二阶线性常微分方程的幂级数解法

合集下载

二阶线性常微分方程的级数解法

二阶线性常微分方程的级数解法

由 Frobenius & Fuchs 定理,微分方程的两个解可写成 :
y1(x) = xρ1a0 + a1 x + a2 x2 + …, y2(x) = xρ2a0′ + a1′ x + a2′ x2 + …,
因为 ρ2 - ρ1 是非整数 ,故 y2(x) / y1(x) 不可能等于常数 ,y2(x) 和 y1(x) 线性无关 ,其线性组合构成微分方程的通解 。
代入微分方程 (1. 13) 式,将得到以下形如 ck xk = 0 的幂级数形式 ,
k

(k + ρ) (k + ρ - 1) + (k + ρ) g0 + g1 x + g2 x2 + … + h0 + h1 x + h2 x2 + … ak xk+ρ = 0
k=0
因为是解析函数的展开,由唯一性定理,各幂次的系数 ck = 0。 看最低幂次 xρ 项的系数(对应于上式的 k = 0 项):[ρ(ρ - 1) + ρ g0 + h0] a0 = 0 由 Frobenius & Fuchs 定理,形式解的系数 a0 ≠ 0,故可得到一个关于指标的一元二次方程:
x2 y″ + x g(x) y′ + h(x) y = 0, 其中:g(x) 和 h(x) 在 x = 0 点解析
据 Frobenius & Fuchs 定理,该微分方程必定存在一个如下形式的解:

y = xρ ak xk, 其中 a0 ≠ 0 (若为常点 ,则对应于 ρ = 0)
k=0
对级数形式的 y(x) 求导,

大学物理-二阶线性常微分方程的一般性质

大学物理-二阶线性常微分方程的一般性质

设方程 (7-1-6) 的正则解为:
(7-1-7)
(7-1-8)
将 (7-1-7)、(7-1-8) 代入 (7-1-6) 式中,得到
消去因子 z ,有
(7-1-9)
要使上式在 |z| < R 的区域内成立,左边 z 的各次幂的 系数必须等于零。
由 z 的最低次幂的系数为零,得到
(a0,b0为已知)
(7-1-11) 一般可以得到两组系数。
(7-1-1)
(7-1-2)

(7-1-3)
其中:
是常数
可以看到,在 z0 是方程的奇点的情形下,如果 1 或 者 2 不是整数,或者 g ≠ 0,方程都有多值函数解。
显然,把解 (7-1-1), (7-1-2) 或 (7-1-3) 代入方程中去确
定 1, 2 , g, Ck , Dk 时会发现所得到的是一组无穷多个未
性、单值性等) 由方程的系数 p(z) 和 q(z) 的解析性确定。
设 p(z) 和 q(z) 在一定的区域中,除若干个孤立奇点外, 是 z 的单值解析函数。区域中的点可分为两类:
1. 方程的常点:如果 p(z) 和 q(z) 都在点 z0 的邻域解析, 则 z0 称为方程的常点。
2. 常点邻域的级数解
以 z2 乘方程
(7-1-5)
得到
(7-1-6)
其中
p1(z) zp(z) q1(z) ห้องสมุดไป่ตู้2q(z)
(7-1-6)
由条件 (7-1-4) 可知:p1(z) , q1(z) 在 z = 0 点及其邻域内是解 析的,将它们分别作泰勒展开,有
q1(z) bs zs s0
p1(z) as zs s0
(z – z0) p(z) 和 (z – z0)2 q(z) 在 0 < |z – z0| < R 中解析。(7-1-4)

二阶常微分方程解存在的问题

二阶常微分方程解存在的问题

二阶常微分方程解的存在问题分析摘要本文首先介绍了二阶常系数齐次线性微分方程的一般解法——特征方程法及二阶常系数非齐次线性微分方程的待定系数法,然后又介绍了一些可降阶的微分方程类型。

接着,讨论了二阶变系数微分方程的幂级数解法并论述了如何利用变量代换法将某些变系数方程化为常系数方程。

另外,本文还介绍了求解初值问题的另一种方法——拉普拉斯变换法。

最后,给出了二阶微分方程的存在唯一性定理的证明以及它在科学研究、工程技术以及数学建模中解决实际问题的一些应用。

1.引言1.1常微分方程的发展过程与研究途径二阶线性微分方程是常微分方程中一类很重要的方程。

这不仅是因为其一般理论已经研究地比较清楚,而且还因为它是研究非线性微分方程的基础,在工程技术和自然科学中有着广泛的应用。

在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题。

因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题是十分重要的。

常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。

牛顿最早采用数学方法研究二体问题,其中需要求解的运动方程就是常微分方程。

他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。

用现在叫做“首次积分”的办法,完全解决了它的求解问题。

17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。

20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。

1927-1945年间定性理论的研究主要是跟无线电技术联系在一起的。

第二次世界大战期间由于通讯等方面的要求越来越高,大大地激发了对无线电技术的研究,特别是非线性振动理论的研究得到了迅速的发展。

40年代后数学家们的注意力主要集中在抽象动力系统的拓扑特征, 如闭轨是否存在、结构是否稳定等, 对于二维系统已证明可以通过奇点及一些特殊的闭轨和集合来判断结构稳定性与否;而对于一般系统这个问题尚未解决。

二阶常系数非齐次线性微分方程讲解

二阶常系数非齐次线性微分方程讲解

y1 *
y2 *
1 2 x cos x Rm x sinx y* x k e x Rm


1 2 x , Rm x 都是 m 次多项式, m = max{ l , n },且 其中Rm
0
λ±iω不是特征根 λ±iω是特征根
9
k=
1
例 3 求方程 y' ' y x cos 2 x 的通解。 解 对应齐次方程的特征方程为 r 2 1 0 r1, 2 i 于是齐次方程的通解为 Y C1 cos x C 2 sinx 由于 f ( x ) x cos 2 x, ( 0, 2, Pl ( x ) x, Pn ( x ) 0即m 1) λ±iω=±2i不是特征方程的根,取 k 0, 故原方程特解设为: y* (ax b) cos2 x (cx d ) sin2 x 代入所给方程,得 y py qy e x [ pl ( x) cos x pn ( x) sin x]
第十节 二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微ຫໍສະໝຸດ 方程一般式是y" py' qy f x
(1)
其中p、q是常数。 由定理3,只要求出(1)的一个特解 y*及(1)对应的齐次方程
y" py' qy 0
* y Y y . 的通解Y, 即可求得(1)的通解 :
对 f(x) 的下面两种最常见形式, 采用待定系数法来求出 y*。
Q x Qm ( x) b0 x m b1 x m1 bm1 x bm
代入(3)式,比较两端同次幂的系数即可确定bi i 0,1,2 , m,
x y * Q ( x ) e . 进而得(1)的特解

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。

因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程''0y xy -=的通解解:设2012n n y a a x a x a x =+++++……为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到x -∞<<∞2210a ⋅=,30320,a a ⋅-= 41430,a a ⋅-= 52540,a a ⋅-=或一般的可推得32356(31)3k a a k k =⋅⋅⋅⋅⋅-⋅,13134673(31)k a a k k +=⋅⋅⋅⋅⋅⋅+,其中1a ,2a 是任意的,因而代入设的解中可得:这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。

解 设级数2012n n y a a x a x a x =+++++……为方程的解。

首先,利用初值条件,可以得到00a =, 11a =,因而将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 因而 最后得21111(1)!!k a k k k +=⋅=- , 20k a =, 对一切正整数k 成立。

将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。

是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。

常微分方程的常见解法

常微分方程的常见解法

曲线(称为积分曲线),且 fx,x就是该曲线上
的点 x,x处的切线斜率,特别在 x0, y0切线斜率 就是 f x0,y0 尽管我们不一定能求出方程 1.3.1 的 解,但我们知道它的解曲线在区域D中任意点 x, y
的切线斜率是 f x, y。 如果我们在区域D内每一点 x, y 处,都画上一个
可化为齐次方程的方程
形如
dyf(a xb yc) dx a1b1yc1
的方程可化为齐次方程.
其中 a,b,c,a1,b1,c1都是常数.
1. 当 cc10时, 此方程就是齐次方程.
2. 当 c2c120 时, 并且
ab
(1)
a1
0 b1
此时二元方程组 axbyc0 a1xb1yc0
有惟一解 x,y.
例,且融化过程中它始终为球体,该雪球在
开始时的半径为6cm ,经过2小时后,其半径缩
小为3cm。求雪球的体积随时间变化的关系。
解:设t时刻雪球的体积为 V ( t ) ,表面积为 S ( t ) ,
由题得
dV(t) kS(t)
dt
12 2
球体与表面积的关系为 S(t)(4)333V3
12
引入新常数r (4)333k 再利用题中的条件得

x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2

微分方程幂级数解法

微分方程幂级数解法

P( x)与Q( x)可在− R < x < R内展为x 的幂级数,
那么在− R < x < R内原方程必有形如
的解.

∑ y = an xn n=0

作法 设解为 y = ∑ an x n , n=0
将 P( x),Q( x), f ( x) 展开为 x − x0 的幂级数,
比较恒等式两端x的同次幂的系数, 确定y.
∑ ∞

∑ (n + 2)(n + 1)an+2 x n− x ∑ nan x n−1−

an xn
= 0,
n=0
n=0
n=0

∑[(n + 2)(n + 1)an+2 − (n + 1)an ]x n ≡ 0,
n=0
an+2
=
an , n+2
n = 0,1,2,L
a2
=
a0 2
,
a3
=
a1 3
,
1、 y′ − xy − x = 1; 2、 xy′′ − ( x + m) y′ + my = 0.( m 为自然数 )
二、试用幂级数求下列方程满足所给初始条件的特解:
1、 y′
=
y2
+
x3
,
y x=0
=
1; 2
2、d 2 x dt 2
+
x cos t
=
0
,
x t=0
=
a
,
dx dt
t=0
=
0.
练习题答案
= =
3 2
y y

量子力学中要用到的数学知识大汇总

量子力学中要用到的数学知识大汇总

量子力学中要用到的数学知识大汇总第一章矩阵1.1矩阵的由来、定义和运算方法1.矩阵的由来2.矩阵的定义3.矩阵的相等4.矩阵的加减法5.矩阵和数的乘法6.矩阵和矩阵的乘法7.转置矩阵8.零矩阵9.矩阵的分块1.2行矩阵和列矩阵1.行矩阵和列矩阵2.行矢和列矢3.Dirac符号4.矢量的标积和矢量的正交5.矢量的长度或模6.右矢与左矢的乘积1.3方阵1.方阵和对角阵2.三对角阵3.单位矩阵和纯量矩阵4.Hermite矩阵5.方阵的行列式,奇异和非奇异方阵6.方阵的迹7.方阵之逆8.酉阵和正交阵9.酉阵的性质10.准对角方阵11.下三角阵和上三角阵12.对称方阵的平方根13.正定方阵14.Jordan块和Jordan标准型1.4行列式求值和矩阵求逆1.行列式的展开/doc/4b14802796.html,place展开定理3.三角阵的行列式4.行列式的初等变换及其性质5.利用三角化求行列式的值6.对称正定方阵的平方根7.平方根法求对称正定方阵的行列之值8.平方根法求方阵之逆9.解方程组法求方阵之逆10.伴随矩阵11.伴随矩阵法求方阵之逆1.5线性代数方程组求解1.线性代数方程组的矩阵表示2.用Cramer法则求解线性代数方程组3.Gauss消元法解线性代数方程组4.平方根法解线性代数方程组1.6本征值和本征矢量的计算1.主阵的本征方程、本征值和本征矢量2.GayleyHamilton定理及其应用3.本征矢量的主定理4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换1.线性变换的矩阵表示2.矢量的酉变换3.相似变换4.等价矩阵5.二次型6.标准型7.方阵的对角化参考文献习题第二章量子力学基础2.1波动和微粒的矛盾统一1.从经典力学到量子力学2.光的波粒二象性3.驻波的波动方程4.电子和其它实物的波动性——de Broglie关系式5.de Broglie波的实验根据6.de Broglie波的统计意义7.态叠加原理8.动量的几率——以动量为自变量的波函数2.2量子力学基本方程——Schrdinger方程1.Schrdinger方程第一式2.Schrdinger方程第一式的算符表示3.Schrdinger方程第二式4.波函数的物理意义5.力学量的平均值(由坐标波函数计算)6.力学量的平均值(由动量波函数计算)2.3算符1.算符的加法和乘法2.算符的对易3.算符的平方4.线性算符5.本征函数、本征值和本征方程6.Hermite算符7.Hermite算符本征函数的正交性——非简并态8.简并本征函数的正交化9.Hermite算符本征函数的完全性10.波函数展开为本征函数的叠加11.连续谱的本征函数12.Dirac δ函数13.动量的本征函数的归一化14.Heaviside阶梯函数和δ函数2.4量子力学的基本假设1.公理方法2.基本概念3.假设Ⅰ——状态函数和几率4.假设Ⅱ——力学量与线性Hermite算符5.假设Ⅲ——力学量的本征状态和本征值6.假设Ⅳ——态随时间变化的Schrdinger方程7.假设Ⅴ——Pauli互不相容原理2.5关于定态的一些重要推论1.定态的Schrdinger方程2.力学量具有确定值的条件3.不同力学量同时具有确定值的条件4.动量和坐标算符的对易规律5.Hesienberg测不准关系式2.6运动方程1.Heisenberg运动方程——力学量随时间的变化2.量子Poisson括号3.力学量守恒的条件4.几率流密度和粒子数守恒定律5.质量和电荷守恒定律6.Ehrenfest定理2.7维里定理和HellmannFeynman定理1.超维里定理2.维里定理3.Euler齐次函数定理4.维里定理的某些简化形式5.HellmannFeynman定理2.8表示论1.态的表示2.算符的表示3.另一套量子力学的基本假设参考文献习题第三章简单体系的精确解3.1自由粒子1.一维自由粒子2.三维自由粒子3.2势阱中的粒子1.一维无限深的势阱2.多烯烃的自由电子模型3.三维长方势阱4.圆柱体自由电子模型3.3隧道效应——方形势垒1.隧道效应2.Schrdinger方程3.波函数中系数的确定(E>V0)4.贯穿系数与反射系数(E>V0)5.能量小于势垒的粒子(E<V0)3.4二阶线性常微分方程的级数解法1.二阶线性常微分方程2.级数解法3.正则奇点邻域的级数解法4.若干二阶线性微分方程3.5线性谐振子和Hermite多项式1.线性谐振子2.幂级数法解U方程3.谐振子能量的量子化4.Hermite微分方程与Hermite多项式5.Hermite多项式的递推公式6.Hermite多项式的微分式定义——Rodrigues公式7.Hermite多项式的母函数展开式定义8.谐振子的波函数——Hermite正交函数9.矩阵元的计算参考文献习题第四章氢原子和类氢离子4.1Schrdinger方程1.氢原子质心的平移运动2.氢原子中电子对核的相对运动3.氢原子作为两个质点的体系4.坐标的变换5.变量分离6.球坐标系7.球坐标系中的变量分离8.Φ方程之解9.θ方程之解10.R方程之解11.能级4.2Legendre多项式1.微分式定义2.幂级数定义3.母函数展开式定义和递推公式4.母函数的展开5.正交性6.归一化4.3连带Legendre函数1.微分式定义2.递推公式3.正交性4.归一化4.4laguerre多项式和连带Laguerre函数1.母函数展开式定义2.微分式定义3.级数定义4.积分性质5.连带Laguerre多项式和连带Laguerre函数6.连带Laguerre多项式的母函数展开式定义7.连带Laguerre多项式的级数定义8.连带Laguerre函数的积分性质4.5类氢原子的波函数1.类氢原子的波函数2.氢原子的基态3.径向分布4.角度分布5.电子云的空间分布6.波函数的等值线图和立体表示图参考文献习题第五章角动量和自旋5.1角动量算符1.经典力学中的角动量2.角动量算符3.对易规则4.Hamilton算符与角动量算符的对易规则5.三??算符具有相同本征函数的条件6.角动量的本征函数5.2阶梯算符法求角动量的本征值1.角动量算符的对易规则2.阶梯算符的性质3.阶梯算符的作用4.角动量的本征值5.3多质点体系的角动量算符1.经典力学中多质点体系的角动量2.总角动量算符及其对易规则3.多电子原子的Hamilton算符的对易规则5.4电子自旋1.电子自旋2.假设Ⅰ——自旋角动量算符的对易规则3.假设Ⅱ——单电子自旋算符的本征态和本征值4.电子自旋的阶梯算符5.自旋算符的矩阵表示6.假设Ⅲ——自由电子的g因子参考文献习题第六章变分法和微扰理论6.1多电子体系的Schrdinger方程1.原子单位2.多电子分子的Schrdinger方程3.BornOppenheimer原理4.多电子体系的Schrdinger方程举例5.多电子体系的Schrdinger方程的近似解法6.2变分法1.最低能量原理2.变分法3.氦原子和类氦离子的变分处理(一)4.氦原子和类氦离子的变分处理(二)5.激发态的变分原理6.线性变分法7.变分法的推广6.3定态微扰理论1.非简并能级的一级微扰理论2.基态氦原子或类氦离子3.简并能级的一级微扰理论4.微扰法在氢原子中的应用5.二级微扰理论6.4含时微扰理论与量子跃迁1.含时微扰理论2.光的吸收与发射3.激发态的平均寿命4.光谱选律5.偶极强度与吸收系数的关系参考文献习题第七章群论基础知识7.1群的定义和实例1.群的定义2.群的几个例子3.乘法表和重排定理4.同构和同态7.2子群、生成元和直积1.子群2.生成元3.直积7.3陪集、共轭元素和类1.陪集/doc/4b14802796.html,grange定理3.共轭元素和类4.置换群的类7.4共轭子群、正规子群和商群1.共轭子群2.正规子群(自轭子群)3.商群和同态定理7.5对称操作群1.对称操作2.操作的乘积3.对称操作群4.共轭对称元素系,同轭对称操作类和两个操作可对易的条件5.生成元、子群和直积7.6分子所属对称群的确定1.单轴群2.双面群3.立方体群4.分子对称群的生成元和生成关系5.晶体学点群6.分子所属对称群的确定参考文献习题第八章群表示理论8.1对称操作的矩阵表示1.基矢变换和坐标变换2.物体绕任意轴的旋转,Euler角3.对称操作的矩阵表示4.函数的变换8.2群的表示1.群表示的定义2.等价表示和特征标3.可约表示和不可约表示,不变子空间4.Schur引理5.正交关系6.正交关系示例7.投影算符和表示空间的约化8.直积群的表示9.实表示和复表示8.3表示的直积及其分解1.表示的直积2.对称积和反对称积3.直积表示的分解4.ClebschGordan系数8.4某些群的不可约表示1.循环群2.互换群3.点群4.回转群5.旋转群6.双值表示8.5群论在量子化学中的应用1.态的分类和谱项2.能级的分裂3.时间反演对称性和Kramers简并4.零矩阵元的鉴别和光谱选律5.矩阵元的计算,不可约张量方法6.久期行列式的劈因子7.不可约表示基的构成8.杂化轨道的构成9.轨道对称性守恒原理这些可是爱考的专业课老师(如果俺考研成功她可就是俺滴学姐啦)珍藏不外漏的当年的笔记啊。

第二章常微分方程

第二章常微分方程

an (n c)(n c 1)xnc (F0 F1x F2 x2 ) an (n c)xnc
n0
n0
(G0 G1x G2 x2 ) an xnc 0
n0
第二章常微分方程——二阶变系数方程
首项xc的系数为0——指标方程
c2 (F0 1)c G0 0
第n项xn+c的系数为0 ——递推公式
rAs
)
dy dt
y
(rA
rAs )
[Qr (T )
Qr (Ts )]
第二章常微分方程——线性稳定性分析
将反应项与移热项线性展开
dx dt
1
rA cA
s
x
rA T
s
y
dy dt
rA cA
s
x
1
rA T
s
dQr dT
s
y
特征根方程
2 tr 0
detA I 0
从中可解出n个特征根和特征向量,构成基解矩阵
第二章常微分方程——一阶常系数方程组
通解 或
Y t e1t x 1 , e2t x 2 , ,ent x n
y t c1 x 1e1t c2 x 2e2t cn x nent
y=Yc 常数 c 由初始条件确定
y2
y c cc1
➢ 当c1-c2 为整数时,第二解为
y2
c
c
c2
y cc2
第二章常微分方程——二阶变系数方程
推导:设
y(x,c)
an不一定满足指标方程,将其代入
方程后有
x 2 d 2y dx 2
xF
(x
)
dy dx
G(x)y (c c1)(c c2)a0x c

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲一、课程基本信息二、课程教学目标常微分方程是信息与计算科学专业的基础课程之一。

通过该课程的学习,使学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和主要方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的理解,培养学生计算能力、逻辑推理能力、空间想象能力及理论联系实际去分析问题、解决问题的能力,为学生学习后继课程打下基础。

1.学好基础知识。

理解和掌握课程中的基本概念和基本理论,知道它的思想方法、意义和用途,以及它与其它概念、规律之间的联系。

2.掌握基本技能。

能够根据法则、公式正确地进行运算。

能够根据问题的情景,寻求和设计合理简捷的运算途径。

3.培养思维能力。

能够对研究的对象进行观察、比较、抽象和概括。

能运用课程中的概念、定理及性质进行合乎逻辑的推理。

能对计算结果进行合乎实际的分析、归纳和类比。

4.提高解决实际问题的能力。

对于简单应用问题会列出定解问题求解,能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。

能够自觉地用所学知识去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。

三、教学学时分配《常微分方程》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第一章绪论(4学时)(一)教学要求1.了解微分方程的背景即某些物理过程的数学模型;2. 掌握由简单的物理、几何等问题建立简单微分方程;3. 理解微分方程的基本概念;4. 掌握如何由通解求特解。

(二)教学重点与难点教学重点:微分方程的基本概念;教学难点:建立微分方程模型的思想、方法和例子。

(三)教学内容 第一节 常微分方程模型第二节 基本概念和常微分方程的发展历史1.常微分方程基本概念本章习题要点:微分方程基本概念题;建立微分方程的题。

第二章 一阶微分方程的初等解法(14学时)(一)教学要求1. 掌握变量可分离方程、一阶线性方程以及恰当微分方程的求解方法; 2.掌握齐次方程、Bernoulli 方程的求解; 3. 掌握用变量代换的方法求解微分方程;4. 掌握从积分因子满足的充分必要条件导出某些特殊形式积分因子存在的条件及计算公式,并用于解相应的微分方程;5. 掌握已解出y 或x 的微分方程)',(),',(y y f x y x f y ==的计算方法;6. 了解微分方程0)',(,0)',(==y y F y x F 的求解;7. 掌握一阶微分方程的应用方法,能建立一些简单的模型进行简单分析。

二阶线性偏微分方程的建立和求解

二阶线性偏微分方程的建立和求解

小柱体内温度升高 u 所需要的热量
n
dS
dS' ( cdS u) 随着柱高 趋于零而趋近于零
图图99..13 0 11.2.2
所以当 0
由热平衡方程给出:
k u dSdt (, t)dSdt 0
n
考虑到 0 时, dS dS 则得
u n
|S
1 k
(,
t)
(9.2.8)
3. 第三类
偏微分方程 标准的常微分方程
标准解,即为各类特 殊函数
第九章 数学建模---数学物理定解问题
9.1 数学建模----波动方程类型的建立
弦的横振动 杆的纵振动
具有波动方 程的数理方
程的建立


定解条

传输线方程
9.1.1波动方程的建立
1. 弦的微小横振动
考察一根长为 l 且两端固定、水平拉紧的弦.
根据牛顿冷却定律: 单位时间从周围介质传到边界上单位面积 的热量与表面和外界的温度差成正比, 即
dQ H (u1 u | )
这里 u1 是外界媒质的温度. H 0 为常数
与推导条件(9.2.11)相似,此时可得边界条件
[ u n
hu]
hu1
其中 h H k
(9.2.9)
9.3 数学建模——稳定场方程类型的建立
也与 dS 和 dt 成正比,即:
n
dQ k u dSdt n
(9.2.1)
式中 k 是导热系数
取直角坐标系Oxyz, 如图9.8
u(x, y, z,t) 表示t时刻物体内任一点(x,y,z)处的温度
y
B
F
C
G
n
n
A E

数学物理方程--- 3 Bessel 函数.PPT

数学物理方程--- 3 Bessel 函数.PPT

因此 y = C1 y1 + C2 y2 是二阶线性齐次方程的通解.
西安交通大学理学院
定理 3
数 学 物 理 方 程
如果函数 y* 是线性非齐次方程的一个
y = Y + y*, 第 三 章 贝 塞 尔 函 数
特解, Y 是该方程所对应的线性齐次方程的通解,则
是线性非齐次方程的通解.
证 因为 y*与 Y 分别是线性非齐次方程 y + p(x)y + q(x)y = f (x) 和线性齐次方程 y + p(x)y + q(x)y = 0 的解,所以有
1 ax ( y1 y2 ) e sin bx . 2i
第 三 章
y eax (C1 ห้องสมุดไป่ตู้os bx C2 sinbx).
西安交通大学理学院
上述求二阶常系数线性齐次方程通解的方法称 为特征根法,其步骤是:
方 程
贝 塞 (1) 求线性齐次方程 y + p(x)y + q(x)y = 0 的线性 尔 函 无关的两个特解 y1 与 y2, 得该方程的通解 Y=C1 y1 + C2 y 2. 数 (2) 求线性非齐次方程 y + p(x)y + q(x)y = f (x) 的 一个特解 y*. 那么,线性非齐次方程的通解为 y = Y + y*. 求二阶线性非齐次方程通解的一般步骤为:
* * * * * * ( y1 y2 ) p( x)( y1 y2 ) q( x)( y1 y2 ) 贝
=
[y1*
+ p(x)y1 + q(x)y1
*
*]
+ [y2* + p(x)y2* + q(x)y2*] = f 1(x) + f 2(x) , 即 y1* + y2* 满足方程 ①,

北京大学数学物理方法经典课件第九章——二阶常微分方程

北京大学数学物理方法经典课件第九章——二阶常微分方程

分离空间坐标变量
连带Legendre方程、Bessel方程
16
m 阶 Bessel 方程
x y '' xy ' x m
2 2
2
y0
2
l 阶连带 Legendre 方程
d y dy m 1 x dx 2 2 x dx l l 1 1 x 2 y 0
r2 RY
常数
1 2 R 1 Y 1 2Y (r ) (sin ) l ( l 1) 2 2 R r r Y sin Y sin
1 Y 1 2Y (sin ) 2 l ( l 1)Y 0 2 sin sin
2 2
5
d 2 R dR l ( l 1) R 0 2 dt dt
因式分解
d d dt l 1 dt l R 0
解为:
D R(r ) Cr l 1 r
l
式中:C和D为积分常数.
球函数方程,令
Y ( )( )
l-阶勒让德方程 u 是轴对称的,对φ的转动不改变 u 。
d 2 d (1 x 2 ) 2 2 x l ( l 1) 0 dx dx
m0
d d sin sin l (l 1)sin 2 m2 0 d d 0, 有限值
1 u 1 2 u u ( ) 2 ( )0 2 z z
令 u( , , z) R( )( ) Z ( z)
d 2 R Z dR RZ d 2 d 2Z Z 2 R 2 0 2 2 d d d dz

常微分方程43高阶微分方程的降阶和幂级数解法

常微分方程43高阶微分方程的降阶和幂级数解法
d d tn n x a 1 (t)d d tn n 1 x 1 a n(t)x 0 (4 .2 ) 的 k 个 线 性 无 关 的 解 x 1 ,x 2 , ,x k , 显 然 xi 0 ,i1 ,2 , ,k,令xxky,则
x' xky' xk' y x'' xky'' 2xk ' y' xk ''y
(4.70)
第三步: 令 c 1 0 ,c 2 = 1 得 与 x 1 线 性 无 关 一 个 解 :
第四步:
x2 x1 x112ep(t)dtdt,
(4.69)的通解为
xx1[c1c2 x 1 1 2ep(t)dtdt],
这 里 c1,c2是 任 常 数 .
(4.70)
( 不 失 一 般 性 , 可 设 x 0 0 )
常微分方程
定理10 若 方 程 ( 4 . 7 2 ) 中 系 数 p ( x ) 和 q ( x ) 都 可 展 成 x 的
幂 级 数 , 且 收 敛 区 间 为 x R ,则 方 程 (4 .7 2 )有 形 如

y= anxn,
(4.73)
且 z i (x x k i) ',i 1 ,2 , ,k 1 是 ( 4 .6 7 ) 的 k 1 个 线 性 无 关 的 解
事实上 由 x 1 ,x 2 ,,x k 1 为 ( 4 . 2 ) 的 解 及 以 上 变 换 知 ,
2019/11/11
z
( x xk
)'或常x微分方x程k
将这些表达式代入(4.59)可得:
F(x,y,ydy,y(dy)2y2d2y, )0 dx dx dx2

第六章 勒让德函数

第六章 勒让德函数

说明:
(2)对于级数,存在是否收敛和收敛范围的问题。用级 数解法要选定某个点 z0 作展开中心,得到的解是以 z0 为中心 的幂级数。另外还必须确定幂级数的收敛圆,级数解只在 收敛圆内部才有意义。
(1 ) 级数解法是一个比较普遍的方法, 对方程无特殊的要求。
2.方程的常点和奇点
方程的标准形式: w( z) p( z)w( z) q( z)w( z) 0 (1) 其中: w( z ) ——未知的复变函数, p( z ) 、 q( z) ——已知的 复变函数(方程的系数)
k 0 k 0 k 0
w0 ( z ) C2 k z
k 0

2k
w1 ( z ) C2 k 1 z 2 k 1
k 0

w0 ( z ), w1 ( z ) 都是方程的解,但线性无关。方程的通解是 w0 ( z ) 与 w1 ( z ) 的线性组合。
数学物理方法
2(2k 2) 4k 4 2(2k 2 2) C2 k C2 k 2 C2 k 22 2k (2k 1) 2k (2k 1) (2k 2)(2k 2 1) (4k 4 )(4k 8 ) (2k )! (4 )( ) C0
w( z) p( z)w( z) q( z)w( z) 0 ( 1 )有唯一满足初始条件
w( z0 ) C0 , w( z0 ) C1 ) ( C0 , C1:任意常数)的幂级数解。解

的具体形式: w( z ) Ck ( z z0 ) k
k 0
数学物理方法
2

k 2
k (k 1)C x
k 0 k

k 0

数学物理方法_第3章 二阶线性常微分方程的幂级数解法本征值问题

数学物理方法_第3章 二阶线性常微分方程的幂级数解法本征值问题

y ( x) 2 1a2 3 2a3 x (k 2)( k 1)ak 2 x k
把以上结果代入方程,比较系 数得 2 2
2 1a2 a0 0, 3 2a3 a1 0, 4 3a4 2 a2 0, 5 4a5 2 a3 0,
(2k 1)!
a1.
于是方程的级数解为
1 1 1 y( x) a0 1 ( x)2 ( x) 4 (1) k ( x) 2 k 4! (2k )! 2! 2 k 1 a1 1 1 3 5 k ( x) x ( x) ( x) (1) 3! 5! (2k 1)! a a0 cos x 1 sin x.
n 1


n 1
cn1 (n 1)( x x0 )n ,
n 0

可将式(3.1.4)写成
c
n 0 n n
n ( n 2)( n 1)( x x ) [ ( k 1) a c ]( x x ) n2 0 n k k 1 0 n n 0 k 0
y( x) an x n
n 0
(3.3.2)
于是
y( x) nan x
n 1 n 1
(k 1)ak 1 x k ,
k 0

y( x) n(n 1)an x
n2
2 k 0

n2
(k 2)(k 1)ak 2 x k ,
(1 l )(l 2) 3 (3 l )(1 l )(l 2)(l 4) 5 y1 ( x) x x x 3! 5! (2k 1 l )(2k 3 l ) (1 l )(l 2)(l 4) (l 2k ) 2k 1 x (2k 1)!

9. 二阶常微分方程级数解法

9. 二阶常微分方程级数解法

第九章二阶常微分方程级数解法•§9.1 特殊函数常微分方程•§9.2 常点邻域上的级数解法•§9.3 正则奇点邻域上的级数解法•§9.4 施图姆-刘维尔本征值问题•前面讨论的都是两个自变量的偏微分方程,涉及到的本征函数都是三角函数,除了圆形泊松问题外,大多是反射对称的问题;•从现在开始,我们要讨论三维的定解问题。

实际的边界问题可能具有其它对称性,比如球或柱对称边界,这时的本征函数采用三角函数就不方便了,我们将发现新的本征函数和本征值,并且用它们做级数展开来求解偏微分方程。

•本章主要讨论拉普拉斯方程、亥姆霍兹方程等在球坐标系、柱坐标系满足的常微分方程及其定解。

我们依然采用分离变量法。

§9.2 常点邻域上的级数解法•前面我们通过分离变量法得到了一些特殊的二阶常微分方程,本节讨论这些方程在特定的边界条件下的定解问题。

•这些二阶常微分方程大多不能用通常的方法,比如直接积分的方法求解;•通常采用幂级数解法,即在某一选定的点的邻域上将待求的解表示成系数待定的级数,得到系数之间的递推关系,然后利用边界条件确定所有系数的值。

•级数求解问题的关键在于收敛性。

•考虑一般的复变函数w(z)的线性二阶常微分方程:w’’+p(z)w’+q(z)w=0, w(z 0)=C 0, w’(z 0)=C 1. 其中z 为复变数,z 0为选定的点。

•(一)方程的常点和奇点:在z 0邻域,如果p(z)和q(z)是解析的,则z 0称作方程的常点;如果p(z)和q(z)是奇异的,则z 0称作方程的奇点。

•(二)常点邻域上的级数解:如果线性二阶常微分方程的系数p(z)和q(z)在点z 0的邻域|z-z 0|<R 是解析函数,则方程在这个圆中存在满足初值条件的唯一解析解。

•因此可以把解表示成此邻域上的泰勒级数形式:•后面的任务就是确定这些级数解的系数a k ,通常会得到它们之间的一些递推关系。

幂级数的应用

幂级数的应用

降低感染率手段 引流的时间:1周内,最长≤2周。 引流管引出口:不能在原切口处直接引出,因在头皮下潜行约1~2cm后在原切口旁引出,防止细菌逆行感染。 引流瓶放置高度:适当,避免脑脊液倒流回脑内增加感染可能。 引流管冲洗:适时可用庆大霉素稀释液冲洗引流管, 不冲洗脑内段。操作要得当。 拔管时关闭引流管阀门,拔除后及时缝合拔管处头皮。
降低感染率手段 为减少切口脑脊液漏。术中应尽可能修补硬脑膜,关闭死腔,术中尽可能减少头皮止血。 为减少耳漏和鼻漏。术中发现打开额窦和乳突后立即用消毒液浸泡的棉球消毒窦璧黏膜并向内推开黏膜层,随后用骨蜡完全封闭窦口或乳突气房,更换与窦璧接触的手术器械。
是否污染手术?手术时间>4h?应用手术显微镜?二次手术? 是则明显增加颅内感染率。
是否为后颅窝手术? 手术体位复杂。 开颅时间长。 手术显微镜辅助。 术区蛛网膜易粘连,后颅窝手术一般不缝合硬脑膜。 肌肉和头皮间缝合不严,易形成储液囊腔,致脑脊液循环障碍,为细菌繁殖提供机会。 可能打开乳突气房。 故而术后颅内感染几率显著较高。
降低感染率手段 后颅窝关颅时肌层和头皮要求严格缝合,肌层紧贴硬膜,引流管保持通畅。 当切口脑脊液漏时,应在无菌条件下严密缝合。
降低感染率手段 开放性颅脑损伤需早期彻底清除坏死脑组织,清除脑组织内的碎骨片和异物,关闭硬脑膜和头皮伤口,将开放性的污染伤口变为清洁的闭合伤。 术中受污染部位的手术区域需彻底消毒;接触污染区域后的手术器械与清洁区域的器械需分开。关颅前常规用大量生理盐水冲洗。 尽量缩短手术时间。 严格按照规范使用显微镜。 二次手术打开硬脑膜前可用稀释的聚维酮碘冲洗术野。
是否存在脑脊液漏? 可分为切口的脑脊液漏和脑脊液鼻漏、耳漏。
颅脑损伤常见的并发症, 据文献报道, 其发病率在2 %~9 % , 需手术治疗者占2.4 %。 颅脑损伤后, 颅底骨折伴有硬脑膜及蛛网膜同时破裂,脑脊液通过损伤的鼻窦或岩骨经鼻或耳流出, 即形成脑脊液鼻漏及耳漏。 漏的时间越长, 感染机会越大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档