻辑系统对系统状态进行感知和判断,包括电池电量、内燃机效率、电动机效率、驾驶需求等。

这些信息被用于生成一个模糊输入集。

接着,我们设计了一个基于PI控制的决策模块。

这个模块根据模糊输入集的信息,通过PI控制器调整能源分配和动力源切换策略。

这样,系统可以在保证驾驶需求的同时,尽可能地提高能源利用效率。

混合动力汽车的能量控制策略

混合动力汽车的能量控制策略

混合动力汽车的能量控制策略能量管理策略的控制目标是根据驾驶人的操作,如对加速踏板、制动踏板等的操作,判断驾驶人的意图,在满足车辆动力性能的前提下,最优地分配电机、发动机、动力电池等部件的功率输出,实现能量的最优分配,提高车辆的燃油经济性和排放性能。

由于混合动力汽车中的动力电池不需要外部充电,能量管理策略还应考虑动力电池的荷电状态(SOC)平衡,以延长其使用寿命,降低车辆维护成本。

混合动力汽车的能量管理系统十分复杂,并且因系统组成不同而存在很大差别。

下面简单介绍3种混合动力汽车的能量管理策略。

1、串联式混合动力汽车能量管理控制策略由于串联混合动力汽车的发动机与汽车行驶工况没有直接联系,因此能量管理控制策略的主要目标是使发动机在最佳效率区和排放区工作。

为优化能量分配整体效率,还应考虑传动系统的动力电池、发动机、电动机和发电机等部件。

串联式混合动力汽车有3种基本的能量管理策略。

(1)恒温器策略当动力电池SOC低于设定的低门限值时,起动发动机,在最低油耗或排放点按恒功率模式输出,一部分功率用于满足车轮驱动功率要求,另一部分功率给动力电池充电。

而当动力电池SOC上升到所设定的高门限值时,发动机关闭,由电机驱动车辆。

其优点是发动机效率高、排放低,缺点是动力电池充放电频繁。

加上发动机开关时的动态损耗,使系统总体损失功率变大,能量转换效率较低。

(2)功率跟踪式策略由发动机全程跟踪车辆功率需求,只在动力电池SOC大于设定上限,且仅由动力电池提供的功率能满足车辆需求时,发动机才停机或怠速运行。

由于动力电池容量小,其充放电次数减少,使系统内部损失减少。

但是发动机必须在从低到高的较大负荷区内运行,这使发动机的效率和排放不如恒温器策略。

(3)基本规则型策略该策略综合了恒温器策略与功率跟踪式策略的优点,根据发动机负荷特性图设定高效率工作区,根据动力电池的充放电特性设定动力电池高效率的SOC范围。

同时设定一组控制规则,根据需求功率和SOC进行控制,以充分利用发动机和动力电池的高效率区,使两者达到整体效率最高。

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究第一章混合动力汽车能量管理策略介绍混合动力汽车是当今汽车领域的热门话题,其目的在于提高燃油经济性和降低尾气排放。

其采用多种能量源来驱动汽车,包括内燃机、电动机、超级电容器、电池和燃料电池等。

因此,混合动力汽车需要一种特殊的能量管理策略,以优化能量使用并提高燃油经济性。

本文将介绍混合动力汽车的能量管理策略,并重点介绍其内部燃油经济性提高的策略。

第二章混合动力汽车的能量管理系统混合动力汽车的能量管理系统是整车电力控制系统的核心。

其主要目的在于维护各种能量源的平衡,优化能量流和提高系统效率。

其主要由以下四个方面组成。

2.1. 動力建模动力系统的建模是混合动力汽车的开发过程中非常重要的一步。

动力系统模型可以作为研究混合动力汽车能量管理策略的基础。

系统模型可以包括混合动力汽车各部件之间的耦合关系以及各种能量源之间的能量流,包括燃油、电池和超级电容器等。

2.2 能量流管理混合动力汽车需要采用优化能量流的策略,以确保在任何时间点所有能量源都在最佳状态。

这不仅可以提高系统效率,而且可以在不损害系统性能的情况下提高燃油经济性。

优化能量流的控制算法可以根据当前的驾驶条件、路况和车速等变量来计算最佳的能量流方式。

2.3 车速控制策略混合动力汽车需要采用特殊的车速控制策略,以确保在各种驾驶情况下都能实现最佳燃油经济性。

这包括最佳车速和最佳电力使用率等。

这些控制策略可以根据当前的驾驶情况来优化。

2.4 预测和计划控制混合动力汽车需要采用预测和计划控制策略,以预测未来的驾驶模式和其他变量,并根据这些变量对系统进行调整。

这样可以最大限度地降低燃油消耗和尾气排放。

第三章混合动力汽车内部燃油经济性的提高策略混合动力汽车的内部燃油经济性提高是一个重要的目标,其策略包括以下几个方面。

3.1 启动恢复功能混合动力汽车可以通过启动恢复功能,将制动时产生的热能转换为电能,并用于电池的充电。

这可以减少能量的浪费,提高能量利用率。

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究

混合动力汽车能量管理策略研究混合动力汽车是指采用多种动力源,包括燃油发动机、电动机、储能元件等,通过电控系统实现协同工作的汽车。

混合动力汽车具有节能环保、低碳环保等优点,已成为汽车技术发展的重要方向之一。

而能量管理策略是混合动力汽车的核心技术之一,它可以在不影响行车性能的前提下最大程度地利用能源,延长汽车的续航里程,降低运营成本。

混合动力汽车的能量管理策略可以分为静态策略和动态策略两种,其中静态策略主要针对不同行车情况下的动力分配方案进行优化,而动态策略则主要针对在某一行车状态下如何分配能量进行控制调节。

静态能量管理策略的主要优化方法包括基于规则的能量管理策略和基于最优控制的能量管理策略。

基于规则的能量管理策略是指在预设条件下制定的具有一定规则的能量管理分配方案,例如纯电模式、混合模式、纯油模式等。

而基于最优控制的能量管理策略则是指在考虑车辆能量使用率、燃料经济性、动力性等多个方面的情况下,采用优化算法进行动力分配方案的计算,以得出最优的能量管理方案。

动态能量管理策略的主要优化方法包括基于传感器的能量管理策略、基于模型的能量管理策略和预测控制能量管理策略。

基于传感器的能量管理策略是利用车辆内置的传感器,实时监控车辆行驶状况,采取相应的能量调节措施。

基于模型的能量管理策略是通过数学模型对车辆进行分析,预测车辆行驶状态和能量使用情况,以得出最优的能量管理方案。

而预测控制能量管理策略是基于车辆行驶路线、充电桩位置、充电桩可用性等因素进行预测,通过动态调整车辆能量状态和充电策略,实现最优的能量管理效果。

总的来说,不同的混合动力汽车能量管理策略在不同的行车状态下具有各自的优劣。

不过,基于最优控制的能量管理策略及预测控制能量管理策略可以最大程度地提高车辆的能量利用效率,具有较高的研究价值和应用前景。

因此,在未来的混合动力汽车技术研发中,能量管理策略的探索和优化将成为一个重要的方向,为混合动力汽车行业的进一步发展带来更多的机会和挑战。

《基于学习的混合动力汽车ECMS能量管理策略的研究》范文

《基于学习的混合动力汽车ECMS能量管理策略的研究》范文

《基于学习的混合动力汽车ECMS能量管理策略的研究》篇一一、引言随着全球对环境保护和能源效率的日益关注,混合动力汽车(HEV)作为一种具有节能减排潜力的交通工具,已经引起了广泛的关注。

混合动力汽车的能量管理策略是决定其能源效率和驾驶性能的关键因素。

本研究主要探讨了基于学习的混合动力汽车ECMS(等效消耗最小化策略)能量管理策略。

该策略能够根据实时驾驶条件动态调整能量管理策略,以实现最佳的能源效率和驾驶性能。

二、混合动力汽车概述混合动力汽车是一种结合了传统内燃机与电动机的汽车,它可以在不同情况下利用各自的优点,从而实现更高的能源效率和更低的排放。

然而,如何有效地管理这两种动力源的协同工作,以实现最佳的能源效率和驾驶性能,是混合动力汽车面临的主要挑战。

三、ECMS能量管理策略ECMS是一种常用的混合动力汽车能量管理策略,其核心思想是通过调整内燃机和电动机的工作点,使混合动力汽车的等效消耗最小化。

该策略可以根据实时驾驶条件,如车速、加速度、道路坡度等,动态调整内燃机和电动机的工作状态,以实现最佳的能源效率和驾驶性能。

四、基于学习的ECMS能量管理策略基于学习的ECMS能量管理策略是在传统ECMS的基础上,引入了机器学习算法,通过学习历史驾驶数据和实时驾驶数据,不断优化能量管理策略。

该策略可以自动识别和适应不同的驾驶环境和驾驶习惯,从而实现更高效的能源利用和驾驶性能。

五、研究方法本研究采用了深度学习算法和遗传算法等机器学习算法,通过收集大量的实际驾驶数据和模拟数据,对基于学习的ECMS能量管理策略进行了研究和优化。

我们首先建立了一个混合动力汽车的仿真模型,然后利用深度学习算法对历史驾驶数据进行学习和分析,以找出最佳的能量管理策略。

同时,我们还利用遗传算法对策略进行了优化,以提高其适应性和灵活性。

六、实验结果与分析实验结果表明,基于学习的ECMS能量管理策略能够显著提高混合动力汽车的能源效率和驾驶性能。

与传统的ECMS相比,基于学习的ECMS能够更好地适应不同的驾驶环境和驾驶习惯,从而实现了更高的能源效率和更低的排放。

《基于PMP的双燃烧模式混合动力能量管理策略研究》范文

《基于PMP的双燃烧模式混合动力能量管理策略研究》范文

《基于PMP的双燃烧模式混合动力能量管理策略研究》篇一一、引言随着全球对环境保护和能源效率的日益关注,混合动力汽车已成为汽车工业的重要发展方向。

混合动力汽车结合了传统内燃机与电动机的优点,能更有效地利用能源,并减少尾气排放。

本文针对基于PMP(预测型模型预测控制)的双燃烧模式混合动力能量管理策略进行研究,以实现更高效的能量管理和优化系统性能。

二、混合动力系统概述混合动力系统通常由内燃机(ICE)、电动机(EM)和电池等主要组件组成。

PMP作为一种先进的控制方法,能够在双燃烧模式下有效地管理和优化系统的能量输出。

这种模式可以适应不同的驾驶需求和道路条件,通过内燃机和电动机的协同工作,提高燃油经济性和降低排放。

三、双燃烧模式简介双燃烧模式指的是内燃机可以在传统的柴油或汽油燃烧模式和一种或多种替代燃料燃烧模式之间切换。

这种模式允许系统根据驾驶需求和能源供应情况选择最佳的燃烧方式,以实现最佳的系统性能和能源效率。

四、PMP能量管理策略PMP是一种基于预测的模型预测控制方法,其核心在于根据系统模型和未来的需求预测来优化当前的决策。

在混合动力系统中,PMP能有效地管理电池、内燃机和电动机之间的能量分配,实现最佳的系统性能和能源效率。

五、基于PMP的双燃烧模式能量管理策略研究本研究通过建立混合动力系统的数学模型,结合PMP控制方法,对双燃烧模式下的能量管理策略进行了深入研究。

具体来说,我们采用了多目标优化方法,将系统性能、燃油经济性、排放以及驾驶需求等多方面因素考虑在内,实现了系统能量的高效管理和优化。

六、实验与结果分析为了验证我们的研究结果,我们在不同的道路条件和驾驶需求下进行了实验。

实验结果表明,基于PMP的双燃烧模式能量管理策略能显著提高系统的性能和能源效率。

在多种驾驶模式下,该策略都能实现高效的能量分配和优化,提高了燃油经济性并降低了排放。

七、结论与展望本研究通过深入探讨基于PMP的双燃烧模式混合动力能量管理策略,验证了其在提高系统性能和能源效率方面的有效性。

并联式混合动力电动汽车的能量管理策略

并联式混合动力电动汽车的能量管理策略

并联式混合动力电动汽车的能量管理策略引言随着环境保护和能源危机的日益突出,混合动力电动汽车逐渐成为解决交通能源问题的重要选择。

并联式混合动力电动汽车作为其中一种应用广泛的动力系统,其能量管理策略对其性能和经济性有着重要影响。

本文将探讨并联式混合动力电动汽车的能量管理策略,并分析其优势和挑战。

能量管理策略的概念能量管理策略是指在混合动力电动汽车中对车辆能量的调度和控制方法。

其主要目标是最大限度地提高车辆的能源利用效率,同时确保车辆性能和驾乘舒适度。

能量管理策略的设计需要综合考虑驱动需求、效能功率的分配和能量储备的管理。

并联式混合动力电动汽车的结构并联式混合动力电动汽车由传统燃油发动机、电动机和储能装置(如锂离子电池)组成。

其中,燃油发动机和电动机可以同时或分别驱动汽车,在不同工况下发挥各自的优势。

储能装置则用于存储和释放电能,提供电动机驱动所需的动力。

能量管理策略的设计原则1.能量平衡原则能量管理策略的设计应根据实际工况和驾驶需求,实现能量的平衡和优化。

通过合理的能量调度,使燃油发动机和电动机在不同工况下合理协同,提高整车的能源利用效率。

2.响应速度原则能量管理策略需要具备较快的响应速度,以适应不同驾驶模式和路况的需求变化。

快速而准确的能量调度可以提高车辆的动力性能和燃油经济性。

3.高效率原则能量管理策略应当设计为能够最大限度地提高能源利用效率。

通过优化功率分配和储能装置的使用,减少能量转换和存储过程中的能量损失,以提高整车的能源利用效率。

4.灵活性原则能量管理策略应具备较高的灵活性,以适应不同驾驶模式和工况下的能量管理需求。

不同的驾驶模式对能量管理的要求有所不同,能够灵活调整电动机和燃油发动机的工作状态,使车辆在不同模式下均能以最高效率运行。

并联式混合动力电动汽车的能量管理策略并联式混合动力电动汽车的能量管理策略主要包括三个方面:功率分配策略、能量储备管理策略和能量回收策略。

1.功率分配策略功率分配策略是指根据实时驾驶需求和工况,合理调配燃油发动机和电动机的功率输出。

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》

《基于模糊PI控制的混联式混合动力汽车能量管理策略的研究》篇一一、引言随着社会经济的飞速发展,环境保护与能源短缺的问题愈发严峻。

因此,研究高效、环保的混联式混合动力汽车已成为国内外学者的重要研究方向。

在众多控制策略中,基于模糊PI控制的混联式混合动力汽车能量管理策略凭借其独特的优势脱颖而出。

本文将从多个方面,对该管理策略展开深入探讨,以提供有益的理论与实验参考。

二、混联式混合动力汽车概述混联式混合动力汽车(Hybrid Electric Vehicle, HEV)是一种结合了传统燃油汽车与纯电动汽车的优点,利用内燃机与电动机的共同驱动来实现动力系统的高效利用。

该类汽车能够根据行驶环境及驾驶员需求,通过先进的控制系统对能源进行优化管理,以达到节能减排的目的。

三、模糊PI控制理论模糊PI控制是一种基于模糊逻辑与比例积分(PI)控制相结合的控制策略。

该策略在面对复杂、非线性的动力系统时,能够通过模糊逻辑处理不确定性因素,并根据系统实时状态进行PI参数的调整,从而实现对系统的精确控制。

在混联式混合动力汽车的能量管理系统中,模糊PI控制策略能够根据车辆行驶状态、电池电量、驾驶员需求等多因素进行实时调整,以达到最佳的能量管理效果。

四、基于模糊PI控制的混联式混合动力汽车能量管理策略基于模糊PI控制的混联式混合动力汽车能量管理策略主要包括以下步骤:1. 确定系统输入与输出:根据车辆行驶状态、电池电量、驾驶员需求等,确定系统的输入与输出。

2. 构建模糊逻辑模型:根据历史数据及专家经验,构建模糊逻辑模型,对不确定因素进行模糊化处理。

3. PI控制器设计:根据系统需求及模型特点,设计合适的PI 控制器,以实现对系统状态的精确控制。

4. 实时调整:在车辆行驶过程中,根据实时数据及系统状态,通过模糊PI控制策略进行实时调整,以达到最佳的能量管理效果。

五、实验验证为验证基于模糊PI控制的混联式混合动力汽车能量管理策略的有效性,我们进行了大量实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混合动力电动汽车能量管理策略研究摘要:随着全世界石油资源的日益枯竭和对环境保护力度的增加,迫使全球的汽车工业开发新能源的汽车,而把传统的燃油汽车和纯电动汽车的优点融入到新型汽车中成为当今热门。

都认为只有这样才是最适合当今社会的混合能源汽车,混合动力汽车性能的充分发挥与其采用的能量管理策略息息相关。

所使用的能源不光要满足汽车动力性能,还要减少污染物的排放。

因此,所使用的策略应当根据系统的特性和当时实际的运行工况来实现发动机和电机之间最佳的转矩分配,从而达到最优。

关键词:混合动力汽车;能量管理系统;控制策略Research on Energy Management Strategy of Hybrid Electric VehicleAbstract:With the increasing depletion of oil resources around the world and the increase in environmental protection efforts, forcing the global automotive industry to develop new energy vehicles, and the traditional fuel vehicles and pure electric vehicles into the new car into the advantages of today's popular. Think that only this is the most suitable for today's society of hybrid energy vehicles, hybrid vehicle performance and its full use of the energy management strategy is closely related. The energy used is not only to meet the vehicle power performance, but also to reduce pollutant emissions. Therefore, the strategy used should be based on the characteristics of the system and the actual operating conditions to achieve the best torque between the engine and the motor distribution, so as to achieve the best.Keywords:hybrid vehicle;energy management system;control strategy目录摘要 (I)Abstract. ........................................................................................................................... I I 目录 (III)1 绪论 (1)1.1 引言 (1)1.2 混合动力电动汽车发展概况 (1)1.3 本文主要内容 (2)2 混合动力电动汽车能源分析 (4)2.1 化学电池 (4)2.1.1 锂离子电池 (4)2.1.2 镍氢电池 (9)2.1.3 铅酸电池 (10)2.2 物理电池 (13)2.3 生物电池 (14)2.4 本章小结 (15)3 混合动力电动汽车关键技术 (16)3.1驱动电动机及其控制技术 (16)3.2动力电池及其管理系统 (16)3.3整车能量管理控制系统 (16)3.4 先进控制技术的应用 (17)4 混合动力电动汽车基本结构及其相应的控制策略 (19)4.1串联式混合动力电动汽车 (19)4.1.1驱动模式 (19)4.1.2 优缺点 (19)4.1.3 控制策略 (20)4.2并联式混合动力电动汽车 (21)4.2.1结构 (21)4.2.2驱动模式 (21)4.2.3优缺点 (21)4.2.4控制策略 (22)4.3混联式的电动汽车 (22)4.3.1结构 (23)4.3.2控制策略 (23)5 总结和展望 (25)参考文献 (26)致谢 (27)1 绪论1.1 引言随着全球资源的减少和环保努力的发展,低排放,低功耗的新型车辆电力系统是全球汽车行业的发展趋势。

近年来,电动汽车不断发展壮大的同时还有很多问题没有解决。

怎样能够更加有效利用电池的能源、延长电池的使用寿命和能源回收等问题成为电动汽车发展的阻力。

而将传统燃料车和纯电动汽车的优势融合在一起的混合动力汽车则成为未来发展的方向。

作为一种新的多能源汽车,怎样有效的利用汽车能源管理系统对汽车进行能源管理是其发展的首要问题。

混合动力汽车的性能与能源管理战略息息相关。

因此,研究混合动力汽车的能源管理体系和控制策略是非常重要的。

电动汽车近些年来解决了能源危机和车辆的排放量的问题,并且开发了新型的清洁能源汽车。

虽然目前电动汽车有两个或者更多的能源来源,通过能源管理战略来协调相互之间的运行,更多部件(如发动机,发电机,电机)和一种或多种能源转换技术(如燃料,电池,飞轮)为一体,根据驾驶条件的不同来切换不同的运行模式,充分发挥内燃机车和电动汽车的优势从而实现低排放,提高燃油经济性,但同时还要考虑到汽车的驾驶舒适性和车辆动力性能。

作为车辆的关键性能,多能源管理战略已成为全球汽车行业的研发重点[1]。

1.2 混合动力电动汽车发展概况混合动力汽车是两种或更多能源的汽车[2]。

具有比能量(单位质量燃料能量)和比功率(单位质量燃料功率)的优点,显著提高了常规内燃机排放和燃油经济性能,使电动车辆行驶范围大大增加。

20世纪90年代,世界汽车业巨头专注于纯电动汽车和混合动力汽车的发展,以掌握未来汽车的主动性。

日本丰田汽车公司首先在1997年12月将混合型汽车市场在日本建立,随后在2000年初开始开拓北美市场,而月产量从刚开始的1000辆到2000辆,到后来的三年销售量达4.5万台,实现巨大突破到最后甚至出现了产品供不应求的情况,各大汽车厂商为之震惊。

然而丰田,本田,日产等大公司都不甘心落后其他竞争对手,分别开发了自己的混合动力汽车,并且取得了显著成效。

1999年底,本田开始销售“Insight”。

Insight并行电动车配备了本田的IMA(综合摩托车)混合动力系统和无级变速器,是一款全新的跑车,被美国环保局排为2001年美国十大节能汽车排名第一,第二则是丰田汽车公司研发的普锐斯。

在欧洲,许多汽车制造商纷纷推出了具有自己专利技术的混合动力汽车。

其中法国Berlinge就是代表之一,它的价格可以与燃油车进行竞争达到国际先进水平。

德国的几个知名零部件公司也都与大型汽车公司开始合作开发。

90年代来,美国政府加强与企业之间的技术合作,重点关注了混合动力电动汽车,由能源部、交通运输部和国防部在内的大量投资公司及有关部门热衷于开展混合动力汽车的研究工作。

1993年美国总统和三家汽车公司总裁联合推出了“新一代汽车合作伙伴计划”,目的是开发新型的节能汽车。

如今已经开发出的各种形式的混合动力电动车在HEV性能模拟、集成电源模块等技术领域取得了显着成绩。

随着电池和电机技术的不断成熟、电子控制元件的发展和成本的降低以及能源使用效率和对环境的影响等因素,HEV在生产成本和类似汽油车辆的价格相比将进一步减少,使用循环平均成本有可能低于汽油车。

我国政府也很重视HEV的发展。

“技术研究”是国家科委“八五”科技的重点攻关项目。

关于电动汽车技术研究在1996年这个项目通过了国家计委,教育委员会和机械部的验收; 在关键技术,特别是在对混合动力电动汽车研究中,许多科研单位也对了混合模式和控制策略进行了研究,还对参数匹配和性能预测研究开展了准备工作。

“九五”期间中国电动汽车三大关键技术领域(电池,电机,电子控制系统)都已经实现突破。

科技部将汽车工业列为“十五”国家重大科技攻关项目。

在“十五”期间,国家投资巨大来支持电动汽车的前瞻性研究。

国家科技“十五”计划制定的目标是:发展EV、HEV电池,能源管理系统和驱动控制等关键技术,努力赶上世界的先进水平,HEV发展是国家高科技研发计划(863计划)的主要研究课题之一。

专家认为,中国电动汽车的发展应将传统汽车和电动汽车转型为混合动力汽车的历史机遇为目前中国汽车发展的重点,首先要完成批量生产再实现产业化,实现突破。

1998年,清华大学和厦门金龙公司开发了混合动力电动公交车。

广华大学和广州电动公司合作开发了混合动力公交车和公交车测试车辆是串联结构,仍处于初级转换阶段;东风汽车公司承接“863”混合动力开发项目已经完成,并已推出混合动力电动公交车,车辆性能良好;得到了国家有关部门的支持。

1.3 本文主要内容本文针对混合动力电动汽车的能源和管理系统进行分析,提出不同模式下的管理策略进行分析。

具体研究的内容:1)介绍了电动汽车的能源类型,对其进行分析。

2)对电动汽车几种关键技术进行讲解3)对电动汽车几种动力系统结构进行分析并提出相应的管理策略进行研究。

2 混合动力电动汽车能源分析电池一般分为化学电池,物理电池和生物电池三大类,其中化学电池和物理电池已经开始广泛使用,生物电池则被视为未来车载电池重要发展方向。

2.1 化学电池化学电池是指电化学反应,化学能的正,负活性物质的能量转化的一类能量装置。

化学电池是电动汽车领域中最广泛使用的,如镍氢电池,锂离子电池,锂离子电池,燃料电池等都属于这一类。

从结构上来看,它可以再次分为蓄电池和燃料电池两大类,我们目前看到绝大多数电动汽车都用的是驱动电池技术。

2.1.1 锂离子电池“锂电池”是以锂金属或锂合金作为阳极材料,采用电解液的电池。

锂金属电池最早由Gilbert N. Lewis提出并研究。

20世纪70年代时,M. S. Whittingham 提出并开始研究锂离子电池。

因为锂金属的十分活泼,所以在使用时要特别小心。

因此,锂电池长时间没有被广泛应用。

随着科技的发展,锂电池已成为主流[3]。

锂离子电池一般采用锂金属或其氧化物作为阴极材料,石墨为阳极材料,采用非水电解质电池。

锂离子电池是21世纪发展的理想能源。

a)工作原理:负极的主要材料为碳材料,正极的主要材料是含锂化合物。

在充放电过程中,锂离子在正,负向之间往复嵌入脱嵌,被称为“摇椅电池”。

充电时,有很多Li+产生通过电解液运动到负极。

相关文档
最新文档