有机反应和反应机理
高中有机化学反应类型与反应机理
细说高中有机反应类型和反应机理纵观近几年高考,有机化学的比重相对稳定,都在二十几分,所涉及到的知识点主要为有机物官能团的性质(选择题)、有机反应类型的判断、有机结构、有机推断及有关计算。
而有关有机反应类型的判断,官能团性质的考查是学生错误率较高的知识点。
那么,如何有效地进行复习呢?我们知道,有机反应不同于无机反应,概念间有交叉,也有包含与被包含关系,有的反应类型较难判定。
若掌握了有机反应机理,则反应类型的判断以及官能团的性质就迎刃而解了。
一.反应类型:取代;加成;消去;氧化;还原;加聚;缩聚;酯化;水解;显色反应二.反应机理:1.取代反应-----等价替换(有进有出)a.定义:有机物分子中的某些原子或原子团,被其它的原子或原子团所代替的反应。
b.类型:烃的卤代、烃的硝化(磺化)、醇分子间脱水、醇与HX反应、酚的卤代、酯化(皂化)、水解(卤代烃、酯、二糖、多糖、蛋白质)、有机酸酐c.条件:①X2单质------ 烃的卤代、苯的同系物侧链卤代:光照苯的同系物苯环卤代:常温、铁屑;②浓溴水 ------ 酚的苯环卤代(邻、对位);③浓硫酸、加热------酯化、分子间脱水、醇与HX反应;④水解----- 氢氧化钠水溶液共热或稀硫酸共热或酶;⑤碱石灰、加热-------羧酸盐(去羧反应):2. 加成反应---开键加合(只进不出)a.定义:有机分子里不饱和的碳原子跟其它原子或原子团直接结合生成别的物质。
b.类型:烯、炔、二烯烃等不饱和烃的加成,苯和苯的同系物的加成,醛、酮的加成,油酸的氢化,油脂的硬化。
c.对象:加H2O、加X2、H2、HX、HCN等d.注意:①卤素可用水溶液,也可用溴的CCl4或者单质气体;②与H2加成一般用Ni作催化剂,对碳氧双键的加成中学阶段只限醛、酮,而不考虑羧基、酯基;③氢化反应的产物中碳的“架”或“环”不变,因此可根据氢化产物回推原来有机物的碳架或碳环;⑤与卤素、卤化氢的加成为分子式中羟基的引入提供先决条件。
有机化学反应的机理与反应动力学
有机化学反应的机理与反应动力学有机化学反应是一种有机分子之间或有机分子与无机分子之间发生化学反应的过程。
在实验室和制药工业中,有机化学反应被广泛应用于制备新化合物、合成有用的生物分子、调节药物活性等方面。
了解有机化学反应的机理和反应动力学有助于理解反应的发生机制,优化反应条件,提高反应效率。
一、有机化学反应的机理有机化学反应的机理是指反应中分子之间发生的化学键的断裂和形成的步骤。
反应机理通常被描述为“中间体”反应、反应物的相互作用等。
在化学反应中,中间体是指反应物和产物之间的化学反应阶段的中间产物。
通过研究中间体反应的步骤,有机化学家可以深入了解化学反应的机理。
例如,烷基卤素在氢氧化钾水溶液的存在下会发生消去反应生成烯烃。
反应机理涉及中间体的形成和消除:R-Br + KOH → R-OH + KBrR-OH → R+ + OH-R+ + OH-→ R-OHR-OH + KOH → R=O + KBr + H2O在这个反应中,中间体R+的生成和消除是整个反应机理的关键步骤。
二、反应动力学有机化学反应的反应速率是指单位时间内反应物消失或产物生成的速度。
反应速率受多种因素影响,例如反应物浓度、温度、光照、催化剂等。
反应动力学研究反应速率随这些因素变化的规律和变化量的大小,可以为反应条件的优化提供重要的指导。
反应速率可以描述为:反应速率 = k [A]^m [B]^n其中k是反应常数,[A]和[B]是反应物的浓度,m和n是反应物在化学方程式中的摩尔数。
反应速率与反应物浓度之间的关系被称为反应物的物质平衡。
在实际应用中,催化剂可以提高反应速率,减少反应条件要求。
三、实际应用有机化学反应的机理和反应动力学是制备新化合物、合成有用的生物分子、调节药物活性等方面的关键问题。
例如,研究某种药物的反应动力学可以为另一种类似药物的研究提供直接的参考;了解反应机理可以在制备新化合物中指导反应的优化。
同时,了解反应动力学还可以指导反应条件的优化,提高反应效率、降低成本。
有机反应和反应机理总结
有机反应和反应机理总结(二)来源:王悦的日志有机反应和反应机理总结(二)(5)还原反应1乌尔夫-凯惜纳-黄鸣龙还原:将醛或酮、肼和氢氧化钾在一高沸点的溶剂如一缩二乙二醇(HOCH2CH2OCH2CH2OH,沸点245˚C)中进行反应,使醛或酮的羰基被还原成亚甲基,这个方法称为乌尔夫-凯惜纳(WolffL−Kishner N M)-黄鸣龙方法还原。
对酸不稳定而对碱稳定的羰基化合物可以用此法还原。
2去氨基还原:重氮盐在某些还原剂的作用下,能发生重氮基被氢原子取代的反应,由于重氮基来自氨基,因此常称该反应为去氨基还原反应。
3异相催化氢化:适用于烯烃氢化的催化剂有铂、钯、铑、钌、镍等,这些分散的金属态的催化剂均不溶于有机溶剂,一般称之为异相催化剂。
在异相催化剂作用下发生的加氢反应称为异相催化氢化。
4麦尔外因—彭杜尔夫还原:醛酮用异丙醇铝还原成醇的一种方法。
这个反应一般是在苯或甲苯溶液中进行。
异丙醇铝把氢负离子转移给醛或酮,而自身氧化成丙酮,随着反应进行,把丙酮蒸出来,使反应朝产物方面进行。
这是欧芬脑尔氧化法的逆反应,叫做麦尔外因—彭杜尔夫(Meerwein H-Ponndorf W)反应。
5卤代烃的还原:卤代烃被还原剂还原成烃的反应称为卤代烃的还原。
还原试剂很多,目前使用较为普遍的是氢化锂铝,它是个很强的还原剂,所有类型的卤代烃包括乙烯型卤代烃均可被还原,还原反应一般在乙醚或四氢呋喃(THF)等溶剂中进行。
6伯奇还原:碱金属在液氨和醇的混合液中,与芳香化合物反应,苯环被还原为1,4-环己二烯类化合物,这种反应被称为伯奇还原。
7均相催化氢化:一些可溶于有机溶剂中的催化剂称为均相催化剂。
在均相催化剂作用下发生的加氢反应称为均相催化氢化。
8克莱门森还原:醛或酮与锌汞齐和浓盐酸一起回流反应。
醛或酮的羰基被还原成亚甲基,这个方法称为克莱门森还原。
9罗森孟还原法:用部分失活的钯催化剂使酰氯进行催化还原生成醛。
(完整版)有机化学反应机理详解(共95个反应机理)
一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
化学有机化合物的反应类型与反应机理
化学有机化合物的反应类型与反应机理化学有机化合物是指由碳-碳键和碳-氢键组成的化合物。
它们是化学反应的重要研究对象,掌握有机化合物的反应类型和反应机理对于理解和应用有机化学具有重要意义。
本文将讨论几种常见的有机反应类型及其机理。
一、取代反应取代反应是有机化学中最基本、最常见的反应类型之一。
它指的是在一个分子中,一个原子或官能团被另一个原子或官能团取代的化学反应。
取代反应可分为烷基取代反应和芳香族取代反应两种类型。
1. 烷基取代反应烷基取代反应是指在饱和碳链上,一个或多个氢原子被烷基基团或其他原子或官能团取代的反应。
常见的烷基取代反应有卤代烷的亲核取代、重氮化合物的替换、酸催化的碱性取代等。
2. 芳香族取代反应芳香族取代反应是指芳香化合物上的一个或多个氢原子被原子、官能团或离子取代的反应。
常见的芳香族取代反应有硝化反应、卤代反应、烷基化反应等。
二、加成反应加成反应是指两个或多个分子之间形成新的化学键的反应。
加成反应又可分为电子亲和性加成反应和亲核性加成反应两种类型。
1. 电子亲和性加成反应电子亲和性加成反应是指一个或多个亲电性反应物加到具有π电子体系的反应物上,形成新的共价键。
常见的电子亲和性加成反应有烯烃的与电子亲和性试剂的加成反应、炔烃的与电子亲和试剂的加成反应等。
2. 亲核性加成反应亲核性加成反应是指一个或多个亲核试剂加到具有电子云空间的反应物上,形成新的共价键。
常见的亲核性加成反应有醇的与醛或酮的加成反应、胺的与酰氯的加成反应等。
三、消除反应消除反应是指有机化合物中两个官能团之间失去一个分子或官能团的反应。
消除反应可分为β-消除反应和α-消除反应两种类型。
1. β-消除反应β-消除反应是指某个官能团的β-碳和相邻的官能团之间发生断键和形成新的π键,失去一个分子或官能团。
常见的β-消除反应有醇的脱水反应、卤代烃的脱氢反应等。
2. α-消除反应α-消除反应是指某个官能团的α-碳和相邻的官能团之间发生断键和形成新的π键,失去一个分子或官能团。
大学化学有机化学的基本反应与机理
大学化学有机化学的基本反应与机理一、醇的脱水反应及机理醇是一类含有羟基(-OH)官能团的有机化合物。
在一定条件下,醇可以发生脱水反应,即羟基脱除一个氢原子和一个氧原子形成水,同时生成一个烯烃。
这种反应常见于工业生产中或实验室合成有机化合物的过程。
脱水反应的机理可以分为酸催化和碱催化两种情况。
1. 酸催化的脱水反应机理通常情况下,酸催化的脱水反应发生在较高温度下。
以乙醇为例,其脱水反应可以被硫酸作为催化剂催化。
催化剂中的硫酸可以负责将醇中的羟基质子化形成羟基阳离子,从而增强羟基上的电荷密度。
这使得羟基上的氧原子更容易离去,形成水分子。
同时,形成的乙烯基阳离子会接受甲基的亲电攻击,并且从硫酸中再生出硫酸。
2. 碱催化的脱水反应机理碱催化的脱水反应在较低温度下进行。
以乙醇为例,可以用氢氧化钠作为碱的催化剂。
催化剂中的氢氧化钠会负责从醇中去质子化羟基,形成氧化钠离子和醇的负氧离子。
羟基上的负氧离子很容易离去,形成水分子。
形成的烯烃则会与氢氧化钠反应,再生出氢氧化钠。
二、醛和酮的加成反应及机理醛和酮是羰基化合物,其分子中含有羰基(C=O)官能团。
在一定条件下,醛和酮可以发生加成反应,即通过在羰基碳上加入其他官能团的方式合成新的化合物。
醛和酮的加成反应可以分为亲核加成和胺催化的亲核加成两种情况。
1. 亲核加成的机理亲核加成是指在醛或酮的羰基碳上发生亲核攻击,将一个亲核试剂加到羰基碳上,并形成一条新的键。
以乙醛和氨水的加成反应为例,氨水中的氨为亲核试剂,而水分子则是副产物。
该反应通过羰基碳上的部分正电荷互相吸引,在亲核试剂的攻击下,羰基碳上的δ+位点与亲核试剂上的亲核试对形成新的共价键。
2. 胺催化的亲核加成的机理胺催化的亲核加成是指胺作为催化剂,在亲核试剂作用下催化醛或酮的加成。
以戊二酮和苯胺的加成反应为例,苯胺作为催化剂参与了反应过程。
首先,苯胺与戊二酮发生氢键形成氮质子化胺。
然后,产生的胺质子对氨基负离子进一步质子化,形成羟胺离子。
大学有机化学复习总结反应类型与机理
大学有机化学复习总结反应类型与机理大学有机化学复习总结:反应类型与机理一、醇的反应类型与机理醇是有机化合物中的一类重要官能团,它们包含有羟基(-OH)。
1. 醇的酸碱性反应醇可以发生酸碱中和反应。
当醇中存在较强的酸性取代基,对羟基的电子亲合力较强时,醇会表现出酸性;而当醇中存在较强的碱性取代基,对羟基的电子亲合力较弱时,醇会表现出碱性。
有机酸与醇反应,可以生成酯。
该反应由于生成水作为副产物,被称为酯化反应。
其机理为亲核取代反应。
2. 醇的氧化反应醇可以发生氧化反应,将醇中的氢原子替换为氧原子或其他氧化物。
醇的氧化反应中,常用的氧化剂有高价锰酸钾(KMnO4)、过氧化氢(H2O2)、氯铂酸(H2PtCl6)等。
氧化反应常用于醇的官能团转化,例如将醇氧化为醛、酮、羧酸等。
3. 醇的脱水反应醇可以发生脱水反应,去除醇分子中的水分子。
脱水反应常用于生成醚。
脱水反应中,常用的脱水剂有浓硫酸(H2SO4)、氯化亚砜(SOCl2)、磷酸三乙酯(Et3PO4)等。
脱水反应的机理为亲电取代反应。
二、醛与酮的反应类型与机理醛和酮是含有羰基(C=O)官能团的有机化合物。
1. 醛与酮的还原反应醛和酮可以发生还原反应,将羰基上的碳原子上的氧原子减少为氢原子。
还原反应中,常用的还原剂有氢气(H2)、金属钠(Na)、亚硫酸氢钠(NaHSO3)等。
还原反应一般需要催化剂存在,如铂(Pt)、钯(Pd)等。
2. 醛与酮的加成反应醛和酮可以发生加成反应,将其他化合物的官能团加到羰基上。
加成反应常见的类型有E-选择性和 Z-选择性。
其中,E-选择性是指以反式方式加成,而Z-选择性是指以顺式方式加成。
3. 醛与酮的氧化反应醛和酮可以发生氧化反应,将羰基上的碳原子上的氢原子氧化为氧原子或其他氧化物。
氧化反应中,常用的氧化剂有高锰酸钾(KMnO4)、过氧化氢(H2O2)、铬酸钠(Na2CrO7)等。
三、芳香化合物的反应类型与机理芳香化合物是由芳香环和其中的官能团组成的有机化合物。
了解有机反应的分类和机理
了解有机反应的分类和机理有机反应是有机化学领域中的重要内容,它研究的是有机物与其他物质之间的化学变化过程。
有机反应可以根据反应类型和反应机理进行分类。
了解有机反应的分类和机理对深入理解有机化学的基本原理和应用有着重要意义。
一、有机反应的分类有机反应可以按照反应类型分为酯化反应、醚化反应、加成反应、消除反应、重排反应以及取代反应等。
1. 酯化反应酯化反应是指醇与酸酐或酸的酯化反应。
它是一个羧酸衍生物化学反应,常用于有机合成中。
2. 醚化反应醚化反应是指醇与醇或卤代烷烃的缩合反应,形成醚。
醚是一类重要的有机溶剂和极性物质。
3. 加成反应加成反应是指两个或多个有机物的反应,形成一个新的化合物。
包括烯烃的加成反应、芳香化合物的加成反应等。
4. 消除反应消除反应是指有机物中的两个官能团发生分子内或分子间的消除反应,去除原子或官能团。
常见的消除反应有脱水反应、脱卤反应等。
5. 重排反应重排反应是指有机化合物的结构发生重新排列的反应。
它可以通过原子或官能团的迁移来实现。
6. 取代反应取代反应是指有机物中某些原子或基团被其他原子或基团取代的反应。
它是有机化学中最基本和最常见的反应类型。
二、有机反应的机理有机反应的机理描述了反应的步骤和反应物之间的相互作用。
常见的有机反应机理包括自由基机理、电子云机理、阳离子机理和配位机理等。
1. 自由基机理自由基机理是指反应发生过程中涉及到自由基的生成和转化。
自由基反应是一类重要的有机反应,如自由基取代反应、自由基加成反应等。
2. 电子云机理电子云机理是指反应发生时参与反应的电子云的重新排列和共享。
电子云机理适用于大多数有机反应,如酯化反应、醚化反应等。
3. 阳离子机理阳离子机理是指反应物中产生阳离子中间体,并通过中间体的转化完成反应。
阳离子机理适用于许多有机反应,如酯水解反应、醇酸酯化反应等。
4. 配位机理配位机理是指反应物中涉及到配体和配位物的形成和断裂过程。
配位机理适用于一些有机金属络合物的反应。
有机化学八大反应机理
有机化学八大反应机理有机化学是研究有机分子结构和反应的分支化学。
它的研究方法包括反应机理研究,反应产物的分析和结构推断,以及计算机模拟技术的应用。
反应机理研究是有机化学的核心,它的研究方法包括实验证明、模型推断和计算机模拟。
在有机化学中,有八种主要的反应机理,这八种反应机理是有机反应的基础,它们共同构成了有机反应的复杂系统。
这八种反应机理是:酸催化反应、氢转移反应、羰基反应、缩合反应、氧化反应、环化反应、加成反应和复分解反应。
首先,酸催化反应是有机反应中最常见的反应机理,它是由一种有机酸催化剂引发的。
酸催化反应可以分为三类:羧基质子化反应、烷基质子化反应和烯基质子化反应。
它们的反应机理都是酸催化剂将原料中的电子富集,使其形成质子中心,从而引发了反应。
其次是氢转移反应,它是一种重要的有机反应机理,在此反应中,原料中的一个氢原子被转移到另一个原料上,从而形成新的分子结构。
氢转移反应可以分为四类:单位氢转移反应、双位氢转移反应、羰基氢转移反应和烯基氢转移反应。
第三是羰基反应,它是指一种反应机理,在此反应中,羰基会与另一个原料发生反应,形成新的化合物。
羰基反应可以分为两类:无水羰基反应和有水羰基反应。
无水羰基反应是指在无水条件下,羰基与另一个原料发生反应,而有水羰基反应又可分为水解反应和加水羰基化反应。
第四是缩合反应,它是指两个原料发生反应,形成新的化合物的反应机理。
缩合反应可以分为三类:烷基缩合反应、羰基缩合反应和烯基缩合反应。
它们的反应机理都是两个原料的原子发生相互作用,形成新的化合物。
第五是氧化反应,它是指一种反应机理,在此反应中,氧将原料中的一个原子氧化,形成新的分子结构。
氧化反应可以分为四类:氢氧化反应、羰基氧化反应、烯基氧化反应和烃氧化反应。
它们的反应机理都是将原料中的一个原子氧化,形成新的分子结构。
第六是环化反应,它是指一种反应机理,在此反应中,原料中的一个或多个原子被添加到另一个原料上,形成新的环状结构。
有机反应的分类和机理
有机反应的分类和机理有机反应是碳元素与其他原子之间发生化学反应的过程。
有机反应的分类主要根据反应类型和反应机理来划分。
本文将介绍有机反应的分类和机理,并阐述其中的一些常见反应类型。
一、分类有机反应根据反应类型可以分为加成反应、消去反应、置换反应和酸碱反应。
1. 加成反应加成反应是指在反应中,反应物中的两个基团结合形成一个新的化合物。
常见的加成反应有羰基化反应、氮杂环化反应和醇酸酯化反应等。
羰基化反应是指含有羰基的化合物与亲电试剂发生反应,生成醇、胺、醛或酸的过程。
这类反应机理通常包括亲核加成和消除反应。
亲核试剂的选择和反应条件的调节会影响反应的产物和产率。
氮杂环化反应是一类有机化合物中含有氮原子的环化反应。
经典的氮杂环关系是噻唑和吡咯的形成。
醇酸酯化反应是醇和酸酐之间的酯化反应,产物是酯和水。
酯化反应通常需要催化剂来促进反应的进行。
2. 消去反应消去反应是指有机化合物中存在的原子、基团或官能团与另一分子中的原子、基团或官能团结合并形成较小分子的反应。
最常见的消去反应是醇和酸酐之间形成醚的反应、卤代烃与碱的消除反应等。
3. 置换反应置换反应是指在有机分子中,一个原子、基团或官能团被另一个原子、基团或官能团取代的反应。
常见的置换反应有烃的氢取代、卤素取代和亲电取代等。
4. 酸碱反应酸碱反应是指酸和碱之间的中和反应。
这类反应通常涉及质子的转移,产生水或盐。
二、机理有机反应的机理可以分为亲电机理和自由基机理。
亲电机理是指反应中的亲核试剂或亲电试剂通过亲核攻击或亲电攻击的方式参与反应。
亲电机理常见于加成反应、消去反应和置换反应中。
自由基机理是指反应中产生的自由基在反应中参与反应。
自由基机理常见于取代反应、消除反应和聚合反应中。
在有机反应中,反应的速率和产物的选择性受到环境条件的影响。
温度、溶剂、反应物浓度和催化剂等因素都可能对反应过程和产物产率产生重要影响。
总结而言,有机反应的分类主要根据反应类型和反应机理来划分。
有机化学反应及其机理
有机化学反应及其机理有机化学是研究含碳化合物的化学性质和反应的学科。
在有机化学中,反应是非常重要的一环,通过各种有机反应,可以合成出各式各样的有机化合物,这些化合物在生命科学、医药和材料科学等领域都有着广泛的应用。
本文将介绍有机化学反应的种类和机理,希望能对读者有所帮助。
一、加成反应加成反应是指两个分子中的一个或多个原子或官能团相结合形成新的化学键的反应。
例如,烯烃可以和卤素或水反应,产生卤代烷或醇。
这种反应常发生在双键中的一个碳上,因为这个碳处于亚电子亲或电子亲状态。
加成反应的机理通常涉及亲电性试剂(如卤素)或亲核性试剂(如水),它们与反应物之间会形成孰电子对或离子质子对。
二、消除反应消除反应是指一个化合物中的两个官能团间,其中之一失去小分子(如氢气、水等),形成双键或三键的反应。
例如,醇可以和酸反应,形成双键和水。
消除反应的机理通常涉及氧化还原反应或酸碱反应,其中一种官能团(如羟基)被去除,另一个官能团(如碳碳双键)被形成。
三、取代反应取代反应是指官能团或原子被另一官能团或原子所替代的反应。
例如,烷烃可以和卤素反应,形成卤代烷和氢气。
取代反应的机理通常涉及电子亲试剂(如卤素)和亲核性试剂(如烃),其中先形成中间体,然后被亲核试剂攻击,形成取代产物。
四、重排反应重排反应是指一个分子内部原子或官能团的位置改变,形成不同的分子结构的反应。
例如,碳酸酯可以发生酸催化热重排反应,生成环酯结构的产物。
反应的机理通常涉及中间体的形成和电子迁移等过程,这种反应是有机化学中较为复杂的一种。
以上这些反应只是有机反应中的一部分,还有很多其他类型的反应。
例如,还有氧化还原反应、环化反应、羟化反应等等。
这些反应的机理都各具特点,需要仔细研究。
在研究反应机理时,有些方法可以应用,如辅助试剂、掺杂物、同位素标记等等。
这些方法可以提供反应过程的信息,从而探究反应机制。
总之,有机化学反应是有机化学中至关重要的一环,它们为我们提供了丰富的化合物合成、材料制备、生命科学和医药等领域的理论和实践基础。
有机化学基础知识点有机反应速率与反应机理
有机化学基础知识点有机反应速率与反应机理在有机化学中,反应速率和反应机理是研究化学变化过程的重要方面。
了解有机反应速率和反应机理的基础知识,对于理解有机化学反应的本质和应用都具有重要的意义。
本文将介绍有机反应速率和反应机理的基本概念、影响因素以及一些常见的有机反应类型。
一、反应速率的定义和影响因素有机反应速率是指单位时间内反应物消耗或生成物生成的量。
反应速率与反应物浓度之间存在一定的关系,可以由速率方程表示。
对于简单的一级反应,速率方程可以表示为:速率 = k[A]其中,k是速率常数,[A]是反应物的浓度。
影响反应速率的因素主要有反应物浓度、温度、触媒和溶剂等。
一般来说,反应物浓度越高,反应速率越快;温度升高可以加快反应速率,因为温度升高会增加反应物的能量,使反应更易发生;触媒可以提高反应速率,它通过提供反应路径中的低能垒来加速反应的进行;溶剂的种类和极性也会对反应速率有影响。
二、反应机理的基本概念反应机理是描述反应分子如何从反应物转变为生成物的详细过程。
它涉及到反应中的中间体和过渡态等概念。
中间体是指在反应过程中产生但不在反应物和生成物中出现的物质,过渡态是反应过程中的高能物质状态。
有机反应机理可以分为几类,常见的有加成反应、消除反应、取代反应和重排反应等。
这些反应机理的具体描述需要借助于反应机理图,它是通过表示反应过程中化学键的断裂和形成来描述的。
三、常见的有机反应类型1. 加成反应:加成反应是指两个或多个反应物发生共价键的形成,并生成一个化合物。
常见的加成反应有烯烃的加成、芳香化合物的加成等。
2. 消除反应:消除反应是指一个化合物中的官能团和一个氢或卤素原子的消除,生成一个双键或三键的产物。
常见的消除反应有醇的脱水、卤代烷的脱卤等。
3. 取代反应:取代反应是指一个或多个原子或官能团在分子中被其他原子或官能团取代的反应。
常见的取代反应有烃的卤代反应、酸酐的水解等。
4. 重排反应:重排反应是指分子中的原子或官能团重新排列,生成一个结构异构体。
有机化合物的反应类型与反应机理解析
有机化合物的反应类型与反应机理解析有机化合物是由碳和氢以及其他一些元素构成的化合物。
它们在自然界中广泛存在,是生命体的基础组分之一。
有机反应是指有机化合物之间或有机化合物与其他物质之间发生的化学反应。
本文将探讨有机化合物的反应类型和反应机理,以便更好地理解有机反应的本质。
一、取代反应取代反应是指有机化合物中的一个原子或基团被另一个原子或基团取代的反应。
取代反应是最常见的有机反应之一,也是有机合成中最重要的反应类型之一。
取代反应包括取代烷烃中的氢原子、取代芳香化合物中的氢原子以及取代醇、酸等官能团中的原子或基团。
取代反应机理多种多样,如亲核取代反应、电子亲合取代反应等。
二、加成反应加成反应是指两个或多个反应物相互加成形成一个单一的产物。
加成反应可以是在不饱和化合物之间发生的,也可以是在不饱和化合物与饱和化合物之间发生的。
加成反应机理的主要步骤是亲电或亲核加成,生成中间体,然后发生消除反应,得到最终产物。
加成反应广泛应用于有机合成中,可合成各种有机化合物。
三、消除反应消除反应是指有机化合物中的两个原子或基团之间的共价键断裂,形成一个双键或三键的反应。
消除反应可以是热力学控制的,也可以是动力学控制的。
消除反应机理一般涉及负电荷的迁移,生成中间体,然后失去一个离子得到最终产物。
消除反应在有机合成中也是一种重要的反应类型。
四、重排反应重排反应是指有机化合物中的原子或基团的重新排列,形成不同的化合物的反应。
重排反应可以是热力学控制的,也可以是动力学控制的。
重排反应机理复杂多样,常涉及质子迁移或碳骨架重构等步骤。
重排反应在有机合成和天然产物合成中具有重要的地位。
五、氧化还原反应氧化还原反应是指有机化合物中的电荷转移过程,其中一个物种被氧化,而另一个物种被还原。
氧化还原反应可以是有机物与无机物之间的反应,也可以是有机物之间的内部电子转移反应。
氧化还原反应机理涉及电荷转移、氧化剂和还原剂的参与等步骤。
氧化还原反应在有机合成和有机化学领域具有广泛应用。
有机化学中的重要反应和机理
有机化学中的重要反应和机理有机化学是研究碳氢化合物及其衍生物的科学分支。
其中,很多重要的反应和机理是有机化学的核心内容。
本文将介绍有机化学中最为重要的反应及其机理。
一、加成反应(Addition Reaction)加成反应是指在不改变已有分子的化学键的基础上,将新的原子或组合氢加入到分子中的反应。
加成反应是有机化学中最常见的反应之一。
其中,加成反应中一个重要的反应是亲核加成反应。
1. 亲核加成反应亲核加成反应是指亲核试剂与电子不足的反应物相互作用,将新的基团与反应物中的双键或三键中一个原子上的原子替代掉的反应。
例子有酰胺水解反应、烯丙基甲酸酯水解缩合反应等。
以酰胺水解反应为例,其机理如下:在此反应中,水为亲核试剂,攻击羰基碳上的电子,使氧原子的钝化更加明显,于是二次水解便容易发生,产生对应的羧酸和胺。
二、消除反应(Elimination Reaction)消除反应是指从一个或多个有机化合物中消失一个分子,同时生成一个双键或三键的反应。
消除反应是有机化学反应中相对简单的一类反应,其中一个重要的消除反应是亲电消除反应。
1. 亲电消除反应亲电消除反应是指一个含有亲电性基团的反应物,通过消除一个氢离子与卤原子离子(X)来形成双键或三键,同时释放出一个离子,即反应物通过加成反应生成的求电子亲电基团逆反应中的一个重要反应。
以烯丙醇的消除反应为例,其机理如下:三、取代反应(Substitution Reaction)取代反应以原子或原子团互相取代,被取代原子或原子团和取代原子或原子团在所形成化合物中不同位置上共存的反应。
取代反应是有机化学反应中另一类相对常见的反应,其中一个重要的取代反应是亲核取代反应。
1. 亲核取代反应亲核取代反应是指亲核试剂与取代体相互作用,亲核试剂中的电子攻击取代体中的一个原子,将其原子或原子团替代成亲核试剂中的相应原子或原子团的反应。
例子有卤代烃亲核取代反应、苯的亲核取代反应等。
以卤代烃的亲核取代反应为例,其机理如下:在此反应中,亲核试剂(醇)的氧原子攻击卤代烃中的卤素离子,将其取代为醇基团,同时生成HCl。
(完整版)有机化学反应机理详解(共95个反应机理)
一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
五重要有机反应的反应机理
苯环亲电取代反应旳一般模式
+ E+
亲电试剂
E+
-络合物
H +E
-络合物
E
+ H+
-络合物旳体现方式
H
H
+H
H
E
E
E
+E
+
+
共振式
离域式
苯旳硝化反应
50~60oC, 98%
+ 浓HNO3 +浓H2SO4
NO2
+ H2O
有机化合物碳上旳氢被硝基取代旳反应称为硝化反应
反应机理
HNO3 + H2SO4 H2O+NO2
n-C6H13 HO C H
CH3
(S)-2-辛醇
[]D= + 9.9o
构型翻转
n-C6H13 H C OH CH3
(R)-2-辛醇
[]D= - 9.9o
构型保持
假如一种反应涉及到一种不对称碳原子上旳一根键旳变化,则将新
键在旧键断裂方向形成旳情况称为构型保持,而将新键在旧键断裂旳相 反方向形成旳情况称为构型翻转。这种构型旳翻转也称为Walden转换。 在SN2反应中,得到构型翻转旳产物。
H2SO4 + H2O
HSO4- + H2O+NO2 H2O + +NO2 H3O+ + HSO4-
(1) HNO3 + 2H2SO4
(2)
+ +NO2
H
(3) + NO2 + HSO4-
H3O+ + +NO2 + 2 HSO4-
化学中的有机合成反应原理及机理
化学中的有机合成反应原理及机理有机化学是化学的分支,主要研究有机物,即碳氢化合物及其衍生物。
在有机合成中,合成反应是最基本的实验操作之一,也是实现有机分子结构设计和构建的关键。
有机合成反应原理有机合成反应原理可以大致分为三类:加成反应、消除反应和取代反应。
1、加成反应(Addition Reaction)加成反应是指在化合物中两个原子团之间发生相互作用,形成一个新的化学键,通常产生了对于原有分子来说更大的分子量。
加成反应是有机化学最基本、最常见的反应类型之一,主要包括π键的加成反应和偶极加成反应。
(1)π键的加成反应π键的加成反应是指当烯烃与其他原子团相遇时,它们之间的π键可以发生开裂,两个不饱和的单元分别与加成的原子团结合,形成一个新的化合物。
例如,乙烯与氢气反应生成乙烷,如下所示:C2H4 + H2 → C2H6(2)偶极加成反应偶极加成反应是指存在偶极矩的化合物与另一个带有相反偶极矩的化学物质结合,形成键合物,且偶极矩消失。
例如,醛或酮与硫酸铵反应,生成席夫酸盐。
RCOR' + NH4HSO4 → RCOOCH3 + H2SO4 + NH32、消除反应(Elimination Reaction)消除反应是指某个分子中的一个基团离开后,该分子的反应物结构发生变化。
例如,醇在酸性溶液中加热,可以进行脱水反应。
R-OH → R-OH2+ → R+ + H2O3、取代反应(Substitution Reaction)取代反应是有机化学中最基本的反应类型之一,指一种化合物中的原子团或基团被另一种原子或基团所取代的反应。
取代反应可以分为有机物中的芳香取代反应和脂肪族烷基取代反应。
(1)芳香取代反应芳香取代反应是指原有芳环中的氢原子被取代或加成另一个基,通常反应发生在带有空位的或能通过羟基、氨基、羟基苯甲酸等配体引发的机制中,如下所示:C6H6 + Cl2 → C6H5Cl + HCl(2)脂肪族烷基取代反应脂肪族烷基取代反应是指有机物中的烷基或类似物中的某个氢原子被取代或加成另一个基团的反应,通常发生在角化反应中。
有机反应和反应机理
十、反应与反应机理有机反应:在一定得条件下,有机化合物分子中得成键电子发生重新分布,原有得键断裂,新得键形成,从而使原分子中原子间得组合发生了变化,新得分子产生。
这种变化过程称为有机反应(organic reaction)。
一级反应:在动力学上,将反应速率只取决于一种化合物浓度得反应称为一级反应。
二级反应:在动力学上,将反应速率取决于两种化合物浓度得反应称为二级反应。
按化学键得断裂与生成分类协同反应:在反应过程中,旧键得断裂与新键得形成都相互协调地在同一步骤中完成得反应称为协同反应.协同反应往往有一个环状过渡态.它就是一种基元反应。
自由基型反应:由于分子经过均裂产生自由基而引发得反应称为自由基型反应。
自由基型反应分链引发、链转移与链终止三个阶段:链引发阶段就是产生自由基得阶段。
由于键得均裂需要能量,所以链引发阶段需要加热或光照。
链转移阶段就是由一个自由基转变成另一个自由基得阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环得链,所以称之为链反应。
链终止阶段就是消失自由基得阶段,自由基两两结合成键,所有得自由基都消失了,自由基反应也就终止了。
离子型反应:由分子经过异裂生成离子而引发得反应称为离子型反应。
离子型反应有亲核反应与亲电反应,由亲核试剂进攻而发生得反应称为亲核反应,亲核试剂就是对原子核有显著亲与力而起反应得试剂。
由亲电试剂进攻而发生得反应称为亲电反应。
亲电试剂就是对电子有显著亲合力而起反应得试剂.按反应物与产物得结构关系分类加成反应:两个或多个分子相互作用,生成一个加成产物得反应称为加成反应.取代反应:有机化合物分子中得某个原子或基团被其它原子或基团所置换得反应称为取代反应。
重排反应:当化学键得断裂与形成发生在同一分子中时,会引起组成分子得原子得配置方式发生改变,从而形成组成相同,结构不同得新分子,这种反应称为重排反应。
消除反应:在一个有机分子中消去两个原子或基团得反应称为消除反应.可以根据两个消去基团得相对位置将其分类。
有机反应机理和反应类型
有机反应机理和反应类型有机反应机理是研究有机化合物在反应过程中发生的变化的一种方法。
它揭示了反应底物与产物之间的化学变化,以及反应中可能涉及的中间体和过渡态。
有机反应类型则是根据反应中的特定特征和机制将反应分类的方法。
一、酯化反应酯化反应是一种有机反应,通过酸催化或酶催化,醇与酸酐之间的酯结合,生成酯化合物。
该反应的机理包括酸催化步骤、裂解步骤和酯化步骤。
酸催化步骤中,酸负责质子化醇,并使酸酐发生裂解,生成酸和酰氧离子。
裂解步骤中,酸酐的酰氧离子与醇的质子化醇发生求核取代反应,形成酯和酸。
酯化步骤中,酸催化下,酸与醇发生质子化和水解反应,生成酯。
二、亲电取代反应亲电取代反应是一种有机反应,通过亲电试剂与有机物中的亲核试剂之间的相互作用,进行化学变化。
该反应包括亲电试剂的进攻和亲核试剂的离开,生成产物。
亲电取代反应的机理可以分为两步:亲电试剂进攻和亲核试剂离开。
在第一步中,亲电试剂通过与反应物的亲电中心之间的相互作用,形成中间体。
在第二步中,亲核试剂攻击中间体,将原来的反应物的基团替换为新的基团。
三、自由基反应自由基反应是一种有机反应,通过自由基与有机物中的亲核试剂之间的相互作用,进行化学变化。
该反应的机理包括自由基的产生、自由基的进攻和自由基的消除。
在产生自由基的步骤中,常使用氧化剂或光照射来打断反应物的化学键,产生自由基。
在自由基进攻的步骤中,自由基通过与反应物中的亲电中心之间的相互作用,形成中间体。
在自由基消除的步骤中,反应产物中的两个自由基相互结合,生成较稳定的产物。
四、环加成反应环加成反应是一种有机反应,通过酸催化或碱催化,烯丙基复合物与具有亲核性的试剂之间的反应,生成环化合物。
该反应的机理包括烯丙基离子的形成、环中间体的形成和中间体的断裂。
在烯丙基离子的形成步骤中,烯丙基复合物通过酸催化或碱催化,生成带正电荷的烯丙基离子。
在环中间体的形成步骤中,烯丙基离子与具有亲核性的试剂发生求核取代反应,生成环中间体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机反应和反应机理(一)有机反应:在一定的条件下,有机化合物分子中的成键电子发生重新分布,原有的键断裂,新的键形成,从而使原分子中原子间的组合发生了变化,新的分子产生。
这种变化过程称为有机反应(organic reaction)。
一级反应:在动力学上,将反应速率只取决于一种化合物浓度的反应称为一级反应。
二级反应:在动力学上,将反应速率取决于两种化合物浓度的反应称为二级反应。
按化学键的断裂和生成分类协同反应:在反应过程中,旧键的断裂和新键的形成都相互协调地在同一步骤中完成的反应称为协同反应。
协同反应往往有一个环状过渡态。
它是一种基元反应。
自由基型反应:由于分子经过均裂产生自由基而引发的反应称为自由基型反应。
自由基型反应分链引发、链转移和链终止三个阶段:链引发阶段是产生自由基的阶段。
由于键的均裂需要能量,所以链引发阶段需要加热或光照。
链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。
链终止阶段是消失自由基的阶段,自由基两两结合成键,所有的自由基都消失了,自由基反应也就终止了。
离子型反应:由分子经过异裂生成离子而引发的反应称为离子型反应。
离子型反应有亲核反应和亲电反应,由亲核试剂进攻而发生的反应称为亲核反应,亲核试剂是对原子核有显著亲和力而起反应的试剂。
由亲电试剂进攻而发生的反应称为亲电反应。
亲电试剂是对电子有显著亲合力而起反应的试剂。
按反应物和产物的结构关系分类加成反应:两个或多个分子相互作用,生成一个加成产物的反应称为加成反应。
取代反应:有机化合物分子中的某个原子或基团被其它原子或基团所置换的反应称为取代反应。
重排反应:当化学键的断裂和形成发生在同一分子中时,会引起组成分子的原子的配置方式发生改变,从而形成组成相同,结构不同的新分子,这种反应称为重排反应。
消除反应:在一个有机分子中消去两个原子或基团的反应称为消除反应。
可以根据两个消去基团的相对位置将其分类。
若两个消去基团连在同一个碳原子上,称为1,1-消除或α-消除;两个消去基团连在两个相邻的碳原子上,则称为1,2-消除或β-消除;两个消去基团连在1,3位碳原子上,则称为1,3-消除或γ-消除。
其余类推。
氧化还原反应:有机化学中的氧化和还原是指有机化合物分子中碳原子和其它原子的氧化和还原,可根据氧化数的变化来确定。
氧化数升高为氧化,氧化数降低为还原。
氧化和还原总是同时发生的,由于有机反应的属性是根据底物的变化来确定的,因此常常将有机分子中碳原子氧化数升高的反应为氧化反应,碳原子氧化数降低的反应为还原反应。
有机反应中,多数氧化反应表现为分子中氧的增加或氢的减少,多数还原反应表现为分子中氧的减少或氢的增加。
缩合反应:将分子间或分子内不相连的两个碳原子连接起来的反应统称为缩合反应。
在缩合反应中,有新的碳碳键形成,同时也往往有水或其它比较简单的有机或无机分子形成。
缩合反应通常需要在缩合剂的作用下进行,无机酸、碱、盐或醇钠、醇钾等是常用的缩合剂。
热裂反应:无试剂存在,化合物在高温发生键的断裂,这个反应称为热裂反应。
聚合反应:含有双键或叁键的某些化合物,以及含有双官能团或多官能团的化合物在适当条件下发生加成或缩合等反应,使两个分子、三个分子或多个分子结合成为一个分子的反应,称为聚合反应。
(1) 取代反应1 S N1反应:只有一种分子参与了决定反应速率关键步骤的亲核取代反应称为单分子亲核取代反应。
用S N1表示。
S表示取代反应,N表示亲核,1表示只有一种分子参与了速控步骤。
2 S N2反应:有两种分子参与了决定反应速度关键步骤的亲核取代反应称为双分子亲核取代反应。
用S N2表示。
S表示取代反应,N表示亲核,2表示有两种分子参与了速控步骤。
3 S N i反应:亚硫酰氯和醇反应时,先生成氯代亚硫酸酯,然后分解为紧密离子对,Cl−作为离去基团(−OSOCl)中的一部分,向碳正离子正面进攻,即“内返”,得到构型保持的产物氯代烷。
上述取代犹如是在分子内进行的,所以叫它分子内亲核取代,以S N i表示。
4加特曼反应:加特曼(Gattermann L)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。
这样进行的反应叫做加特曼反应。
5加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。
6傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。
7布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。
8自由基取代反应:若取代反应是按共价键均裂的方式进行的,则称其为自由基取代反应。
9齐齐巴宾反应:吡啶与氨基钠反应,生成α-氨基吡啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。
这个反应称为齐齐巴宾(Chichibabin)反应。
10亚硝基化:苯酚在酸性溶液中与亚硝酸作用,生成对亚硝基苯酚及少量的邻亚硝基苯酚。
该反应称为亚硝基化反应。
11刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。
12皂化反应:油脂的碱性水解称为皂化反应。
13卤化反应:有机化合物分子中的氢原子被卤原子取代的反应称为卤化反应。
卤化反应包括氟化(fluorinate),氯化(chlorizate),溴化(brominate)和碘化(iodizate)。
但最常用的卤化反应是氯化和溴化。
14卤代烃与金属有机化合物的偶联反应:通过S N反应,卤代烃中的烃基与金属有机化合物的烃基用碳碳键连接起来,形成了一个新的分子,称这类反应为卤代烃与金属有机化合物的偶联反应。
15卤代烃的水解:卤代烃与氢氧化钠的水溶液共热,卤原子被羟基取代生成醇,称为卤代烃的水解。
16卤代烃的醇解:卤代烃与醇钠的醇溶液共热,卤原子被烷氧基取代生成醚,称为卤代烃的醇解。
17芳香亲电取代反应:芳环上的氢被亲电试剂取代的反应称为芳香亲电取代反应。
18芳香亲核取代反应:芳环上的一个基团被一个亲核试剂取代的反应称为芳香亲核取代反应。
19饱和碳原子上的亲核取代反应:有机化合物分子中的原子或原子团被亲核试剂取代的反应称为亲核取代反应。
用S N表示。
在反应中,受试剂进攻的对象称为底物。
亲核的进攻试剂(往往带有一对未共同的电子)称为亲核试剂,离开的基团称为离去基团。
与离去基团相连的碳原子称为中心碳原子,生成物为产物。
在上述反应中,若受进攻的中心碳原子是饱和碳原子,则称此类反应为饱和碳原子上的亲核取代反应。
20 1,2−环氧化合物的开环反应:环氧乙烷类化合物的三元环结构使各原子的轨道不能正面充分重叠,而是以弯曲键相互连结,由于这种关系,分子中存在一种张力,极易与多种试剂反应,把环打开。
这类反应称为1,2−环氧化合物的开环反应。
酸催化开环反应时,首先环氧化物的氧原子质子化,然后亲核试剂向C−O键的碳原子的背后进攻取代基较多的环碳原子,发生了S N2反应生成开环产物。
这是一个S N2反应,但具有S N1的性质,电子效应控制了产物,空间因素不重要。
碱催化开环反应时,亲核试剂选择进攻取代基较少的环碳原子,C−O键的断裂与亲核试剂和环碳原子之间键的形成几乎同时进行,并生成产物。
这是一个S N2反应,空间效应控制了反应.有机反应和反应机理(二)21柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。
22 醛酮α−氢的卤化:在酸或碱的催化作用下,醛酮的α−H被卤素取代的反应称为醛酮α−氢的卤化。
23重氮化反应:芳香一级胺和亚硝酸或亚硝酸盐及过量的酸在低温下反应生成芳香重氮盐,该反应称为重氮化反应。
24重氮盐的水解:重氮盐的酸性水溶液一般很不稳定,会慢慢水解生成酚和放出氮气,这称为重氮盐的水解。
25重氮盐的偶联反应:重氮盐正离子可以作为亲电试剂与酚、三级芳胺等活泼的芳香化合物进行芳环上的亲电取代,生成偶氮化合物,通常把这种反应叫做重氮盐的偶联反应。
重氮盐与酚偶联在弱碱性(pH=8~10)条件下进行,酚羟基是邻对位定位基,综合考虑电子效应和空间效应,偶联反应一般在羟基的对位发生,对位有取代基时,得邻位偶联产物。
重氮盐与三级芳胺在弱酸性(pH=5~7)溶液中发生偶联,生成对氨基偶氮化合物,若氨基的对位有取代基,则偶联在邻位发生。
26威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(Williamson A W)合成法。
27离子型取代反应:若取代反应是按共价键异裂的方式进行的,则称其为离子型取代反应。
然后再根据反应试剂的类型进一步分为亲电取代反应和亲核取代反应。
28席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。
席曼反应是在1927年才发现的。
29桑德迈耳反应:1884年,桑德迈耳(Sandmeyer T)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。
这一反应称为桑德迈耳反应。
30硝化反应:有机化合物分子中的氢被硝基取代的反应称为硝化反应。
31氯甲基化反应:有机化合物分子中的氢被氯甲基取代的反应称为氯甲基化反应。
32温斯坦离子对机理:温斯坦(Winstein, S.)认为:在S N1反应中,某些产物是通过离子对进行的,按照这个概念,在进行S N1反应时,底物按紧密离子对-溶剂分离子-自由离子的方式进行离解:这个过程是可逆的,反向过程称为返回。
在S N1反应中,亲核试剂可以在其中任何一个阶段进攻而发生亲核取代反应。
如亲核试剂进攻紧密离子对,由于R+与X-结合比较紧密,亲核试剂必须从R+与X-结合的相反一面进攻,而得到构型转化的产物;而溶剂分离子对间的结合不如紧密离子对密切,消旋的产物占多数;自由离子则因为碳正离子是一个平面结构,亲核试剂在平面两边进攻机会均等,得到完全消旋的产物。
33普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。
这个反应是普塑尔(Pschorr R)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。
34酯化反应:羧酸与醇在酸催化下生成酯的反应称为酯化反应。
35酯交换反应:在酸(氯化氢、硫酸或对甲苯磺酸等)或碱(烷氧负离子)催化下,酯中的OR’被另一个醇的OR’’置换,称为酯的醇解。
这是从一个酯转变为另外一个酯的反应,因此也称为酯交换反应。
36酯的烃基化反应:酯的α-氢可以被烃基取代,这是酯的烃基化反应。