高中数学(理)空间向量知识点归纳总结及综合练习
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
高中数学必修知识点空间向量知识点
高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。
设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。
二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。
2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。
三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。
2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。
4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。
2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)
2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。
2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法
第七节 立体几何中的向量方法一、空间向量与平行关系【知识点11】直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个. (2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 注:直线的方向向量(平面的法向量)不唯一?【例1】如图3,已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.【反思】1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z). (2)选向量:在平面内选取两个不共线向量,. (3)列方程组:由列出方程组. (4)解方程组:(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0.[练习1]正方体ABCDA1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图322所示的空间直角坐标系中,求:图322(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.【知识点12】空间中平行关系的向量表示【类型一】用向量证明线线平行【例1】如图323所示,在正方体ABCDA1B1C1D1中,E,F分别为DD1和BB1的中点.求证:四边形AEC1F是平行四边形.图323111111112EB1,BF=2F A1.求证:EF∥AC1.【类型二】用向量证明线面平行【例2】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点.求证:MN∥平面A1BD.【练习2】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD =4,EF=3,AE=BE=2,G是BC的中点,求证:AB∥平面DEG.【类型三】利用向量证明面面平行【例3】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点,试证明平面A1BD∥平面CB1D1.【练习3】如图329,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q是CC1上的点,则当点Q在什么位置时,平面D1BQ∥平面P AO?图329二、空间向量与垂直关系【知识点13】空间中垂直关系的向量表示【类型一】用向量证明线面垂直【例1】如图所示,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.【练习1】如图3215,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.图3215【类型二】用向量法证明面面垂直【例2】如图3212所示,在直三棱柱ABCA1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E 为BB1的中点,证明:平面AEC1⊥平面AA1C1C.=2BD.求证:平面DEA⊥平面ECA.三、空间向量与空间角【知识点14】空间角的向量求解方法【类型一】求两条异面直线所成的角【例1】如图,在三棱柱OABO1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.θ=φθ=π-φ点,则AE,SD所成的角的余弦值为多少?【类型二】求直线与平面所成的角【例2】如图,四棱锥PABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【练习2】如图,在四棱锥P ABCD 中,平面P AD⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【类型三】求二面角【例3】如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A PB C 的余弦值.旋转轴旋转120°得到的,G 是DF ︵的中点.图3224(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E AG C 的大小.【练习4】如图,在三棱锥PABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角DGHE的余弦值.四、空间向量与距离【知识点15】利用空间向量求距离(※)【例1】已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.【练习1】如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,DG=13DD1,过E,F,G的平面交AA1于点H,求D1A1到平面EFGH的距离.点到平面的距离:先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面的法向量上的射影长.如图,设n=(a,b,c)是平面α的一个法向量,P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到平面α的距离:d=|PP0→·n||n|=|a(x0-x)+b(y0-y)+c(z0-z)|a2+b2+c2.注:线面距离、面面距离都可以转化为点到平面的距离.。
空间向量知识点归纳总结
空间向量知识点归纳总结空间向量是高中数学中的一个重要概念,出现在向量代数、几何问题、解析几何以及线性代数等多个数学分支中。
下面是空间向量知识点的归纳总结:1.空间向量的定义:空间向量是具有大小和方向的量,它可以用有序三元数组表示,例如(a,b,c)。
2.空间向量的运算:(1)向量加法:两个向量相加得到一个新的向量,加法满足交换律和结合律。
(2)向量数乘:一个向量与一个实数相乘得到一个新的向量,数乘满足分配律。
(3)内积:两个向量的内积是一个实数,可以用数量积的公式计算。
(4)外积:两个向量的外积是一个向量,可以用矢量积的公式计算。
3.空间向量的基本性质:(1)零向量:长度为零的向量,与任何向量的加法的结果都是原向量本身。
(2)单位向量:长度为1的向量,可以用一个非零向量除以其长度得到。
(3)向量的长度:向量的长度定义为该向量的模。
(4)向量的方向:向量的方向可以用与该向量共线的单位向量表示。
4.空间向量的共线与异面:(1)两个向量共线意味着它们的方向相同或者相反。
(2)三个向量共面意味着它们位于同一个平面上。
(3)两个向量异面意味着它们不共线,且它们所在的直线与另外一个直线垂直。
5.空间向量的投影:(1)向量在一些方向上的投影是一个标量,可以用点积的公式计算。
(2)向量在一些方向上的单位向量是该方向的基向量。
(3)向量在一些方向上的分量是该方向的基向量的数乘。
6.空间向量的表示:(1)分解:一个向量可以表示为它在不同方向上的分量的和。
(2)基底:一个空间中的向量可以表示为基底向量的线性组合。
(3)坐标:一个向量可以用它在基底向量上的投影的值表示。
7.空间向量的几何意义:(1)位移向量:两点之间的位移可以用一个向量表示。
(2)向量的数量积:两个向量的数量积等于一个向量在另一个向量的方向上的投影乘以另一个向量的长度。
(3)向量的矢量积:两个向量的矢量积的大小等于这两个向量张成的平行四边形的面积,方向垂直于这两个向量所在平面。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。
设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。
设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。
设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。
向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。
向量具有平移不变性。
2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。
运算法则包括三角形法则、平行四边形法则和平行六面体法则。
3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。
共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量:能平移到同一平面内的向量叫做共面向量。
5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。
若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。
6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1
高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。
高中数学空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高中数学中的空间向量应用重点知识点归纳
高中数学中的空间向量应用重点知识点归纳在高中数学的学习中,空间向量是一个重要的概念,它在几何问题的解决中具有广泛的应用。
本文将对高中数学中的空间向量应用的重点知识点进行归纳,帮助同学们更好地理解和掌握相关内容。
一、基本概念1. 空间向量的定义:空间向量是指具有大小和方向的量,用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
2. 空间向量的表示:空间向量可以用坐标表示,也可以用位置矢量表示,其中位置矢量由起点和终点确定。
3. 零向量:零向量是长度为0,方向任意的特殊向量,用0表示。
4. 相等向量:具有相同大小和方向的向量称为相等向量,记作→AB = →CD。
二、向量的运算1. 向量的加法:向量的加法是指将两个向量相加得到一个新的向量,具有平行四边形法则和三角形法则两种运算法则。
2. 向量的减法:向量的减法是指将两个向量相减得到一个新的向量,可利用向量加法实现。
3. 向量的数乘:向量的数乘是指将向量的每个分量与一个实数相乘得到一个新的向量。
4. 点乘:点乘又称为数量积或内积,表示为A·B,结果是一个实数。
点乘有几何意义和代数意义,具有交换律和分配律等运算规则。
5. 叉乘:叉乘又称为向量积或外积,表示为A×B,结果是一个向量。
叉乘有几何意义和代数意义,具有反交换律和满足叉乘的运算规则。
三、空间向量的应用1. 直线的方程:通过两个不共线的点可以确定一条直线,可以利用向量求解直线的方程。
2. 平面的方程:通过三个不共线的点可以确定一个平面,可以利用向量求解平面的方程。
3. 点到直线的距离:点到直线的距离可以通过向量的投影求得,利用这一点可以解决点到直线的最短距离问题。
4. 点到平面的距离:点到平面的距离可以通过向量的投影求得,利用这一点可以解决点到平面的最短距离问题。
5. 直线的位置关系:通过向量的共线性可以判断直线的位置关系,包括相交、平行和重合等情况。
6. 平面的位置关系:通过向量的共面性可以判断平面的位置关系,包括相交、平行和重合等情况。
高中数学中的空间向量重点知识点归纳
高中数学中的空间向量重点知识点归纳在高中数学中,空间向量是一个十分重要的概念,它不仅在几何学中有广泛的应用,还在物理学等学科中起到关键作用。
掌握空间向量的相关知识对于解决现实生活和学习中的问题具有重要意义。
本文将对高中数学中空间向量的重点知识点进行归纳总结。
1. 空间向量的概念空间向量是指空间中的有方向的线段,它由起点和终点确定,并且可以平移。
空间向量常用字母表示,如AB、CD等。
空间向量具有大小和方向两个重要特征,可以用坐标表示,也可以用向量的箭头和尾巴表示。
2. 向量的坐标表示向量的坐标表示是指用数值表示向量在坐标系中的位置。
在三维直角坐标系中,空间向量可以用三个有序实数表示。
通常我们用尖括号 < a, b, c > 表示一个向量,其中a、b、c分别表示向量在x、y、z轴上的分量。
例如向量AB可以表示为< x2-x1, y2-y1, z2-z1 >,其中A的坐标为(x1, y1, z1),B的坐标为(x2, y2, z2)。
3. 向量的运算(1) 向量的加法向量的加法是指将两个向量相连接形成一个新的向量的运算。
假设有向量AB和向量BC,将它们的起点和终点相连得到一条新的向量AC,表示为向量AC = 向量AB + 向量BC。
向量的加法满足“平行四边形法则”,即将两个向量的起点相连得到的向量与两个向量终点相连得到的向量是相等的。
(2) 向量的数量乘法向量的数量乘法是指将向量与一个实数相乘得到一个新的向量。
假设有向量AB,将其与实数k相乘得到一个新的向量kAB。
当k>1时,新向量与原向量的方向相同;当0<k<1时,新向量与原向量的方向相反;当k<0时,新向量与原向量的方向相反。
(3) 向量的点积向量的点积是指将两个向量进行数量乘法后再求和得到一个实数的运算。
假设有向量AB和向量AC,将它们的数量乘法相加得到一个实数AB·AC,表示为AB·AC = |AB| |AC| cosθ,其中θ表示两个向量之间的夹角,|AB|和|AC|分别表示两个向量的模长。
高中数学必修2--空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高中数学空间向量及其运算题库
§3.1 空间向量及其运算 3.1.1 空间向量的线性运算学习目标 1.了解空间向量、向量的模、零向量、相反向量、相等向量、共线向量等的概念.2.会用平行四边形法则、三角形法则作出向量的和与差,了解向量加法的交换律和结合律.3.掌握数乘向量运算的意义及运算律.知识点一 空间向量的概念1.在空间中,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. 2.几类特殊的空间向量名称 定义及表示零向量 起点与终点重合的向量叫做零向量,记为0单位向量 模为1的向量称为单位向量相反向量 与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为-a 相等向量 方向相同且模相等的向量称为相等向量,同向且等长的有向线段表示同一向量或相等向量共线向量或平行向量 有向线段所在的直线叫做向量的基线.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量知识点二 空间向量的加减运算及运算律1.类似于平面向量,可以定义空间向量的加法和减法运算.OB →=OA →+AB →=a +b , CA →=OA →-OC →=a -b . 2.空间向量加法交换律 a +b =b +a , 空间向量加法结合律 (a +b )+c =a +(b +c ). 知识点三 数乘向量运算 1.实数与向量的积与平面向量一样,实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a |.(2)当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0. 2.空间向量数乘运算满足以下运算律 (1)λ(μa )=(λμ)a ; (2)λ(a +b )=λa +λb .1.若表示两个相等空间向量的有向线段的起点相同,则终点也相同.( √ ) 2.零向量没有方向.( × )3.两个有公共终点的向量,一定是共线向量.( × )4.空间向量的数乘中λ只决定向量的大小,不决定向量的方向.( × )题型一 空间向量的概念理解例1 (1)下列关于空间向量的说法中正确的是( ) A .空间向量不满足加法结合律B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同考点 空间向量的相关概念及其表示方法题点 相等、相反向量 答案 D解析 A 中,空间向量满足加法结合律;B 中,|a |=|b |只能说明a ,b 的长度相等而方向不确定;C 中,向量作为矢量不能比较大小,故选D. (2)给出以下结论:①两个空间向量相等,则它们的起点和终点分别相同; ②在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→;③若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中不正确的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→成立,故②正确;③显然正确.故选B.反思感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反.跟踪训练1 (1)在平行六面体ABCD -A 1B 1C 1D 1中,下列四对向量:①AB →与C 1D 1——→;②AC 1→与BD 1→;③AD 1→与C 1B →;④A 1D →与B 1C →.其中互为相反向量的有n 对,则n 等于( )A .1B .2C .3D .4答案 B解析 对于①AB →与C 1D 1→,③AD 1→与C 1B →长度相等,方向相反,互为相反向量;对于②AC 1→与BD 1→长度相等,方向不相反;对于④A 1D →与B 1C →长度相等,方向相同.故互为相反向量的有2对. (2)如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中:①单位向量共有多少个? ②试写出模为5的所有向量. ③试写出与向量AB →相等的所有向量. ④试写出向量AA ′→的所有相反向量.解 ①由于长方体的高为1,所以长方体的四条高所对应的向量AA ′—→,A ′A —→,BB ′—→,B ′B —→,CC ′—→,C ′C —→,DD ′—→,D ′D —→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.②由于长方体的左右两侧面的对角线长均为5,故模为5的向量有AD ′—→,D ′A —→,A ′D —→,DA ′—→,BC ′—→,C ′B —→,B ′C —→,CB ′—→.③与向量AB →相等的所有向量(除它自身之外)有A ′B ′—→,DC →及D ′C ′——→. ④向量AA ′—→的相反向量有A ′A —→,B ′B —→,C ′C —→,D ′D —→. 题型二 空间向量的加减运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′——→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AD ′—→.(2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′——→=AB ′—→+B ′C ′——→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.引申探究利用本例题图,化简AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→. 解 结合加法运算AA ′—→+A ′B ′——→=AB ′—→,AB ′—→+B ′C ′——→=AC ′—→,AC ′—→+C ′A —→=0. 故AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→=0.反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果. 跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′—→+AD ′→=2AC ′—→.证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′—→=AB →+AA ′—→,AD ′—→=AD →+AA ′—→, ∴AC →+AB ′—→+AD ′—→=(AB →+AD →)+(AB →+AA ′—→)+(AD →+AA ′—→) =2(AB →+AD →+AA ′—→). 又∵AA ′—→=CC ′—→,AD →=BC →, ∴AB →+AD →+AA ′—→=AB →+BC →+CC ′—→ =AC →+CC ′—→=AC ′—→.∴AC →+AB ′—→+AD ′—→=2AC ′—→. 题型三 数乘向量运算例3 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 解 (1)AP →=AD 1→+D 1P →=(AA 1→+AD →)+12AB →=a +c +12b .(2)A 1N →=A 1A →+AN → =-AA 1→+AB →+12AD →=-a +b +12c .(3)MP →+NC 1→=(MA 1→+A 1D 1→+D 1P →)+(NC →+CC 1→) =12AA 1→+AD →+12AB →+12AD →+AA 1→ =32AA 1→+32AD →+12AB → =32a +12b +32c . 引申探究若把本例中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,如何表示AP →?解 AP →=AD 1→+D 1P →=AA 1→+AD →+23AB →=a +c +23b .反思感悟 利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.跟踪训练3 如图,在空间四边形OABC 中,M ,N 分别是对边OA ,BC 的中点,点G 在MN 上,且MG =2GN ,如图所示,记OA →=a ,OB →=b ,OC →=c ,试用向量a ,b ,c 表示向量OG →.解 OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →)=12a +23[-12a +c +12(b -c )]=16a +13b +13c .对空间向量的有关概念理解不清致误典例 下列说法中,错误的个数为( )①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同; ②若向量AB →,CD →满足|AB →|=|CD →|,AB →与CD →同向,则AB →>CD →;③若两个非零向量AB →,CD →满足AB →+CD →=0,则AB →,CD →互为相反向量; ④AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1 B .2 C .3 D .4考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 C解析 ①错误,两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误,向量的模可以比较大小,但向量不能比较大小.③正确,由AB →+CD →=0,得AB →=-CD →,所以AB →,CD →互为相反向量.④错误,AB →=CD →的充要条件是|AB →|=|CD →|,且AB →,CD →同向.但A 与C ,B 与D 不一定重合. 故一共有3个错误命题,正确答案为C.[素养评析] (1)掌握空间向量的相关概念是正确解答本题的关键. (2)准确把握推理的形式和规则,有利于培养学生的合乎逻辑的思维品质.1.下列命题中,假命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .空间中任意两个单位向量必相等 答案 D2.在平行六面体ABCD -A 1B 1C 1D 1中,与向量AD →相等的向量共有( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 与AD →相等的向量有A 1D 1→,BC →,B 1C 1→,共3个.3.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=3答案 D解析 向量a ,b 互为相反向量,则a ,b 模相等、方向相反.故D 正确.4.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A.32DB → B .3MG → C .3GM → D .2MG → 答案 B解析 MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+2MG →=3MG →. 5.在正方体ABCD -A 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1—→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1;④(AA 1→+A 1B 1—→)+B 1C 1—→.其中运算的结果为AC 1→的有________个. 答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;②(AA 1→+A 1D 1—→)+D 1C 1→=AD 1→+D 1C 1—→=AC 1→; ③(AB →+BB 1→)+B 1C 1—→=AB 1→+B 1C 1—→=AC 1→; ④(AA 1→+A 1B 1—→)+B 1C 1—→=AB 1→+B 1C 1—→=AC 1→. 所以4个式子的运算结果都是AC 1→.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. 2.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、选择题1.下列命题中为真命题的是( ) A .向量AB →与BA →的长度相等B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 考点 空间向量的相关概念及其表示方法题点 相等、相反向量 答案 A解析 对于选项B ,其终点构成一个球面;对于选项C ,零向量不能用有向线段表示;对于选项D ,向量a 与向量b 不相等,未必它们的模不相等,故选A. 2.已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( ) A.AD → B.BD → C.AC →D .0 答案 A解析 AB →+BC →+CD →=AC →+CD →=AD →.3.如图所示,点D 是空间四边形OABC 的边BC 的中点,OA →=a ,OB →=b ,OC →=c ,则AD →为( )A.12(a +b )-c B.12(c +a )-b C.12(b +c )-a D .a +12(b +c )答案 C解析 AD →=AO →+OD →=-OA →+12(OB →+OC →)=-a +12(b +c ).4.在正方体ABCD -A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( ) A.BD 1→ B.D 1B → C.B 1D → D.DB 1→ 答案 A解析 如图所示,∵DD 1→=AA 1→,DD 1→-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD 1→,∴DD 1→-AB →+BC →=BD 1→.5.在空间平移△ABC 到△A ′B ′C ′,连接对应顶点,设AA ′→=a ,AB →=b ,AC →=c ,M 是BC ′的中点,N 是B ′C ′的中点,如图所示,用向量a ,b ,c 表示向量MN →等于( )A.a +12b +12cB.12a +12b +12c C .a +12bD.12a 答案 D解析 MN →=12BB ′—→=12AA ′—→=12a .6.如图,在四棱柱的上底面ABCD 中,AB →=DC →,则下列向量相等的是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →答案 D解析 ∵AB →=DC →,∴|AB →|=|DC →|,AB ∥DC ,即四边形ABCD 为平行四边形,由平行四边形的性质知,DO →=OB →.7.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1—→=a ,A 1D 1—→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c答案 A解析 B 1M →=B 1B →+BM →=A 1A →+12(BA →+BC →)=c +12(-a +b )=-12a +12b +c .8.P 为正六边形ABCDEF 所在平面外一点,O 为正六边形ABCDEF 的中心,则P A →+PB →+PC →+PD →+PE →+PF →等于( )A .2PO →B .4PO →C .6PO →D .12PO → 答案 C解析 由O 是正六边形ABCDEF 的中心,得OA →+OD →=0,OB →+OE →=0,OC →+OF →=0,∴P A →+PB →+PC →+PD →+PE →+PF →=PO →+OA →+PO →+OB →+PO →+OC →+PO →+OD →+PO →+OE →+PO →+OF →=6PO →. 二、填空题9.已知向量a ,b ,c 互相平行,其中a ,c 同向,a ,b 反向,|a |=3,|b |=2,|c |=1,则|a +b +c |=________.考点 空间向量的加减运算 题点 空间向量的加减运算的应用 答案 210.在直三棱柱ABC -A 1B 1C 1中,若C A →=a ,C B →=b ,CC 1→=c ,则A 1B →=________.答案 -a +b -c 解析 如图,A 1B →=A 1A →+AB → =C 1C →+(CB →-CA →) =-CC 1→+CB →-CA → =-c +b -a .11.给出下列几个命题:①方向相反的两个向量是相反向量; ②若|a |=|b |,则a =b 或a =-b ;③对于任意向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________. 考点 空间向量的相关概念及其表示方法 题点 空间向量的定义与模 答案 ③解析 对于①,长度相等且方向相反的两个向量是相反向量,故①错误;对于②,若|a |=|b |,则a 与b 的长度相等,但方向没有任何联系,故不正确;只有③正确. 三、解答题12.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →; (2)AB →+AD →+AA ′—→;(3)AB →+CB →+AA ′—→; (4)AC ′—→+D ′B —→-DC →. 解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′—→=AC →+AA ′—→ =AC ′—→.(3)AB →+CB →+AA ′—→=AB →+DA →+BB ′—→=DB ′—→.(4)AC ′—→+D ′B —→-DC →=(AB →+BC →+CC ′—→)+(DA →+DC →+C ′C —→)-DC →=DC →.13.如图所示,在三棱柱ABC -A 1B 1C 1中,M 是BB 1的中点.化简下列各式,并在图中标出化简得到的向量:(1)CB →+BA 1→; (2)AC →+CB →+12AA 1→;(3)AA 1→-AC →-CB →. 解 (1)CB →+BA 1→=CA 1→. (2)因为M 是BB 1的中点, 所以BM →=12BB 1→.又AA 1→=BB 1→,所以AC →+CB →+12AA 1→=AB →+BM →=AM →.(3)AA 1→-AC →-CB →=CA 1→-CB →=BA 1→.向量CA 1→,AM →,BA 1→如图所示.14.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的共有( ) ①OA →+OD →与OB ′—→+OC ′—→是一对相反向量; ②OB →-OC →与OA ′—→-OD ′—→是一对相反向量;③OA →+OB →+OC →+OD →与OA ′—→+OB ′—→+OC ′—→+OD ′—→是一对相反向量; ④OA ′—→-OA →与OC →-OC ′—→是一对相反相量. A .1个 B .2个 C .3个 D .4个 考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 C解析 如图所示,①OA →=-OC ′—→,OD →=-OB ′—→,所以OA →+OD →=-(OB ′—→+OC ′—→),是一对相反向量;②OB →-OC →=CB →,OA ′—→-OD ′—→=D ′A ′——→,而CB →=D ′A ′——→,故不是相反向量; ③同①,也是正确的;④OA ′—→-OA →=AA ′—→,OC →-OC ′—→=C ′C —→=-AA ′—→,是一对相反向量. 15.如图所示,在正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中.(1)化简A 1F 1—→-EF →-BA →+FF 1→+CD →+F 1A 1—→,并在图中标出表示化简结果的向量; (2)化简DE →+E 1F 1→+FD →+BB 1→+A 1E 1→,并在图中标出表示化简结果的向量. 考点 空间向量的加减运算 题点 空间向量的加减运算解 (1)A 1F 1—→-EF →-BA →+FF 1→+CD →+F 1A 1—→=AF →+FE →+AB →+BB 1→+CD →+DC →=AE →+AB 1→+0=AE →+ED 1→=AD 1→. AD 1→在图中表示如下:(2)DE →+E 1F 1→+FD →+BB 1→+A 1E 1—→=DE →+EF →+FD →+BB 1→+B 1D 1→=DF →+FD →+BD 1→=0+BD 1→=BD 1→.BD 1→在图中表示如下:。
空间向量的应用综合练习题
空间向量的应用综合练习题空间向量是解决空间几何问题的重要工具,具有广泛的应用。
本文将为大家提供一些空间向量的应用综合练习题,帮助大家熟悉空间向量的使用方法。
1. 设A(1, 2, 3),B(4, -1, 2),C(-1, 3, 5)为空间中的三个点,求向量AB和向量BC的和。
解答:首先计算向量AB,AB = (4-1, -1-2, 2-3) = (3, -3, -1);然后计算向量BC,BC = (-1-4, 3-(-1), 5-2) = (-5, 4, 3);最后计算向量AB和向量BC的和,(3, -3, -1) + (-5, 4, 3) = (-2, 1, 2)。
2. 已知空间中一点A(1, 2, 3)和向量a(2, -1, 3),求点A向量a的倍数为4时的点的坐标。
解答:点A向量a的倍数为4时,乘以4,得到坐标为(8, -4, 12)的点。
3. 已知向量a(-2, 1, 3),向量b(4, -1, -2),求向量a和向量b的点积以及它们的夹角。
解答:向量a和向量b的点积为a·b = (-2)(4) + (1)(-1) + (3)(-2) = -8 - 1 - 6 = -15。
向量a和向量b的模分别为|a| = √((-2)² + 1² + 3²) = √4 + 1 + 9 = √14,|b| = √(4² + (-1)² + (-2)²) = √16 + 1 + 4 = √21。
根据点积公式,可以计算出它们的夹角cosθ = (a·b) / (|a||b|) = -15 / (√14 * √21) ≈ -0.782,从而夹角θ ≈ arccos(-0.782) ≈ 139.2°。
4. 已知向量a(3, 2, -1)和向量b(-1, 1, 4),求向量a和向量b的叉积以及它们的模。
解答:向量a和向量b的叉积为a × b = (2)(4) - (-1)(1), (-1)(-1) - (3)(4), (3)(1) - (2)(-1) = (11, -13, 7)。
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案
→
→
∣→∣ ∣ ∣ →
∣→∣ ∣ ∣
→
→
④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )
→
→ →
→
→
中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2
高中数学向量知识点总结[整理]
高中数学向量知识点总结[整理]高中数学向量知识点总结向量是高中数学中的重要知识点,涉及到向量的概念、运算、空间几何、平面几何等多个方面。
下面就对高中数学中的向量知识点进行整理。
一、向量的概念1. 向量的定义:向量是有大小和方向的量,用有向线段表示。
2. 向量的表示方法:向量通常用小写字母加箭头表示,如→AB表示从点A到点B的有向线段。
3. 向量的模:向量的模表示向量的长度,记作|→AB|,即向量→AB的长度。
4. 零向量:模为0的向量,记作→0。
5. 向量的相等:两个向量的大小和方向都相同时,这两个向量相等。
二、向量的运算1. 向量的加法:向量的加法满足平行四边形法则,即将两个向量的起点放在一起,然后将两个向量首尾相接,连接起来得到一个新的向量。
2. 向量的减法:向量的减法等价于向量的加法的逆运算,即→AB-→CD = →AB+(-→CD)。
3. 向量的数量积:向量的数量积也称为点乘,计算方法为两个向量的模相乘,再乘以它们的夹角的余弦值。
4. 向量的数量积的性质:(1) 交换律:→a·→b = →b·→a(2) 结合律:(λ·→a)·→b = λ·(→a·→b),其中λ为实数(3) 分配律:(→a+→b)·→c = →a·→c + →b·→c(4) 若→a与→b垂直,则→a·→b = 0三、点和向量的关系1. 向量的起点和终点与其相对应的点相等,即→AB与A、B两点相等。
2. 两个向量→AB和→CD相等的条件是:它们的起点和终点分别相等。
3. 向量与点集的关系:(1) 两向量的和与差的终点的坐标分别等于两向量的起点坐标与终点坐标的和与差(2) 给定一点A和一向量→a,则存在唯一的一点B,使得→AB = →a,这个点B的坐标等于A的坐标与→a的坐标分别相加。
四、向量的几何应用1. 向量的共线和共面:当两个或多个向量共线时,它们处于同一条直线上;当三个或多个向量共面时,它们处于同一平面上。
高中数学知识点总结大全空间向量与立体几何
高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。
高中数学必修知识点空间向量知识点
高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点在高中数学的学习中,空间向量是一个重要的知识板块。
它为我们解决空间几何问题提供了全新的思路和方法,使复杂的空间关系能够通过代数运算得以清晰展现。
接下来,让我们一起深入探索空间向量的奥秘。
一、空间向量的基本概念空间向量是指具有大小和方向的量。
与平面向量类似,空间向量也由起点和终点来确定。
但由于是在三维空间中,其表现形式更加丰富。
空间向量用有向线段来表示,有向线段的长度表示向量的模,也就是向量的大小。
而向量的方向则由有向线段的指向来确定。
在空间直角坐标系中,我们通常用坐标来表示空间向量。
若向量的起点坐标为$(x_1, y_1, z_1)$,终点坐标为$(x_2, y_2, z_2)$,则该向量的坐标为$(x_2 x_1, y_2 y_1, z_2 z_1)$。
二、空间向量的运算1、加法和减法空间向量的加法和减法遵循三角形法则或平行四边形法则。
两个向量相加或相减,其结果仍然是一个空间向量。
例如,若有向量$\overrightarrow{a}=(x_1, y_1, z_1)$,$\overrightarrow{b}=(x_2, y_2, z_2)$,则$\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)$,$\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1 z_2)$。
2、数乘运算实数$\lambda$与空间向量$\overrightarrow{a}=(x, y, z)$的乘积$\lambda\overrightarrow{a}=(\lambda x, \lambda y, \lambda z)$。
数乘运算改变向量的大小,但不改变向量的方向(当$\lambda >0$时)或使向量反向(当$\lambda < 0$时)。
空间向量知识点总结
空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。
下面我们来对空间向量的相关知识点进行一个系统的总结。
一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。
2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量通常用小写字母加箭头表示,如\(\vec{a}\)。
3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。
4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。
5、单位向量模为\(1\)的向量称为单位向量。
若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。
6、相等向量长度相等且方向相同的向量称为相等向量。
7、相反向量长度相等但方向相反的向量称为相反向量。
二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。
设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。
2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。
3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。
当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
》(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
6. 空间向量的直角坐标系: ~(1)空间直角坐标系中的坐标:(2)空间向量的直角坐标运算律:①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=。
②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
》(4)模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则21||a a a a =⋅=+21||b b b b =⋅=+(5)夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+(6)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==或,A B d =7. 空间向量的数量积。
@(1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥。
(2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。
(3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。
(4)空间向量数量积的性质:①||cos ,a e a a e ⋅=<>。
②0a b a b ⊥⇔⋅=。
③2||a a a =⋅。
(5)空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅。
②a b b a ⋅=⋅(交换律)。
③()a b c a b a c ⋅+=⋅+⋅(分配律)。
8.空间的角: |(1)两异面直线所成的角:设b a 、是两条异面直线,过空间任一点O 做直线a '∥a ,b '∥b ,则b a ''、所成的锐角或者直角叫做异面直线b a 、所成的角,它的取值范围是 ; 向量求法:设直线b a 、所成的角为θ,它们的方向向量a 、b 的夹角为ϕ,则有==ϕθcos cos ;(2)线面角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角,它的取值范围是 ; 向量求法:设直线l 的方向向量为u ,平面α的法向量为v ,直线与平面所成的角为θ,向量u 、v 的夹角为ϕ,则有==ϕθcos sin ;(3)二面角:平面内的一条直线把平面分成两部分,其中每一部分叫做一个半平面,从一条直线出发的两个半平面所组成的图形叫做二面角,它的取值范围是 ;向量求法:① 若CD AB 、分别是二面角βα--l 的两个半平面内与l 垂直的直线(B A 、在直线l上),则二面角的大小就是向量AB 与向量CD 所成角的大小;设二面角为θ,则>=<CD AB ,θ·② 设向量u 、v 分别是二面角βα--l 的两个半平面的法向量,则向量u 、v 的夹角(或其补角)就是二面角的大小,设二面角为θ,则视实际图形而定,>=<v u ,θ或><-=v u ,πθ;4.空间的距离:空间的点点距、点线距、推荐用传统方法,点面距既可以用传统方法,也可以用平面的法向量来求。
向量法求点面距:点P 到平面α的距离为d =,其中A 为α内异于垂足的任一点,n 是α的法向量。
空间向量与立体几何测试题(一)一、选择题:1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c,x,y,z ∈R .其中正确命题的个数为( )2.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( )】A.1B.1-C.12D.2- 3.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( )A.4-B.9C.9-D.6494.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( )A.627 B. 637 C. 647 D. 6575.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件6.已知点O 是△ABC 所在平面内一点,满足OA ·OB =OB ·OC =OC ·OA ,则点O 是△ABC 的( )A.三个内角的角平分线的交点B.三条边的垂直平分线的交点`C.三条中线的交点D.三条高的交点7.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角为( )A .30°B .45°C .60°D .以上都不对8.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共60分)二、填空题(本大题共5小题,每小题5分,共25分) !9.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为10.已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ= .11.已知a,b,c 是空间两两垂直且长等的基底,m=a+b,n=b-c ,则m,n 的夹角为 .12.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .三、解答题(本大题共3小题,满分35分),14.(10分)如图,二面角α-ι-β的棱上有A,B 两点,直线AC,BD 分别在这 ~个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,CD=68, 求二面角α-ι-β的大小.'.15.(12分)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD , DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F.EM GDCBAιβαA\DCB(1)证明 ∥PA 平面EDB ; (2)证明⊥PB 平面EFD ;(3)求二面角D -PB -C 的大小. -<16(13分)如图,在三棱柱ABC-A 1B 1C 1中,AB ⊥AC,顶点A 1在底面ABC 上的射影 恰为点B,且AB=AC=A 1B=2.(1) 求棱AA 1与BC 所成角的大小;(2) 在棱B 1C 1上确定一点P ,使AP=14,并求出二面角P-AB-A 1的平面角的 余弦值.@空间向量与立体几何测试题(二)'一、选择题:1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的 A .OC OB OA OM ++= B .OC OB OA OM --=2C .OC OB OA OM 3121++= D .OC OB OA OM 313131++= 2.在空间直角坐标系中,已知点(,,)P x y z ,那么下列说法正确..的是 ( ) A . 点p 关于x 轴对称的坐标是()1,,p x y z - B.点p 关于yoz 平面对称的坐标是()2,,p x y z -- C.点p 关于y 轴对称点的坐标是()3,,p x y z - D.点p 关于原点对称点的坐标是()4,,p x y z --- 3.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( )~B\ C 1FE D 1C 1B 1A 1DCBAB.51C.53D.574.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则−→−AB +1()2BD BC +等于( )A.−→−AG B. −→−CG C. −→−BC D.21−→−BC 5.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A .52-B .52C .53D .10106.已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为 ( )A. 0°B. 45°C. 90°D. 180°—二、填空题(本大题共6小题,每小题5分,共30分)11、若(1,1,0),(1,0,2),a b a b ==-+则同方向的单位向量是_________________.12.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD =xAB y AC z AS ++,则x +y +z = . 13、已知()()2,4,,2,,26a x b y a a b ===⊥,若且,则x y +的值为 。