《简单的线性规划问题》ppt课件

合集下载

简单的线性规划问题课件

简单的线性规划问题课件
目标函数表示点(x,y)与点 M(1,1)的距离的平方.由图可 知,z 的最小值为点 M 与直线 x-y=1 的距离的平方.即 zmin =(|1-12-1|)2=12.
z 的最大值为点 M(1,1)与点 B(2,0)的距离的平方: 即 zmax=(1-2)2+(1-0)2=2. ∴z 的取值范围为[12,2].
x+y≤6 若变量 x、y 满足约束条件x-3y≤-2
x≥1
,则 z=2x+3y
的最小值为( )
A.17
B.14
C.5
D.3
[答案] C
[解析] 作出可行域(如图阴影部分所示). 作出直线 l:2x+3y=0. 平移直线 l 到 l′的位置,使直线 l 通过可行域中的 A 点(如 图) 这时直线在 y 轴上的截距最小,z 取得最小值.
把 z=2x+y 变形为 y=-2x+z,得到斜率为-2,在 y 轴 上的截距为 z,随 z 变化的一族平行直线.
由图可看出,当直线 z=2x+y 经过可行域上的点 A 时,截 距 z 最大,经过点 B 时,截距 z 最小.
解方程组3x-x+45y+y-32=5=0 0 ,得 A 点坐标为(5,2), 解方程组xx-=41y+3=0 ,得 B 点坐标为(1,1), 所以 zmax=2×5+2=12,zmin=2×1+1=3.
(2)求线性目标函数在线性约束条件下的最大值或最小值问 题,称为线性规划问题;满足线性约束条件的解(x,y)叫做 可行解 ; 由所有可行解组成的集合叫做 可行域 ;使目标函数取得最大值 或最小值的可行解叫做 最优解.
(2013·福建文,6)若变量 x、y 满足约束条件xx+ ≥y1≤2 y≥0
,则 z
温故知新
某工厂生产甲、乙两种产品,已知生产甲种产品 1 t 需耗 A 种 矿石 10 t、B 种矿石 5 t、煤 4 t;生产乙种产品 1 t 需耗 A 种矿石 4 t、B 种矿石 4 t、煤 9 t.工厂在生产这两种产品的计划中要求消耗 A 种矿石不超过 300 t、B 种矿石不超过 200 t、煤不超过 360 t.列 出满足生产条件的关系式,并画出平面区域.

简单线性规划 课件(48张)

简单线性规划  课件(48张)
x-2y+5≥0, 最小值.
(1)解析:如图所示,
编辑版pppt
32
2x-y-2≥0, x+2y-1≥0,所表示的 3x+y-8≤0,
平面区域为图中的阴影部分.
x+2y-1=0,

得 A(3,-1)
3x+y-8=0,
当 M 点与 A 重合时,OM 的斜率最小,
编辑版pppt
33
kOM=-13. 答案:C
编辑版pppt
46
4.求最优解.通过解方程组求出最优解. 5.求最值.求出线性目标函数的最小值或最大值.
知,当直线 y=-13x+3z经过 A 点时 z 取最大值.由
2x+y=4,
得 A(1,2),所以 zmax=1+2×3=7. Nhomakorabeax=1,
编辑版pppt
23
类型 2 求非线性目标函数的最值 x-y-2≤0,
[典例 2] 设实数 x,y 满足约束条件x+2y-4≥0, 2y-3≤0,
求: (1)x2+y2 的最小值; (2)xy的最大值.

解得 C(2,1),
3x-y-5=0,
编辑版pppt
36
所以当 x=3,y=4 时, dmax=(3+1)2+(4+1)2=41, 当 x=2,y=1 时, dmin=(2+1)2+(1+1)2=13, 即(x+1)2+(y+1)2 的最大值为 41,最小值为 13.
编辑版pppt
37
类型 3 已知目标函数的最值求参数问题 y≥x,
当直线 l 经过可行域内点 C 时,v 最大, 由(1)知 C1,32, 所以 vmax=32,所以xy的最大值为32.
编辑版pppt
27
归纳升华 非线性目标函数最值问题的求解方法

《简单线性规划》PPT课件

《简单线性规划》PPT课件

y x

x、y
满足约束条件
x
y
1
y 1
x y5
2、 图中阴影部分的点满足不等式组 2 x y 6
在这些点中,使目标函数
k
=
6x
+
8y
x
0,
y
0
取得最大值的点的坐标是__(_0__,_5__)__
2、某木器厂生产圆桌和衣柜两种木料,第一 种有 72 米 3,第二种有 56 米 3,假设生产 每种产品都需要用两种木料,生产一张圆桌和 一个衣柜分别所需要木料如表所示,每生产一 张圆桌可获利润6元,生产一个衣柜可获利润 10元,木器厂在现有木料条件下,圆桌和衣 柜各生产多少,才使获得的利润最多?
y值 y=x
1
1
o
x
-1
x + y -1 = 0
y x
x
y
1
y 1
x 3 0
2x-y+1=0 y
1
1/2
1
o
x
x+y-1=0
y
2x-3y+2=0
2/3
-1 -1o/2
3
x
例3、一个化肥厂生产甲、乙两种混合肥料,生产1车皮 甲种肥料需要的主要原料是磷酸盐4吨,硝酸盐18吨; 生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸 盐15吨.现有库存磷酸盐10吨,硝酸盐66吨.如果在此基 础上进行生产,设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,请列出满足生产条件的数学关系式,并 画出相应的平面区域.
解:x和y所满足的数学关系式为:
y
4 x y 10
4x+y=10
18 x 15 y 66

高中数学《简单的线性规划问题 》课件

高中数学《简单的线性规划问题 》课件

11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升 解线性规划问题的关键是准确地作出可行域,正确理解 z 的几何意义,对一个封闭图形而言,最优解一般在可行域 的边界线交点处或边界线上取得.在解题中也可由此快速找 到最大值点或最小值点.
12
课前自主预习
课堂互动探究
随堂达标自测
27
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
x≥0,
【跟踪训练 3】 记不等式组x+3y≥4, 3x+y≤4
所表示的平
面区域为 D,若直线 y=a(x+1)与区域 D 有公共点,则 a 的 取值范围是___12_,__4_ _.
28
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
24
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
探究3 已知目标函数的最值求参数 例 3 已知变量 x,y 满足约束条件 1≤x+y≤4,-2≤x -y≤2.若目标函数 z=ax+y(其中 a>0)仅在点(3,1)处取得最 大值,则 a 的取值范围为__a_>_1____.
解析 由约束条件画出可行域(如图). 点 C 的坐标为(3,1),z 最大时,即平移 y=-ax 时,使 直线在 y 轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(3)(教材改编 P89 例 6)某公司招收男职员 x 名,女职员 y
5x-11y≥-22, 名,x 和 y 需满足约束条件22xx≤+131y≥,9,

简单的线性规划问题(4课时)PPT课件

简单的线性规划问题(4课时)PPT课件

12 5
.
3
x-4y+3=0
B
2
1C
3x+5y-25=0
0 1 234567 X
13
y
例2 已知x、y满足: x
y
求z=2x+y的最大值. y
2x+y=0
最优解(3,3),
最大值9.
O
x y2 3x 6
y=x
M
x
y=3x-6
x+y=2
14
小结作业
1.在线性约束条件下求目标函数的最大 值或最小值,是一种数形结合的数学思 想,它将目标函数的最值问题转化为动 直线在y轴上的截距的最值问题来解决.
19
20
探究(一):营养配置问题 t
p
1 2
5730
【背景材料】营养学家指出,成人良好
的日常饮食应该至少提供0.075kg的碳
水化合物,0.06kg的蛋白质,0.06kg的
脂肪.已知1kg食物A含有0.105kg碳水化
合物,0.07kg蛋白质,0.14kg脂肪,花
费28元;而1kg食物B含有0.105kg碳水
(3)线性规划问题: 在线性约束条件下,求线性目标函数
的最大值或最小值问题,统称为线性规 划问题.
(4)可行解: 满足线性约束条件的解(x,y)叫
做可行解.
10
(5)可行域: 由所有可行解组成的集合叫做可行域.
(6)最优解: 使目标函数取得最大或最小值的可行
解叫做最优解.
11
理论迁移
例1 设z=2x-y,变量x、y满足下列条件
3.3.2 简单的线性规划问题
第一课时
1
问题提出
t
p
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性目标函数的最值一般都是在可行域 的顶点或边界取得.
把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定要 弄清楚.
9
10
11
相关概念
一组关于变量x、y的一次不等式,称为线性约束 条件。
把求最大值或求最小值的的函数称为目标函数,因
为它是关于变量x、y的一次解析式,又称线性目标函数。
y
4 3
48
0
象这样关于x,y一次不等式组的 约束条件称为线性约束条件
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数
求线性目标函数,在线性约束下的最值问题, 统称为线性规划问题,
满足线性约束的解(x,y)叫做可行解,
所有可行解组成的集合叫做可行域
x 使目标函数取得最值的可行解叫做这个
(3)求:通过解方程组求出最优解; (4)答:作出答案。
7
体验: 一、先定可行域和平移方向,再找最优解。 二、最优解一般在可行域的顶点处取得. 三、在哪个顶点取得不仅与B的符号有关,
而且还与直线 Z=Ax+By的斜率有关.
8
小结
本节主要学习了线性约束下如何求目 标函数的最值问题
正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健
3
4
8x
当点P在可允许的取值范围变0化时,
求截距 z 的最值,即可得z的最值. 3
3
问题:求z=2x+3y的最大y 值.
x2y 8
44
x y
16 12
x
0
y 0
4
3
M(4,2)
4
8x
0
y2x z 33
Zmax 4 2 2 3 14 4
x2y 8
44
x y
16 12
x
0
y 0
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成 的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
14
[练习]解下列线性规划问题:
1、求z=2x+y的最大值,使式中的x、y满足约束条件:
y
o
x
1
问题1:画出下列不等式组所表示的平面
区域. y
x2y 8
44
x y
16 12
x
0
4
3
4
8x
0
y 0
问题2:在上述条件下,求z=2x+3y的最大值
2
问题2:求z=2x+3y的最大值. y
把z=2x+3y变形为y=-
2
34
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为 z 的直3 线,
问题的最优解
5
变式:求z=x+3y的最大值.
x2y 8
44
x y
16 12
x
0
y 0
y
4 N(2,3) 3
0
4
8x
y 1 x4
2
y1x z
33
zmax 2 3g3 11
6
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行
线中,利用平移的方法找出与可行 域有公共点且纵截距最大或最小的直线
y x x y 1 y 1
15
y x
x y 1
y
y 1
x+y=1
A
目标函数: Z=2x+y y=x
Zmin=-3
y=-1
B:(-1,-1) C:(2,-1)
O B
x C
2x+y=0
Zmax=3
16
相关文档
最新文档