立体几何创新题型及答案
2023年新高考数学创新题型微专题12 立体几何专题(新定义)(解析版)
专题12 立体几何专题(新定义)一、单选题1.(2022秋·内蒙古赤峰·高二赤峰二中校考阶段练习)已知体积公式3V kD =中的常数k 称为“立圆率”.对于等边圆柱(轴截面是正方形的圆柱),正方体,球也可利用公式3V kD =求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长,在球中,D 表示直径).假设运用此体积公式求得等边圆柱(底面圆的直径为a ),正方体(棱长为a ),球(直径为a )的“立圆率”分别为1k ,2k ,3k ,则123::k k k =( ) A .:1:46ππB .:2:46ππC .3:2:2πD .111::64π【答案】A【分析】根据体积公式分别求出“立圆率”即可得出.【详解】因为231=2a V a k a π⎛⎫⨯⨯= ⎪⎝⎭圆柱,所以14k π=,因为332V a k a ==正方体,所以21k =,因为333432a V k a π⎛⎫=⨯= ⎪⎝⎭球,所以36k π=,所以123::k k k =:1:46ππ.故选:A.2.(2022秋·江苏南京·高二统考期中)我们把所有顶点都在两个平行平面内的多面体叫做拟柱体,在这两个平行平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高,过高的中点且平行于底面的平面截拟柱体所得的截面称为中截面.已知拟柱体的体积公式为V =16h(S +4S 0+S'),其中S ,S'分别是上、下底面的面积,S 0是中截面的面积,h 为拟柱体的高.一堆形为拟柱体的建筑材料,其两底面是矩形且对应边平行(如图),下底面长20米,宽10米,堆高1米,上底长、宽比下底长、宽各少2米.现在要彻底运走这堆建筑材料,若用最大装载量为4吨的卡车装运,则至少需要运( ) (注:1立方米该建筑材料约重1.5吨)A .63车B .65车C .67车D .69车【答案】B【分析】根据所给条件先计算上底面和中截面的长、宽,进而求出各个面的面积、体积以及重量,进一法求出所需要的车次.【详解】解:由条件可知:上底长为18米,宽为8米;中截面长19米,宽9米;则上底面积188S =⨯,中截面积0199S =⨯,下底面积12010S =⨯,所以该建筑材料的体积为V =()1514114468420063⨯⨯++=立方米,所以建筑材料重约514325732⨯=(吨), 需要的卡车次为257464.25÷=,所以至少需要运65车. 故选:B3.(2022·全国·高三专题练习)胡夫金字塔的形状为四棱锥,1859年,英国作家约翰·泰勒(JohnTaylor ,1781-1846)在其《大金字塔》一书中提出:古埃及人在建造胡夫金字塔时利用黄金比例1 1.6182⎛⎫⎝≈ +⎪⎪⎭,胡夫金字塔的每一个侧面的面积都等于金字塔高的平方.如图,若2h as =,则由勾股定理,22as s a =−,即210s sa a⎛⎫−−= ⎪⎝⎭,因此可求得s a 为黄金数,已知四棱锥底面是边长约为856英尺的正方形(2856)a =,顶点P 的投影在底面中心O ,H 为BC 中点,根据以上信息,PH 的长度(单位:英尺)约为( ).A .611.6B .481.4C .692.5D .512.4【答案】C【解析】由2856a =和PH s ==可得【详解】解:12PH s a ==,2856a =8566922.5PH s ==≈ 故选:C【点睛】读懂实际问题,把实际问题转化为数学问题进行计算;基础题.4.(2023·辽宁沈阳·统考一模)刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.则正八面体(八个面均为正三角形)的总曲率为( )A .2πB .4πC .6πD .8π【答案】B【分析】利用正八面体的面积和减去六个顶点的曲率和可得结果.【详解】正八面体每个面均为等比三角形,且每个面的面角和为π,该正面体共6个顶点, 因此,该正八面体的总曲率为62π8π4π⨯−=. 故选:B.5.(2023·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈−︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒【答案】D【解析】首先根据题意理解太阳高度角、该地纬度、太阳直射纬度的概念,然后由太阳高度角()9039542745θδ'''=︒−︒−=︒可得结果.【详解】由题可知,天安门广场的太阳高度角()9039542750533θδδ''''''=︒−︒−=︒+, 由华表的高和影长相等可知45θ=︒,所以45505335533δ''''''=︒−︒=−︒. 所以该天太阳直射纬度为南纬5533'''︒, 故选:D.6.(2023秋·广东深圳·高二校考期末)图1中的机械设备叫做“转子发动机”,其核心零部件之一的转子形状是“曲侧面三棱柱”,图2是一个曲侧面三棱柱,它的侧棱垂直于底面,底面是“莱洛三角形”,莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,如图3.若曲侧面三棱柱的高为5,底面任意两顶点之间的距离为20,则其侧面积为( )A .100πB .600πC .200πD .300π【答案】A【分析】由莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,结合已知可得半径为20,由弧长公式求得底面周长,进而可求得结果.【详解】莱洛三角形由三段半径为20,圆心角为π3的圆弧构成,所以该零件底面周长为π32020π3⨯⨯=,故其侧面积为20π5=100π⨯. 故选:A.7.(2023·全国·高三专题练习)设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π−∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>【答案】B【分析】根据题意给的定义,结合图形,分别求出a 、b 、c 、d 的值即可比较大小. 【详解】对于正四面体,其离散曲率为111(3)232a ππ=−⨯=, 对于正八面体,其离散曲率为111(4)233b ππ=−⨯=, 对于正十二面体,其离散曲率为1311(3)2510c ππ=−⨯=, 对于正二十面体,其离散曲率为111(5)236d ππ=−⨯=, 则111123610>>>, 所以a b d c >>>. 故选:B.8.(重庆市2023届高三第七次质量检测数学试题)如图,生活中有很多球缺状的建筑.球被平面截下的部分叫做球缺,截面叫做球缺的底面,球缺的曲面部分叫做球冠,垂直于截面的直径被截后的线段叫做球缺的高.球冠面积公式为2πS RH =,球缺的体积公式为()21π33V R H H =−,其中R 为球的半径,H 为球缺的高.现有一个球被一平面所截形成两个球缺,若两个球冠的面积之比为1:2,则这两个球缺的体积之比为( ).A .19B .1120C .720D .310【答案】C【分析】根据已知条件求得123R h =,243R h =,代入体积公式计算即可.【详解】设小球缺的高为1h ,大球缺的高为2h ,则122h h R +=,① 由题意可得:122π12π2Rh Rh =,即:212h h =,② 所以由①②得:123R h =,243R h =,所以小球缺的体积23112228ππ333381R R R V R ⎛⎫⎛⎫=−⨯=⎪ ⎪⎝⎭⎝⎭, 大球缺的体积2321480ππ333381R R V R ⎛⎫=−⨯=⎪⎝⎭, 所以小球缺与大球缺体积之比为313228π78180π2081R V R V ==.故选:C.9.(2021秋·江苏南通·高三统考阶段练习)碳60(Co )是一种非金属单质,它是由60个碳原子构成,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2,则其六元环的个数为( ).A .12B .20C .32D .60【答案】B【分析】根据顶点数-棱数+面数=2求出棱数,设正五边形有x 个,正六边形有y 个,根据面数和棱数即可得关于,x y 的方程组,解得y 的值,即可求解.【详解】根据题意, 碳60(Co )由60个顶点,有32个面, 由顶点数-棱数+面数=2可得:棱数为6032290+−=, 设正五边形有x 个,正六边形有y 个,则3256902x y x y +=⎧⎨+=⨯⎩,解得:1220x y =⎧⎨=⎩,所以六元环的个数为20个,故选:B.10.(2018春·四川成都·高三成都七中校考阶段练习)设b a >,定义区间[,)a b 、(,]a b 、(,)a b 、[,]a b 的长度均为b a −.在三棱锥A BCD −中,2AB BC CA ===,AD BD ⊥,则CD 长的取值区间的长度为AB .2C .D .4【答案】B【解析】由题意画出图形,得到三棱锥A - BCD 存在时CD 的范围,则答案可求. 【详解】如图,△ABC 是边长为2的等边三角形,取AB 中点O ,连接CO ,DO ,可得CO因为AD ⊥BD ,当AD =BD 时,OD 最长为1,则当等腰直角三角形ABD 在平面ABC 上时,CD1,则要使三棱锥A - BCD 存在,CD ∈所以CD 长的取值区间的长度为-1)=2. 故选:B【点睛】本题考查由立体几何图形成立限制边长范围问题,属于较难题.二、多选题11.(2022·全国·高三专题练习)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是( )A B.侧面积为C .在该斜圆柱内半径最大的球的表面积为36π D.底面积为 【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD BFDE 是斜圆柱的过底面椭圆的长轴的截面, 由圆柱的性质知45ABF ∠=︒,则BF ,设椭圆的长轴长为2a ,短轴长为2b ,则22a b ,a =,2c ==,所以离心率为c e a ==A 正确; EG BF ⊥,垂足为G ,则EG 6=,易知45EBG ∠=︒,BE =4CE AF AB ===,所以斜圆柱侧面积为22(4224S ππ=⨯⨯+−⨯⨯=,B 正确;24b =,2b =,2a =,a =椭圆面积为ab π=,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为24216ππ⨯=,C 错. 故选:ABD .12.(2022春·黑龙江哈尔滨·高一哈九中校考期末)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ−⨯=,故其总曲率为4π.给出下列四个结论,其中,所有正确结论的有( )A .正方体在每个顶点的曲率均为2π B .任意四棱锥的总曲率均为4π;C .若一个多面体满足顶点数V =6,棱数E =8,面数F =12,则该类多面体的总曲率是3π;D .若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F −+=,则该类多面体的总曲率是常数 【答案】ABD【分析】根据曲率的定义依次判断即可.【详解】对于A ,根据曲率的定义可得正方体在每个顶点的曲率为2322πππ−⨯=,故A 正确;对于B ,由定义可得多面体的总曲率2π=⨯顶点数−各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()254214ππππ⨯−⨯+⨯=,故B 正确;对于C ,由多面体顶点数、面数、棱数的关系有2V E F −+=,而选项C 中所给的多面体的顶点数、面数、棱数不满足此关系式,故不能构能多面体,故C 不正确; 对于D ,设每个面记为[]()1,i n i F ∈边形,则所有的面角和为()()1122222FFi i i i n n F E F E F ππππππ==−=−=⋅−=−∑∑,根据定义可得该类多面体的总曲率()224V E F πππ−−=为常数,故D 正确. 故选:ABD.13.(2020秋·山东济南·高三统考期末)给定两个不共线的空间向量a 与b ,定义叉乘运算:a b ⨯.规定:①a b ⨯为同时与a ,b 垂直的向量;②a ,b ,a b ⨯三个向量构成右手系(如图1);③ sin a b a b a b ⨯=〈〉,.如图2,在长方体1111ABCD A B C D −中,124AB AD AA ===,,则下列结论正确的是( ) A .1AB AD AA ⨯= B .AB AD AD AB ⨯=⨯C .111()AB AD AA AB AA AD AA +⨯=⨯+⨯ D .11111()ABCD A B C D V AB AD CC −=⨯⋅ 【答案】ACD【分析】根据新定义空间向量的叉乘运算依次判断选项即可. 【详解】在长方体1111ABCD A B C D −中,AB =AD =2,14AA =,A :1AA 同时与AB AD ,垂直,sin =22sin 904AB AD AB AD AB AD ︒⨯=⨯⨯=,, 又因为1=4AA ,所以AB AD ⨯=1AA ,且AB AD ,,1AA 构成右手系,故1=AB AD AA ⨯成立,故A 正确;B :根据a b a b ⨯,,三个向量构成右手系,可知1=AB AD AA ⨯,1=-AD AB AA ⨯, 则AB AD ⨯≠AD AB ⨯,故B 错误;C :11()224sin 90AB AD AA AC AA ︒+⨯=⨯==1AC AA ⨯与DB 同向共线,124sin 908AB AA ︒⨯=⨯=,且1AB AA ⨯与DA 同向共线,又124sin 908AD AA ︒⨯=⨯=,且1AD AA ⨯与AB 同向共线,即1AD AA ⨯与DC 同向共线,所以1182AB AA AD AA ⨯+⨯=11AB AA AD AA ⨯+⨯与DB 同向共线, 所以1()AB AD AA +⨯=11AB AA AD AA ⨯+⨯,故C 正确; D :长方体1111ABCD A B C D −的体积22416V =创=,2111()416AB AD CC AA CC ⨯⋅=⋅==,所以1111ABCD A B C D V −=1()AB AD CC ⨯⋅,故D 正确.故选:ACD14.(2022春·全国·高一期末)数学中有许多形状优美、寓意独特的几何体,“等腰四面体”就是其中之一,所谓等腰四面体,就是指三组对棱分别相等的四面体.关于“等腰四面体”,以下结论正确的是( ) A .长方体中含有两个相同的等腰四面体B .“等腰四面体”C .“等腰四面体”可由锐角三角形沿着它的三条中位线折叠得到D .三组对棱长度分别为a ,b ,c 的“等腰四面体”【答案】ABC【分析】作出长方体,根据等腰四面体的定义得出图形,根据长方体的性质判断各选项. 【详解】如图,长方体1111ABCD A B C D −有两个相同的等腰四面体:11ACB D 和11A C BD ,A 正确;如等腰四面体11A C BD 中,每个面可能看作是从长方体截一个角得出的, 如图,设11111,,A D A B AA 的长分别为,,x y z ,不妨设x y z ≥≥,则11B D =1AD =1AB =1BD 最大,其所对角的余弦值为222222211cos 0B AD ∠==>,最大角11B AD ∠为锐角,三角形为锐角三角形,同理其它三个面都是锐角三角形,各个面的三条边分别相等,为全等三角形,面积相等,B 正确;把一个等腰四面体沿一个顶点出发的三条棱剪开摊平,则得一个锐角三角形,还有三条棱是这个三角形的三条中位线,如等腰四面体11ACB D ,沿11,,AB AD AC 剪开摊平,11,ND PD 共线,同理可得,CM DP 共线,11,B M B N 共线,MNP △11ACB D 的面相似),且1111,,B C B D CD 是这个三角形的中位线,因此C正确;如上等腰四面体11A C BD 中三条棱长分别是长方体的三条面对角线长,由长方体性质知长方体对角线是其外D 错。
部编版高中数学必修二第八章立体几何初步带答案考点题型与解题方法
(名师选题)部编版高中数学必修二第八章立体几何初步带答案考点题型与解题方法单选题1、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为( )A .132B .223C .152D .2332、已知直线a 与平面α,β,γ,能使α//β的充分条件是( ) ①α⊥γ,β⊥γ ②α//γ,β//γ ③a //α,a //β ④a ⊥α,a ⊥β A .①②B .②③C .①④D .②④3、下列命题中,正确的是( ) A .三点确定一个平面B .垂直于同一直线的两条直线平行C .若直线l 与平面α上的无数条直线都垂直,则l ⊥αD .若a 、b 、c 是三条直线,a ∥b 且与c 都相交,则直线a 、b 、c 在同一平面上4、如图.AB 是圆的直径,PA ⊥AC ,PA ⊥BC ,C 是圆上一点(不同于A ,B ),且PA =AC ,则二面角P −BC −A 的平面角为( )A .∠PACB .∠CPAC .∠PCAD .∠CAB5、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为( )A .18πB .20πC .22π3D .26π6、如图,某圆锥的轴截面ABC 是等边三角形,点D 是线段AB 的中点,点E 在底面圆的圆周上,且BE ⌢的长度等于CE⌢的长度,则异面直线DE 与BC 所成角的余弦值是( )A .√24B .√64C .√104D .√1447、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .278、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56多选题9、《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC −A 1B 1C 1中,AC ⊥BC ,且AA 1=AB =2.下列说法正确的是( )A .四棱锥B −A 1ACC 1为“阳马” B .四面体A 1C 1CB 为“鳖膈” C .四棱锥B −A 1ACC 1体积最大为23D .过A 点分别作AE ⊥A 1B 于点E ,AF ⊥A 1C 于点F ,则EF ⊥A 1B10、在正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,则下列命题正确的是()A.异面直线C1P和CB1所成的角为定值B.直线CD和平面BPC1相交C.三棱锥D−BPC1的体积为定值D.直线CP和直线A1B可能相交11、已知PA⊥矩形ABCD所在的平面,则下列结论中正确的是()A.PB⊥BCB.PD⊥CDC.PD⊥BDD.PA⊥BD填空题12、对于任意给定的两条异面直线,存在______条直线与这两条直线都垂直.部编版高中数学必修二第八章立体几何初步带答案(四)参考答案1、答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V=23−(13×12×12×1+13×12×12×2)=152,故选:C.2、答案:D解析:根据线面的平行关系,结合相关性质,逐个分析判断即可得解.对①,若α⊥γ,β⊥γ,垂直于同一个平面的两个平面可以相交,故①错误;对②,若α//γ,β//γ,则α//β,平面的平行具有传递性,故②正确;对③,若a//α,a//β,平行于同一直线的两平面可以相交,故③错误;对④,a⊥α,a⊥β,垂直于同一直线的两平面平行,故④正确.综上:②④正确,故选:D.3、答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.4、答案:C解析:由圆的性质知:AC⊥BC,根据线面垂直的判定得到BC⊥面PAC,即BC⊥PC,结合二面角定义可确定二面角P−BC−A的平面角.∵C是圆上一点(不同于A,B),AB是圆的直径,∴AC⊥BC,PA⊥BC,AC∩PA=A,即BC⊥面PAC,而PC⊂面PAC,∴BC⊥PC,又面ABC∩面PBC=BC,PC∩AC=C,∴由二面角的定义:∠PCA为二面角P−BC−A的平面角.故选:C5、答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.6、答案:A分析:过点A作AO⊥BC于点O,过点A作DG⊥BC于点G,取AO的中点F,连接GE、OE、EF,则有∠DEF (或其补角)就是异面直线DE与BC所成的角,设圆锥的底面半径为2,解三角形可求得答案.解:过点A作AO⊥BC于点O,过点A作DG⊥BC于点G,取AO的中点F,连接GE、OE、EF,BC,所以∠DEF(或其补角)就是异面直线DE与BC所成的角,则DF//BC,且DF=12设圆锥的底面半径为2,则DF=1,OE=2,AO=2√3,所以DG=OF=√3,在Rt△GOE中,GO=1,OE=2,所以GE=√GO2+OE2=√5,在Rt△GDE中,GE=√5,DG=√3,所以DE=√GD2+GE2=2√2,在Rt△FOE中,FO=√3,OE=2,FE=√FO2+OE2=√7,所以在△DFE中,满足DF2+FE2=DE2,所以∠DFE=90∘,所以cos∠DEF=DFDE =2√2=√24,故选:A.7、答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D. 8、答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解. 根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB ⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0 ,解得x =817,y =617,所以x +y =1417.故选:C. 9、答案:ABD分析:根据“阳马”和“鳖膈”的定义,可判断A ,B 的正误;当且仅当AC =BC 时,四棱锥B −A 1ACC 1体积有最大值,求值可判断C 的正误;根据题意可证A 1B ⊥平面AEF ,进而判断D 的正误. 底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”, ∴在堑堵ABC −A 1B 1C 1中,AC ⊥BC ,侧棱AA 1⊥平面ABC ,A 选项,∴AA 1⊥BC ,又AC ⊥BC ,且AA 1∩AC =A ,则BC ⊥平面A 1ACC 1, ∴四棱锥B −A 1ACC 1为“阳马”,对;B 选项,由AC ⊥BC ,即A 1C 1⊥BC ,又A 1C 1⊥C 1C 且BC ∩C 1C =C , ∴A 1C 1⊥平面BB 1C 1C ,∴A 1C 1⊥BC 1,则△A 1BC 1为直角三角形,又由BC⊥平面AA1C1C,得△A1BC为直角三角形,由“堑堵”的定义可得△A1C1C为直角三角形,∥CC1B为直角三角形.∴四面体A1C1CB为“鳖膈”,对;C选项,在底面有4=AC2+BC2≥2AC⋅BC,即AC⋅BC≤2,当且仅当AC=BC=√2时取等号,V B−A1ACC1=13S A1ACC1×BC=13AA1×AC×BC=23AC×BC≤43,错;D选项,因为BC⊥平面AA1C1C,则BC⊥AF,AF⊥A1C且A1C∩BC=C,则AF⊥平面A1BC,∴AF⊥A1B,又AE⊥A1B且AF∩AE=A,则A1B⊥平面AEF,所以则A1B⊥EF,对;故选:ABD.10、答案:AC解析:A:由正方体的性质判断B1C⊥平面ABC1D1,得出B1C⊥C1P,异面直线C1P与CB1所成的角为90°;B:由CD//AB,证明CD//平面ABC1D1,即得CD//平面BPC1;C:三棱锥D−BPC1的体积等于三棱锥的体积P−DBC1的体积,判断三棱锥D−BPC1的体积为定值;D:可得直线CP和直线A1B为异面直线.对于A,因为在正方体ABCD−A1B1C1D1中,B1C⊥BC1,B1C⊥C1D1,又BC1∩C1D1=C1,BC1,C1D1⊂平面ABC1D1,所以B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以A正确;对于B,因为平面BPC1与面ABC1D1是同一平面,DC//AB,AB⊂平面ABC1D1,CD⊂平面ABC1D1,故CD//平面ABC1D1,即CD//平面BPC1,故B错误;对于C,三棱锥D−BPC1的体积等于三棱锥P−DBC1的体积,而平面DBC1为固定平面,且△DBC1大小一定,又因为P∈AD1,因为AD1//BC1,AD1⊂平面BDC1,BC1⊂平面BDC1,所以AD1//平面DBC1,所以点A到平面DBC1的距离即为点P到该平面的距离,为定值,所以三棱锥D−BPC1的体积为定值,故C正确;对于D,直线CP和直线A1B是异面直线,不可能相交,故D错误.故选:AC.分析:本题考查线面平行的判定,线面垂直的判定及性质,异面直线所成的角,直线与平面所成的角,空间中的距离,正确理解判定定理和性质是解题的关键.11、答案:ABD分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,不成立,故PD⊥BD不正确.解:∵PA⊥矩形ABCD,BD⊂矩形ABCD,∴PA⊥BD,故D正确.若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,故PD⊥BD不正确,故C不正确;∵PA⊥矩形ABCD,∴PA⊥CD,AD⊥CD,∴CD⊥平面PAD,∴PD⊥CD,故B正确;∵PA⊥矩形ABCD,∴由三垂线定理得PB⊥BC,故A正确;故选:ABD.12、答案:无数分析:平移一条直线与另一条相交并确定一个平面,再由线面垂直的意义及异面直线所成角判断作答. 令给定的两条异面直线分别为直线a,b,平移直线b到直线b′,使b′与直线a相交,如图,则直线b′与a确定平面α,点A是平面α内任意一点,过点A有唯一直线l⊥α,因此,l⊥a,l⊥b′,即有l⊥b,由于点A的任意性,所以有无数条直线与异面直线a,b都垂直.所以答案是:无数。
立体几何创新题目
GFDECBA立体几何(创新题)1、如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC (1)当k =21时,求直线PA 与平面PBC 所成角的正弦值。
(2)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC的重心?2、如图,在矩形ABCD 中,AB =2,BC =a ,又PA ⊥平面ABCD ,PA =4. (1)BC 上存在一点Q ,使PQ ⊥QD ,求a 的取值范围;(2)C 上存在唯一点Q ,使PQ ⊥QD 时,求二面角A -PD -Q 的余弦值。
3、已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE = x ,G 是BC 的中点。
沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图) 。
(1) 当x =2时,求证:BD ⊥EG ;(2) 若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值;(3) 当()f x 取得最大值时,求二面角D-BF-C 的余弦值。
4、在四棱锥A B C D P -中,⊥PA 平面A B C D ,底面A B C D 为矩形,)0(>==a a B C PA AB 。
ABCDOPABC DFE P(Ⅰ)当1a=时,求证:BD PC⊥;(Ⅱ) 若BC边上有且只有一个点Q,使得QDPQ⊥,求此时二面角QPDA--的余弦值。
5、用一边长为12cm的正方形铁片,按图将阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个四棱锥容器P-ABCD。
(1)证明:四棱锥P-ABCD为正四棱锥;(2)求容器四棱锥P-ABCD容积的最大值;(3)在四棱锥P-ABCD的容积最大值时,如它的顶点都在一个球面上,求这个球的表面积。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
立体几何大题15种题型全归纳
【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。
高中数学立体几何多选题100含解析
高中数学立体几何多选题100含解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:2|||sin|cos,|||||n AEn AEn AEπθα⎛⎫++⎪====⨯当且仅当4πθ=时,sinα15=,故D正确故选:CD【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.在正三棱柱111ABC A B C-中,AC=11CC=,点D为BC中点,则以下结论正确的是()A .111122A D AB AC AA=+-B.三棱锥11D AB C-的体积为6C.1AB BC⊥且1//AB平面11AC DD.ABC内到直线AC、1BB的距离相等的点的轨迹为抛物线的一部分【答案】ABD【分析】A .根据空间向量的加减运算进行计算并判断;B.根据1111D AB C A DB CV V--=,然后计算出对应三棱锥的高AD和底面积11DB CS,由此求解出三棱锥的体积;C.先假设1AB BC⊥,然后推出矛盾;取AB中点E,根据四点共面判断1AB//平面11AC D是否成立;D.将问题转化为“ABC内到直线AC和点B的距离相等的点”的轨迹,然后利用抛物线的定义进行判断.【详解】A.()11111111222A D A A AD AD AA AB AC AA AB AC AA=+=-=+-=+-,故正确;B.1111D AB C ADB CV V--=,因为D为BC中点且AB AC=,所以AD BC⊥,又因为1BB⊥平面ABC,所以1BBAD⊥且1BB BC B=,所以AD⊥平面11DB C,又因为AD===11111122DB CS BB B C=⨯⨯=,所以1111111133226D AB C A DB C DB CV V AD S--==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.4.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-,由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--, ()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.5.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==,2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯⨯=,四边形面积是22242⨯=,故截面面积是52. 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得tan 5θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.8.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.9.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
高三精选立体几何大题30题(含详细解答)
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
【2020创新设计一轮复习数学】第八章 立体几何中的翻折及动点的轨迹问题
补上一课立体几何中的翻折及动点的轨迹问题知识拓展1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析问题和解决问题.而表面展开问题是折叠问题的逆向思维、逆向过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.题型突破题型一翻折问题【例1】(2019·宁波模拟)如图,四边形ABCD为梯形,AB∥CD,∠C=60°,点E在线段CD上,满足BE⊥CD,且CE=AB=14CD=2,现将△ADE沿AE翻折到△AME位置,使得MC=210.(1)证明:AE⊥MB;(2)求直线CM与平面AME所成角的正弦值.解(1)法一在梯形ABCD中,连接BD交AE于点N,由条件易得BD=43,∴BC2+BD2=CD2,故BC⊥BD.又BC∥AE,∴AE⊥BD,从而AE⊥BN,AE⊥MN,且BN∩MN=N,∴AE⊥平面MNB,又MB⊂平面MNB,∴AE⊥MB.法二由ME=DE=6,CE=2,MC=210,得ME2+CE2=MC2,故CE⊥ME.又CE⊥BE,且ME∩BE=E,∴CE⊥平面BEM.∵MB⊂平面BEM,∴CE⊥MB,又AB∥CE,∴AB⊥MB.易得AM=AD=27,则在Rt△ABM中,MB=26,又BE=23,∴ME2=MB2+BE2,故BE⊥MB.又AB∩BE=B,∴MB⊥平面ABE,又AE⊂平面ABE,∴AE⊥MB.(2)法一设直线MC与平面AME所成角为θ,则sin θ=h MC ,其中h 为点C 到平面AME 的距离.∵AE ∥BC ,∴点C 到平面AME 的距离即为点B 到平面AME 的距离.由V M -ABE =13S △ABE ·MB =V B -AME=13S △AME ·h ,得h =S △ABE ·MB S △AME =263, ∴sin θ=h MC =1515.法二 ∵MB ⊥平面ABCE ,∴建立空间直角坐标系如图所示,则A (0,2,0),C (23,-2,0),E (23,0,0),M (0,0,26),则AM→=(0,-2,26),AE →=(23,-2,0), MC→=(23,-2,-26). 设平面AME 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧m ·AM →=0,m ·AE =0,可取m =(2,6,1). 设直线CM 与平面AME 所成角为θ,则sin θ=|cos 〈m ,MC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪m ·MC →|m ||MC →|=1515. 【训练1】 在平行四边形ABCD 中,AB =2,BC =22,∠A =45°,E 是AD 的中点(如图1),现将△ABE 沿BE 折起到图2中△A 1BE 的位置.(1)证明:平面A 1DE ⊥平面ABCD ;(2)若二面角A 1-BE -C 为60°,求直线A 1B 与平面A 1CD 所成角的正弦值.(1)证明 在题中图1的△ABE 中,AB =2,AE =2,∠A =45°,得BE =2,AE ⊥BE ,在题中图2中,BE ⊥A 1E ,BE ⊥DE ,又因为A 1E ∩DE =E ,所以BE ⊥平面A 1DE ,又BE ⊂平面ABCD ,所以平面A 1DE ⊥平面ABCD .(2)由(1)知二面角A 1-BE -C 为∠A 1ED =60°,又A 1E =AE =ED =2,则△A 1ED 为等边三角形.法一 如图,建立空间直角坐标系,B (2,0,0),D (0,2,0),(2,22,0),A 1⎝⎛⎭⎪⎫0,22,62, 则A 1B →=⎝⎛⎭⎪⎫2,-22,-62,DC →=(2,2,0), DA 1→=⎝ ⎛⎭⎪⎫0,-22,62. 设平面A 1CD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DC →=0,n ·DA 1→=0,即⎩⎨⎧2x +2y =0,-22y +62z =0, 取y =-3,则n =(3,-3,-1),则cos 〈A 1B →,n 〉=A 1B →·n |A 1B →||n |=2627=427,因此,直线A 1B 与平面A 1CD 所成角的正弦值为427.法二 A 1B =2,A 1D =2,如图,延长BE 交CD 于点F ,则DF =DC =2,BE =EF =A 1E =2,因为∠A 1EF =90°,所以A 1F =2,则S △A 1FD =72,S △A 1FC =7,作A 1H ⊥ED 于点H ,则A 1H =62,V A 1-BCF =13·S △BCF ·A 1H =13×4×62=263,设点B 到平面A 1FC 的距离为h ,又V A 1-BCF =V B -A 1CF =13·S △A 1FC ·h =73h =263,得h =267, 因此,直线A 1B 与平面A 1CD 所成角的正弦值sin θ=h A 1B =427. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A.圆B.抛物线C.双曲线D.椭圆(2)(2019·宁波期中)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A.抛物线B.双曲线C.椭圆D.直线解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.答案(1)A(2)B【训练2】(1)(2019·金华十校模拟)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)(2018·绍兴质检)如图,若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到点A 的距离之比为正常数λ,且动点P 的轨迹是抛物线,则二面角A -BC -D 的平面角的余弦值为( )A.λB.1-λ2C.1λD.1-1λ2解析 (1)延长D 1P 交底面ABCD 的内部于点Q ,连接QD ,则∠D 1QD 为直线D 1Q 与底面ABCD 所成的角,也就是直线D 1P 与MN 所成角θ的最小值,故∠D 1QD =π3,从而∠DD 1Q =π6,所以D 1Q 的轨迹是以D 1D 为轴,顶点为D 1,母线D 1Q 与轴D 1D 的夹角为π6的圆锥面的一部分,则点P 的轨迹就是该部分圆锥面与△A 1C 1D 面(不包括边界)的交线,而△A 1C 1D 面所在平面与轴D 1D 斜交,故点P 的轨迹是椭圆的一部分.(2)由题意知,动点P 的轨迹是以点A 为焦点,直线BC 为准线的抛物线,设点P 在底面BCD 内的投影为点H ,二面角A -BC -D 的平面角的大小为θ,点P 到直线BC 的距离为d ,则|PH ||P A |=λ,由抛物线的定义,得|P A |=d ,则sin θ=|PH |d =λ|P A |d=λ,则cos θ=1-sin 2θ=1-λ2,故选B.答案(1)B(2)B补偿训练一、选择题1.(2019·温州适应性考试)已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C运动时,点H运动的轨迹()A.是圆B.是椭圆C.是抛物线D.不是平面图形解析设在定圆内过点B的直径与圆的另一个交点为点D,过点B作AD的垂线,垂足为点E,连接EH,CD.因为BD为定圆的直径,所以CD⊥BC,又因为AB 垂直于定圆所在的平面,所以CD⊥AB,又因为AB∩BC=B,所以CD⊥平面ABC,所以CD⊥BH,又因为BH⊥AC,AC∩CD=C,所以BH⊥平面ACD,所以BH⊥EH,所以动点H在以BE为直径的圆上,即点H的运动轨迹为圆,故选A.答案 A2.(2018·衢州二中二模)如图,△BCD是以BC为斜边的等腰直角三角形,△ABC 中∠BAC=90°,△ABC沿着BC翻折成三棱锥A-BCD的过程中,直线AB与平面BCD所成的角均小于直线AC与平面BCD所成的角,设二面角A-BD-C,A-CD-B的大小分别为α,β,则()A.α>βB.α<βC.存在α+β>πD.α,β的大小关系不能确定解析作AH⊥平面BCD,分别作HM⊥BD,HN⊥CD于M,N两点.由AB与平面BCD所成的角∠ABH总小于AC与平面BCD所成的角∠ACH,则AB>AC.设O为BC的中点,则点H在DO的右侧,所以有HM>HN,故tan α=tan∠AMH=AHHM,tan β=tan∠ANH=AHHN,因此,tan α<tan β,即α<β,故选B.答案 B3.(2015·浙江卷)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α解析∵A′C和BC都不与CD垂直,∴∠A′CB≠α,故C,D错误.当CA=CB 时,容易证明∠A′DB=α.不妨取一个特殊的三角形,如Rt△ABC,令斜边AB=4,AC=2,BC=23,如图所示,则CD=AD=BD=2,∠BDH=120°,设沿直线CD将△ACD折成△A′CD,使平面A′CD⊥平面BCD,则α=90°.取CD中点H,连接A′H,BH,则A′H⊥CD,∴A′H⊥平面BCD,且A′H=3,DH=1.在△BDH 中,由余弦定理可得BH=7.在Rt△A′HB中,由勾股定理可得A′B=10.在△A′DB中,∵A′D2+BD2-A′B2=-2<0,可知cos∠A′DB<0,∴∠A′DB为钝角,故排除A.综上可知答案为B.答案 B4.如图,在正四棱锥S-ABCD中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE⊥AC.则动点P的轨迹与△SCD组成的相关图形最有可能的是()解析取CS,CD的中点F,G,连接EF,EG,FG.∵E为BC的中点,∴EF∥BS.又EF⊄平面SBD,BS⊂平面SBD,∴EF∥平面SBD.又EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG,∴平面EFG∥平面SBD.又AC⊥平面SBD,∴AC⊥平面EFG,∴AC⊥FG,∴点P∈FG,∴点P的轨迹是△SCD的中位线FG,选A.答案 A二、填空题5.在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,总有AP⊥BD1,则动点P的轨迹为________.解析易证BD1⊥平面ACB1,所以满足BD1⊥AP的所有点P都在一个平面ACB1上.而已知条件中的点P是在侧面BCC1B1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C . 答案 线段B 1C6.矩形ABCD 中,AB =3,BC =1,点E ,F 分别是AB ,DC 上的动点,将矩形ABCD 沿EF 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 所成角的范围(包含初始状态)为________.解析 初始状态时直线AD 与直线BC 所成的角为0°,翻折过程中当BC ⊥BD 时,直线AD 与直线BC 所成的角为90°,因此直线AD 与直线BC 所成角的范围为⎣⎢⎡⎦⎥⎤0,π2. 答案 ⎣⎢⎡⎦⎥⎤0,π27.如图,在棱长为2的正四面体S -ABC 中,动点P 在侧面SAB 内,PQ ⊥底面ABC ,垂足为Q ,若PS =324PQ ,则PC 长度的最小值为________.解析 作PH ⊥AB 于点H ,连接QH ,则∠PHQ 为二面角S -AB -C 的平面角,设AB 的中点为G ,S 在平面ABC 内的射影为O ′(O ′为△ABC 的中心),连接SG ,GO ′,SO ′,则∠SGO ′也是二面角S -AB -C 的平面角,则sin ∠PHQ =PQ PH=sin ∠SGO ′=SO ′SG =223,所以PH =324PQ ,所以PH =PS ,所以点P 的轨迹是侧面SAB 内以AB 为准线,以S 为焦点的抛物线,SH 的中点O 是抛物线的顶点,O 到C 的距离就是PC 的最小值,此时由余弦定理可知,PC 2=⎝ ⎛⎭⎪⎫322+(3)2-2×32×3×13=114,所以PC min =112.答案 1128.如图1,在△ABC 中,BA =BC =6,∠ABC =120°,AD →=2DB →,过点D 作DE ⊥AC 交AC 于点E ,连接CD .现将△ADE 与△BCD 分别沿DE 与CD 翻折,使DA 与DB 重合(如图2),则二面角E -A ′D -C 的平面角的余弦值为________.解析 由题意得DE ⊥A ′E ,DE ⊥CE ,A ′E ∩CE =E ,则DE ⊥平面A ′EC ,又DE ⊂平面DEA ′,所以平面DEA ′⊥平面A ′EC ,过点C 作CG ⊥EA ′交EA ′的延长线于点G ,如图所示,则GC ⊥平面A ′DE ,过点G 作GH ⊥DA ′交DA ′的延长线于点H ,连接CH ,可证得CH ⊥HD ,所以∠GHC 即为二面角E -A ′D -C 的平面角.因为在△ABC 中,BA =BC =6,∠ABC =120°,AD →=2DB →,所以在Rt △B ′HC 中,∠B ′HC =90°,∠HB ′C =60°,B ′C =6,所以B ′H =3,CH =33,在Rt △HA ′G 中,∠A ′HG =90°,A ′H =1,∠HA ′G =30°,所以HG =A ′H ·tan ∠HA ′G =33,在Rt △CGH 中,cos ∠GHC =|HG ||CH |=19.答案 19 三、解答题9.(2019·台州质量评估)如图,正方形ABCD 的边长为4,点E ,F 分别为BA ,BC 的中点,将△ADE ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′,连接A ′B .(1)求证:直线EF⊥平面A′BD;(2)求直线A′D与平面BEDF所成角的正弦值.(1)证明由折叠前后图形的性质知A′D⊥A′E,A′D⊥A′F,又A′E∩A′F=A′,A′E,A′F⊂平面A′EF,∴A′D⊥平面A′EF,又EF⊂平面A′EF,∴A′D⊥EF.由已知可得EF⊥BD,又A′D∩BD=D,A′D,BD⊂平面A′BD,∴EF⊥平面A′BD;(2)解由(1)知EF⊥平面A′BD,又EF⊂平面BEDF,∴平面A′BD⊥平面BEDF,则∠A′DB为A′D与平面BEDF所成角.设BD,EF交于点M,连A′M,则A′M=BM=2,DM=32,又A′D⊥平面A′EF,A′M⊂平面A′EF,∴A′D⊥A′M,在Rt△A′DM中,sin ∠A′DB=A′MDM=232=13,∴A′D与平面BEDF所成角的正弦值为1 3.10.(2018·绍兴一中模拟)如图,△ABC中,AB=AC=2,∠BAC=120°,D为线段BC上一点,且DC=25BC,让△ADC绕直线AD翻折到△ADC′且使AC′⊥BC.(1)在线段BC上是否存在一点E,使平面AEC′⊥平面ABC?请证明你的结论;(2)求直线C′D与平面ABC所成的角.解(1)取BC的中点为E,由题意知AE⊥BC,又因为AC′⊥BC,AE∩AC′=A,所以BC⊥平面AEC′,因为BC在平面ABC内,所以平面AEC′⊥平面ABC.(2)在平面AC′E中,过点C′作C′H⊥AE交AE于点H,连接HD.由(1)知,C′H⊥平面ABC,所以∠C′DH即为直线C′D与平面ABC所成的角.由AB=AC=2,∠BAC=120°,得BC=23,DC=435,ED=35,EC′=355,在△AEC′中,由余弦定理得cos∠AEC′=-5 5,所以cos∠HEC′=55,sin∠HEC′=255,所以HC′=EC′·sin∠HEC′=6 5,所以sin∠HDC′=HC′DC′=32,所以直线C′D与平面ABC所成的角为60°.11.(2018·全国Ⅰ卷)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得,BF⊥PF,BF⊥EF,又PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD.以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF .可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.12.如图1,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,G 为BD 的中点,点R 在线段BH 上,且BRRH =λ(λ>0).现将△AED ,△CFD ,△DEF 分别沿DE ,DF ,EF折起,使点A ,C 重合于点B (该点记为P ),如图2所示.(1)若λ=2,求证:GR ⊥平面PEF ;(2)是否存在正实数λ,使得直线FR 与平面DEF 所成角的正弦值为225?若存在,求出λ的值;若不存在,请说明理由.(1)证明 由题意,可知PE ,PF ,PD 三条直线两两垂直. ∴PD ⊥平面PEF .在图1中,E ,F 分别是AB ,BC 的中点,G 为BD 的中点, 则EF ∥AC ,GD =GB =2GH .在图2中,∵PR RH =BR RH =2,且DGGH =2, ∴在△PDH 中,GR ∥PD . ∴GR ⊥平面PEF .(2)解 存在.由题意,分别以PF ,PE ,PD 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系P -xyz .设PD =4,则P (0,0,0),F (2,0,0),E (0,2,0),D (0,0,4),∴H (1,1,0).∵BR RH =PRRH =λ,∴PR →=λ1+λPH →,∴R ⎝ ⎛⎭⎪⎫λ1+λ,λ1+λ,0.∴RF →=⎝ ⎛⎭⎪⎫2-λ1+λ,-λ1+λ,0=⎝ ⎛⎭⎪⎫2+λ1+λ,-λ1+λ,0. EF→=(2,-2,0),DE →=(0,2,-4),设平面DEF 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧EF →·m =0,DE →·m =0,得⎩⎨⎧2x -2y =0,2y -4z =0.取z =1,则m =(2,2,1). ∵直线FR 与平面DEF 所成角的正弦值为225,∴|cos 〈m ,RF →〉|=|m ·RF →||m ||RF →|=41+λ3⎝ ⎛⎭⎪⎫2+λ1+λ2+⎝ ⎛⎭⎪⎫-λ1+λ2=223λ2+2λ+2=225, ∴9λ2+18λ-7=0,解得λ=13或λ=-73(不合题意,舍去).故存在正实数λ=13,使得直线FR 与平面DEF 所成角的正弦值为225.。
立体几何大题训练题(含答案)
立体几何大题训练题一、解答题(共17题;共150分)1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC= ,AB=4,BC=3,CD= ,AD=2 ,PA=4.(1)证明:CD⊥平面PAD;(2)求二面角B-PC-D的余弦值..2.如图,在四棱锥中,平面,在四边形中,,,,,,.(1)证明:平面;(2)求B点到平面的距离3.如图,在四棱锥中,底面为长方形,底面,,,为的中点,F 为线段上靠近B 点的三等分点.(1)求证:平面;(2)求平面与平面所成二面角的正弦值.4.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.5.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且MC=2MB,求点C到平面POM的距离.6.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值. 7.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.8.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.9.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值。
10.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(1)求证:直线平面;(2)求平面和平面所成的锐二面角的余弦值.11.如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,∠ABC=90°.∠BAC=30°,A1A=A1C=AC,E,F 分别是AC,A1B1的中点(1)证明:EF⊥BC(2)求直线EF与平面A1BC所成角的余弦值.12.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.13.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.14.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.15.如图所示多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,点E,F分别为AD,BP的中点,AD =3,AP=3 ,PC .(1)求证:EF//平面PDC;(2)若∠CDP=120°,求二面角E﹣CP﹣D的平面角的余弦值.16.如图,四棱锥中,侧棱垂直于底面,,,为的中点,平行于,平行于面,.(1)求的长;(2)求二面角的余弦值.17.如图,在斜三棱柱中,侧面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若为中点,求二面角的正切值.答案解析部分一、解答题1.【答案】(1)解:连接,由∠ABC= ,AB=4,BC=3,则,又因为CD= ,AD=2 ,所以,即,因为PA⊥平面ABCD,平面ABCD,所以,因为,所以CD⊥平面PAD;(2)解:以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为z轴,建立空间直角坐标系,如图:作交与点G,,即,所以,,所以,所以,,,,则,,,设平面的一个法向量为,则,即,令,则,,即,设平面的一个法向量为,则,即,令,则,,即,由,所以二面角B-PC-D的余弦值为.【解析】【分析】(1)连接,证出,利用线面垂直的性质定理可得,再利用线面垂直的判定定理即可证出.(2)以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为轴,建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,利用向量的数量积即可求解.2.【答案】(1)解:在平面中,,,,则,又,∴,即,又平面,则,又,∴平面.(2)解:在平面中,过A作BC的平行线交CD的延长线于M,因为,,,则,又因为,,所以.所以又,则,所以,在中,.因为,则面,所以由可知:,,所以,则,因此P点到平面的距离为.【解析】【分析】(1)在三角形中,由勾股定理可证得,由平面,可得,根据线面垂直的判定定理即可证得结论;(2) 在平面中,过A作BC的平行线交CD 的延长线于M,因为利用等体积转换即可求得距离.3.【答案】(1)证明:,为线段中点,.平面,平面,.又底面是长方形,.又,平面.平面,. 又,平面.(2)解:由题意,以为轴建立空间直角坐标系,则,,,,,.所以, ,,,设平面的法向量,则,即,令,则,,,同理可求平面的法向量,,,即平面与平面所成角的正弦值为.【解析】【分析】(1)通过,可证明平面,进而可得,结合证明线面垂直.(2)以为轴建立空间直角坐标系,可求出平面的法向量,平面的法向量,则可求出两向量夹角的余弦值,从而可求二面角的正弦值.4.【答案】(1)解:由已知可得,BF⊥PF,BF⊥EF,又,∴BF⊥平面PEF.∴又平面ABFD,平面PEF⊥平面ABFD.(2)解:作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE= .又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量. 设DP与平面ABFD所成角为,则.∴DP与平面ABFD所成角的正弦值为.【解析】【分析】(1)在翻折过程中,作于H,由得到,从而得到面面垂直;(2)DP与平面所成的角就是,在三角形中求其正弦值.5.【答案】(1)∵PA=PC=AC=4 且O是AC的中点∴PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)过点C作CH⊥OM交OM于点H又∵PO⊥平面ABC∴∴CH的长度为点C到平面POM的距离在△COM中,CM= ,OC=2,∠OCM=45°∴∴OM=∴【解析】【分析】(1)由线面垂直的判定定理易得;(2)由线面垂直可得面面垂直,易找点面距,可求.6.【答案】(1)PA=PC=AC=4 且O是AC的中点PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)∵PO⊥平面ABC,∴PO⊥OB∴AB=BC=2 O是AC的中点∴OB⊥AC OB⊥平面PAC如图所示以O为坐标原点,为x轴正方向建立如图所示的直角坐标系O-xyz则P(0,0,)A(,0,-2,0),C(0,2,0),B(2,0,0)平面PAC法向量为=(1,0,0)设M(x,2-x,0)平面PAC法向量为=(1,λ,μ),=(0,2,), = (x,4-x,0)则即即得到,∴x=-4(舍),x=即M∴PAM的法向量记PC与平面PAM所成的角为θ∴即PC与平面PAM所成的角为的正弦值为.【解析】【分析】(1)由线面垂直的判定定理易得;(2)先由条件建系,找到点M的位置,再用公式求线面角.7.【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.8.【答案】(1)解:由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知,所以,故,.以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,.设平面EBC的法向量为=(x,y,x),则即所以可取= .设平面的法向量为=(x,y,z),则即所以可取=(1,1,0).于是.所以,二面角的正弦值为.【解析】【分析】(1)根据题意由线面垂直的性质得出线线垂直,再由线线垂直的判定定理出线面垂直。
2024届高考数学复习创新题型专项(立体几何)练习(附答案)
2024届高考数学复习创新题型专项(立体几何)练习一、单选题1.(2022ꞏ全国ꞏ高三专题练习)笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---2.(2022春ꞏ辽宁大连ꞏ高一统考期末)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径16cm AB =,圆柱体的高8cm BC =,圆锥体的高6cm CD =,则这个陀螺的表面积是( )A .2192πcmB .2208πcmC .2272πcmD .2336πcm3.(2022秋ꞏ安徽ꞏ高二合肥市第八中学校联考期中)《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”A OBCD -中,E 为ACD 的重心,若AB a =,AC b = ,AD c = ,则BE = ( )A .1122a b c -++ B .1133a b c -++ C .2233a b c ++ D .1133a b c -+- 4.(2022秋ꞏ河南商丘ꞏ高三校联考阶段练习)榫卯是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.凸出的部分叫做榫(或叫榫头),凹进部分叫卯(或叫榫眼、榫槽).现要在一个木头部件制作一个榫眼,最终完成一个直角转弯结构的部件,那么制作成的榫眼的俯视图可以是( )A .B .C .D .5.(2021秋ꞏ江西宜春ꞏ高二上高二中校考阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的表面积为( )A .30B .2C .D .6.(2021春ꞏ陕西榆林ꞏ高三校考阶段练习)“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为( )(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.27.(2022ꞏ全国ꞏ高一专题练习)《九章算术》中有这样的图形:今有圆锥,下周三丈五尺,高五丈一尺(1丈10=尺);若该圆锥的母线长x 尺,则x =( )A B C D 8.(2021秋ꞏ吉林四平ꞏ高三四平市第一高级中学校考阶段练习)“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm ,则该阿基米德多面体的表面积为( )A .(24800cm +B .(24800cm +C .(23600cm +D .(23600cm + 9.(2022秋ꞏ宁夏吴忠ꞏ高二青铜峡市高级中学校考开学考试)牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为4V V π=牟球,并且推理出了“牟合方盖”的八分之一的体积计算公式,即38V r V =-牟方盖差,从而计算出343V r π=球.如果记所有棱长都为r 的正四棱锥的体积为V ,则:V V =方差盖( )A B .1 C D .10.(2022秋ꞏ湖北襄阳ꞏ高二襄阳市第一中学校考阶段练习)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,AC BB 的中点,G 是MN 的中点,若1AG xAB y AA z AC =++ ,则x y z ++=( )A .32B .23 C .1 D .3411.(2022秋ꞏ江西抚州ꞏ高二临川一中校考期中)如图,何尊是我国西周早期的青铜礼器,其造型浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词最早的文字记载,何尊还是第一个出现“德”字的器物,证明了周王朝以德治国的理念,何尊的形状可近似看作是圆台和圆柱的组合体,组合体的高约为40cm ,上口直径约为28cm ,经测量可知圆台的高约为16cm ,圆柱的底面直径约为18cm ,则该组合体的体积约为( )(其中π的值取3)A .11280cm 3B .12380cm 3C .12680cm 3D .12280cm 312.(2022秋ꞏ安徽ꞏ高三校联考开学考试)《几何原本》是古希腊数学家欧几里得的一部不朽之作, 其第11卷中将轴截面为等腰直角三角形的圆锥称为“直角圆锥”.若一个直角圆锥的侧面积为,则该圆锥的体积为( )AB .3πC .D .13.(2022秋ꞏ青海西宁ꞏ高三统考期中)我国历史文化悠久,“爰”铜方彝是商代后期的一件文物,其盖似四阿式屋顶,盖为子口,器为母口,器口成长方形,平沿,器身自口部向下略内收,平底、长方形足、器内底中部及盖内均铸一“爰”字.通高24cm ,口长13.5cm ,口宽12cm ,底长12.5cm ,底宽10.5cm.现估算其体积,上部分可以看作四棱锥,高约8cm ,下部分看作台体,则其体积约为( )11.5≈,12.7≈)A .37460.8cmB .3871.3cmC .31735.3cmD .32774.9cm14.(2022秋ꞏ湖北ꞏ高二校联考期中)在中国古代数学著作《九章算术》中记载了一种称为“曲池”的几何体,该几何体的上、下底面平行,且均为扇环形(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,它的高为4,1AA ,1BB ,1CC ,1DD 均与曲池的底面垂直,底面扇环对应的两个圆的半径分别为2和4,对应的圆心角为90°,则图中异面直线1AB 与1CD 所成角的余弦值为( )A .45B .35C .23 D .3415.(2023ꞏ江西抚州ꞏ高三金溪一中校考开学考试)中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意为粮食满园、称心如意、十全十美.下图为一种婚庆升斗的规格,把该升斗看作一个正四棱台,忽略其壁厚,则该升斗的容积约为( )39.6,1L 1000cm ≈=,参考公式:(13V S S h 下上棱台=+⋅)A .1.5LB .2.4LC .5.0LD .7.1L16.(2022春ꞏ湖南长沙ꞏ高二湖南师大附中校考阶段练习)波利亚在其论著中多次提到“你能用不同的方法推导出结果吗?”,“试着换一个角度探索下去……”.这都属于“算两次”的原理.另外,更广义上讲,“算两次”也是对同一个问题,用两种及其以上的方法解答出来,即对同一个问题解两次,得到相同的结果,体现殊途同归,一题多解.试解决下面的问题:四面体ABCD 中,AB=CD=6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的表面积为( )A .7925πB .7320πC .6316πD .4π17.(2022秋ꞏ黑龙江齐齐哈尔ꞏ高二齐齐哈尔市第八中学校校考开学考试)灯笼起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面的一部分(除去两个球冠).如图2,球冠是由球面被一个平面截得的,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球的半径为R ,球冠的高为h ,则球冠的面积2S Rh π=.已知该灯笼的高为46cm ,圆柱的高为3cm ,圆柱的底面圆直径为30cm ,则围成该灯笼所需布料的面积为( )A .22090cm πB .22180cm πC .22340cm πD .22430cm π18.(2022秋ꞏ湖北武汉ꞏ高二武汉市第十一中学校考阶段练习)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为43π时,该裹蒸粽的高的最小值为( ) A .4 B .6 C .8 D .1019.(2023ꞏ全国ꞏ高三专题练习)鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .(86++B .(68+C .(86+D .(68+ 20.(2022秋ꞏ江苏连云港ꞏ高三校考阶段练习)刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,上棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为6,底边宽为4,上棱长为2,高为2,则它的表面积是( )A .B .24+C .24+D .24+二、多选题21.(2021秋ꞏ重庆沙坪坝ꞏ高二重庆市天星桥中学校考阶段练习)三星堆遗址,位于四川省广汉市,距今约三千到五千年.2021年2月4日,在三星堆遗址祭祀坑区4号坑发现了玉琮.玉琮是一种内圆外方的筒型玉器,是一种古人用于祭祀的礼器.假定某玉琮中间内空,形状对称,如图所示,圆筒内径长2cm ,外径长3cm ,筒高4cm ,中部为棱长是3cm 的正方体的一部分,圆筒的外侧面内切于正方体的侧面,则( )A .该玉琮的体积为3π184+(3cm )B .该玉琮的体积为7π274-(3cm ) C .该玉琮的表面积为54π+(2cm ) D .该玉琮的表面积为549π+(2cm )22.(2022ꞏ全国ꞏ高三专题练习)“端午节”为中国国家法定节假日之一,已被列入世界非物质文化遗产名录,吃粽子便是端午节食俗之一.全国各地的粽子包法各有不同.如图,粽子可包成棱长为6cm 的正四面体状的三角粽,也可做成底面半径为3cm 2,高为6cm (不含外壳)的圆柱状竹筒粽.现有两碗馅料,若一个碗的容积等于半径为6cm 的半球的体积,则( ) 4.44≈)A .这两碗馅料最多可包三角粽35个B .这两碗馅料最多可包三角粽36个C .这两碗馅料最多可包竹筒粽21个D .这两碗馅料最多可包竹筒粽20个23.(2022ꞏ全国ꞏ高三专题练习)攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,多见于亭阁式建筑、园林建筑下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30︒米,则该正四棱锥的( )A .底面边长为6米BC .侧面积为D .体积为立方米 24.(2022秋ꞏ湖北襄阳ꞏ高二校考阶段练习)在《九章算术》中,四个面都是直角三角形的三棱锥被称为“鳖臑”.在鳖臑-P ABC 中,PA ⊥底面ABC ,则( )A . 0AB AC ⋅= 可能成立B . 0BC AC ⋅= 可能成立 C . 0PA BC ⋅= 一定成立D . 0BC AB ⋅= 可能成立25.(2022春ꞏ广东广州ꞏ高一广州科学城中学校考期中)唐朝著名的凤鸟花卉纹浮雕银杯如图1所示,它的盛酒部分可以近似地看作是半球与圆柱的组合体(如图2),当这种酒杯内壁的表面积(假设内壁表面光滑,表面积为S 平方厘米,半球的半径为R 厘米)固定时,若要使得酒杯的容积不大于半球体积的2倍,则R 的取值可能为( )A B C D 26.(2022ꞏ海南ꞏ统考模拟预测)素描是使用单一色彩表现明暗变化的一种绘画方法,素描水平反映了绘画者的空间造型能力.“十字贯穿体”是学习素描时常用的几何体实物模型,如图是某同学绘制“十字贯穿体”的素描作品.“十字贯穿体”是由两个完全相同的正四棱柱“垂直贯穿”构成的多面体,其中一个四棱柱的每一条侧棱分别垂直于另一个四棱柱的每一条侧棱,两个四棱柱分别有两条相对的侧棱交于两点,另外两条相对的侧棱交于一点(该点为所在棱的中点).若该同学绘制的“十字贯穿体”由两个底面边长为2,高为6的正四棱柱构成,则( )A .一个正四棱柱的某个侧面与另一个正四棱柱的两个侧面的交线互相垂直B .该“十字贯穿体”的表面积是112-C .该“十字贯穿体”的体积是483-D .一只蚂蚁从该“十字贯穿体”的顶点A 出发,沿表面到达顶点B 的最短路线长为43+27.(2022ꞏ全国ꞏ高三专题练习)祖暅(公元5—6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S S =环圆总成立,若椭半球的短轴6AB =,长半轴5CD =,则下列结论正确的是( )A .椭半球体的体积为30πB .椭半球体的体积为15πC .如果4C F FD =,以F 为球心的球在该椭半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为863π D .如果4C F F D = ,以F 为球心的球在该半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为29π三、填空题28.(2022秋ꞏ上海浦东新ꞏ高二上海市建平中学校考阶段练习)我国古代数学名著《九章算术》中,定义了三个特别重要而基本的多面体,它们是:(1)“堑堵”:两个底面为直角三角形的直棱柱;(2)“阳马”:底面为长方形,且有一棱与底面垂直的棱锥;(3)“鳖臑(biēnào )”:每个面都为直角三角形的四面体.魏晋时期的大数学家刘徽进一步研究发现:任何一个“堑堵”都可以分割成一个“阳马”和一个“鳖臑”且“阳马”和“鳖臑”的体积比为定值.则此定值为______.29.(2022秋ꞏ上海浦东新ꞏ高三上海市建平中学校考阶段练习)我国古代将四个面都是直角三角形的四面体称作鳖臑,如图,在鳖臑S ABC -中,SC ⊥平面ABC ,ABC 是等腰直角三角形,且AB SC =,则异面直线BC 与SA 所成角的正切值为______.(写出一个值即可,否则有两个答案)30.(2022春ꞏ浙江宁波ꞏ高二校考学业考试)宁波老外滩天主教堂位于宁波市新江桥北堍, 建于清同治十一年(公元 1872 年). 光绪二十五 (1899年) 增建钟楼, 整座建筑由教堂、钟楼、偏屋组成, 造型具有典型罗马哥特式风格. 其顶端部分可以近似看成由一个正四棱锥和一个正方体组成的几何体, 且正四棱锥的侧棱长为10m , 其底面边长与正方体的棱长均为6m , 则顶端部分的体积为__________.31.(2022ꞏ全国ꞏ高三专题练习)蹴鞠,2006年5月20日,已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球,因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.已知某鞠(球)的表面上有四个点(不共面)、、、,2,A B C DAB CD AC BD BC AD======__________.32.(2022春ꞏ福建泉州ꞏ高一泉州五中校考期中)“牟合方盖”(图①)是由我国古代数学家刘徽创造的,其构成是由一个正方体从纵横两侧面作内切圆柱(圆柱的上下底面为正方体的上下底面,圆柱的侧面与正方体侧面相切)的公共部分组成的(图②),假设正方体的棱长为2,则其中一个内切圆柱的表面积为___________;该正方体的内切球也是“牟合方盖”的内切球,所以用任一平行于正方体底面的平面去截“牟合方盖”,截面均为正方形,根据祖暅原理(夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等)可得“牟合方盖”的体积为____________.33.(2023ꞏ全国ꞏ高三专题练习)佩香囊是端午节传统习俗之一.香囊内通常填充一些中草药,有清香、驱虫、开窍的.因地方习俗的差异,香囊常用丝布做成各种不同的形状,形形色色,玲珑夺目.图1的平行四边形ABCD由六个边长为1的正三角形构成.将它沿虚线折起来,可得图2所示的六面体形状的香囊.那么在图2这个六面体中内切球半径为__________,体积为__________.34.(2022ꞏ高二单元测试)《九章算术》第五卷中涉及一种几何体——羡除,它下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.该羡除是一个多面体ABCDFE ,如图,四边形ABCD ,ABEF 均为等腰梯形,AB CD EF ∥∥,平面ABCD ⊥平面ABEF ,梯形ABCD ,ABEF 的高分别为3,7,且6AB =,10CD =,8EF =,则AD BF ⋅= ______,DE = ______.35.(2021秋ꞏ四川广安ꞏ高二四川省武胜烈面中学校校考开学考试)《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体)在如图所示的堑堵111ABC A B C -中,12BB BC AB ===且有鳖臑11C ABB -和鳖臑1C ABC -,现将鳖臑1C ABC -的一个面1ABC 沿1BC 翻折180︒,使A 点翻折到E 点,求形成的新三棱锥11C AB E -的外接球的表面积是_________.36.(2022ꞏ全国ꞏ高三专题练习)正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正八面体ABCDEF 的棱长都是2(如图),P ,Q 分别为棱AB ,AD 的中点,则CP FQ ⋅= ________.37.(2022秋ꞏ辽宁ꞏ高二辽宁实验中学校考期中)阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0k >且1)k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在棱长为6的正方体1111ABCD A B C D -中,点M 是BC 的中点,点P 是正方体表面11DCC D 上一动点(包括边界),且满足APD MPC ∠=∠,则三棱锥D PBC -体积的最大值为______.38.(2022ꞏ全国ꞏ高三专题练习)祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.有一个球形瓷碗,它可以看成半球的一部分,若瓷碗的直径为8,高为2,利用祖暅原理可求得该球形瓷碗的体积为______.四、解答题39.(2022ꞏ全国ꞏ高三专题练习)自古以来,斗笠是一个防晒遮雨的用具,是家喻户晓的生活必需品之一,主要用竹篾和一种叫做棕榈叶染白后编织而成,已列入世界非物质文化遗产名录.现测量如图中一顶斗笠,得到图中圆锥PO 模型,经测量底面圆O 的直径48cm AB =,母线30cm AP =,若点C 在 AB 上,且π6CAB ∠=,D 为AC 的中点.证明:BC ∥平面POD ;40.(2022秋ꞏ贵州遵义ꞏ高三统考阶段练习)故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体ABCDEF 有五个面,其形状与四阿顶相类似.已知底面ABCD 为矩形,228AB AD EF ===,EF ∥底面ABCD ,且EA ED FB FC ===,M ,N 分别为AD ,BC 的中点.(1)证明:EF AB ∥,且BC ⊥平面EFNM .(2)若EM 与底面ABCD 所成的角为π4,过点E 作EH MN ⊥,垂足为H ,过H 作平面ABFE 的垂线,写出作法,并求H 到平面ABFE 的距离.41.(2022秋ꞏ上海浦东新ꞏ高二上海师大附中校考期中)《九章算术ꞏ商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得.”如图,在鳖臑ABCD 中,侧棱AB ⊥底面BCD ;(1)若BC CD ⊥,ADB θ∠=1,2BDC θ∠=,3ADC θ∠=,求证:123cos cos cos θθθ⋅=;(2)若1AB =,2BC =,1CD =,试求异面直线AC 与BD 所成角的余弦.(3)若BD CD ⊥,2AB BD CD ===,点P 在棱AC 上运动.试求PBD △面积的最小值.42.(2022秋ꞏ北京ꞏ高二北京一七一中校考期中)“曼哈顿几何”也叫“出租车几何”,是在19世纪由赫尔曼ꞏ闵可夫斯基提出来的.如图是抽象的城市路网,其中线段AB 是欧式空间中定义的两点最短距离,但在城市路网中,我们只能走有路的地方,不能“穿墙”而过,所以在“曼哈顿几何”中,这两点最短距离用(),d A B 表示,又称“曼哈顿距离”,即(),d A B AC CB =+,因此“曼哈顿两点间距离公式”:若()11,A x y ,()22,B x y ,则()2121,d A B x x y y =-+-(1)①点()A 3,5,()2,1B -,求(),d A B 的值.②求圆心在原点,半径为1的“曼哈顿单位圆”方程.(2)已知点()10B ,,直线220x y -+=,求B 点到直线的“曼哈顿距离”最小值; (3)设三维空间4个点为(),,i i i i A x y z =,1,2,3,4i =,且i x ,i y ,{}0,1i z ∈.设其中所有两点“曼哈顿距离”的平均值即d ,求d 最大值,并列举最值成立时的一组坐标.参考答案一、单选题1.(2022ꞏ全国ꞏ高三专题练习)笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B 【详细分析】由图写出点A 的坐标,然后再利用关于x 轴对称的点的性质写出对称点的坐标.【答案详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1).故选:B.2.(2022春ꞏ辽宁大连ꞏ高一统考期末)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径16cm AB =,圆柱体的高8cm BC =,圆锥体的高6cm CD =,则这个陀螺的表面积是( )A .2192πcmB .2208πcmC .2272πcmD .2336πcm【答案】C 【详细分析】结合组合体表面积的计算方法计算出正确答案.【答案详解】圆柱、圆锥的底面半径为8cm ,10cm =,所以陀螺的表面积是22π82π88π810272πcm ⨯+⨯⨯+⨯⨯=.故选:C3.(2022秋ꞏ安徽ꞏ高二合肥市第八中学校联考期中)《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”A OBCD -中,E 为ACD 的重心,若AB a =,AC b = ,AD c = ,则BE = ( )A .1122a b c -++ B .1133a b c -++ C .2233a b c ++ D .1133a b c -+- 【答案】B【详细分析】连接AE 并延长交CD 于点F ,则F 为CD 的中点,利用向量的加减运算得答案【答案详解】连接AE 并延长交CD 于点F ,因为E 为ACD 的重心,则F 为CD 的中点,且23AE AF = ()2211133233BE AE AB AF AB AC AD AB AC AD AB ∴=-=-=⨯+-=+- 1133a b c =-++ . 故选:B .4.(2022秋ꞏ河南商丘ꞏ高三校联考阶段练习)榫卯是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.凸出的部分叫做榫(或叫榫头),凹进部分叫卯(或叫榫眼、榫槽).现要在一个木头部件制作一个榫眼,最终完成一个直角转弯结构的部件,那么制作成的榫眼的俯视图可以是()A.B.C.D.【答案】B【详细分析】利用排除法结合俯视图的定义和已知条件详细分析判断.【答案详解】法一:榫眼的形状和榫头一致,故榫眼的俯视图的轮廓线为虚线且从结果图可知榫眼应为通透的,排除AD;又C选项的结构左下方部分缺了一块,这与榫眼的结构不符,符合条件的只有B.法二:因榫眼的制作部件为长方体,所以,C,D不正确;又榫眼应为通透的,所以A不正确,所以符合条件的只有B.故选B.5.(2021秋ꞏ江西宜春ꞏ高二上高二中校考阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的表面积为( )A .30B .2C .D .【答案】D【详细分析】由BC CD ⊥,AB ⊥底面BCD ,将三棱锥A BCD -放在长方体中,求出外接球的半径以及圆周率的值,再由球的表面积公式即可求解.【答案详解】如图所示:因为BC CD ⊥,AB ⊥底面BCD ,1BC =,2AB CD ==,所以将三棱锥A BCD -放在长、宽、高分别为2,1,2的长方体中,三棱锥A BCD -的外接球即为该长方体的外接球,外接球的直径3AD ===,利用张衡的结论可得2π5168=,则π=所以球O 的表面积为234π9π2⎛⎫== ⎪⎝⎭故选:D.6.(2021春ꞏ陕西榆林ꞏ高三校考阶段练习)“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及。
立体几何典型例题精选(含答案)
FEDCBA 立体几何专题复习热点一:直线与平面所成的角例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC -A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =. 求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD -A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P -ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P -ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE=. ……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE……………14分变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知22222113121cos 60,222AE AF EF AE AE EF ⎛⎫+-⋅⋅=+=∴⊥ ⎪⎝⎭………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 (2)以E 为原点建立如图示的空间直角坐标系,则31),(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n (,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得201302x x y =⎧⎪⎨+=⎪⎩,取3z =,则3,(0,3)y =-∴=-n . 136(1,,),cos ,224||||AC AC AC AC =--∴<>==-n n n ……11分故直线AC 与平面ABD 10. …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1).…………7分 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分 即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CD DECF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,419||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6.变式4:(2014全国卷)19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C AA 1C 1C ⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分 作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.…………10分由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1DDF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).…………10分 又p =(0,0,1)为平面ABC 的法向量,…………11分 故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 AB C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO 3,MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600,利用体积相等得:A MBC M ABC V V d --=⇒=5分 (2)CE 是平面ACM 与平面BCD 的交线.由(1)知,O 是BE 的中点,则BCED 是菱形.作BF ⊥EC 于F ,连AF ,则AF ⊥EC ,∠AFB 就是二面角A -EC -B 的平面角,设为θ. ……7分因为∠BCE =120°,所以∠BCF =60°.sin 603BF BC =⋅=9分tan 2ABBFθ==,sin θ=…………11分所以,所求二面角的正弦值是5. …………12分 解法二:取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .以O 为原点,直线OC 、BO 、OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图. OB =OM ,则各点坐标分别为O (0,0,0),C (1,0,0),M (0,0,B (0,,0),A (0,,3),(1)设(,,)n xy z =是平面MBC 的法向量,则BC=(1,3,0),BM =,由n BC⊥得0x +=;由n BM ⊥得0+=;取(3,1,1),(0,0,n BA =-=,则距离2155BA n d n⋅==…………5分 (2)(CM =-,(1,CA =-.设平面ACM 的法向量为1(,,)n x yz =,由11n CM n CA⎧⊥⎪⎨⊥⎪⎩得0x x ⎧-+=⎪⎨-+=⎪⎩.解得x =,y z =,取1(3,1,1)n =.又平面BCD 的法向量为(0,0,1)n =,则1111cos ,5nn n n n n⋅<>==⋅ 设所求二面角为θ,则sin θ==.…………12分BA变式5:解析:由于BCMK 是梯形,则MK 与CB 相交于E .A 、E 确定的直线为m ,过C 作CF ⊥m 于F ,连结MF ,因为MC ⊥平面ABCD ,CF ⊥m ,故MF ⊥m .∠MFC 是二面角M -m -C 的平面角.设正方体棱长为a ,则34CM a =,14BK a =.在△ECM 中,由BK ∥CM 可得12EB a =,CF =,故tan 4MFC ∠=.因此所求角的余弦值为cos 21MFC ∠=. 变式6:解析:∵平面ABCD ∥平面1111A B C D ,∴平面1AB C 与平面1111A B C D 的交线m 为过点1B 且平行于AC 的直线.直线m 就是二平面1AB C 与1111A B C D 所成二面角的棱.又平面1AB C 与平面1AA ⊥平面1111A B C D ,过1A 作AH ⊥m 于H ,连结AH .则1AHA ∠为二面角1A m A --的平面角.可求得1tan AHA ∠=.高考试题精选1.(2014 四川卷)解:(1)如图所示,取BD 的中点O ,连接AO ,CO .由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP .又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.…………5分 (2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点,所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.…………13分故二面角A - NP - M 的余弦值是105. …………14分 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.…………6分如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32.…………7分 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). …………9分 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0,即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). …………11分 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.…13分故二面角A -NP -M 的余弦值是105.…………14分2.(2014 湖南卷)解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . …………4分 (2)方法一: 如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1.进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1OB 1D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1OB 1D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0) ,B 1(3,0,2),C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1OB 1D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1OB 1D 的余弦值为25719.3.(2014 江西卷)19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P - ABCD 的体积为V =13×6·m ·43-m 2=m38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎫m 2-232+83, 所以当m =63,即AB =63时,四棱锥P - ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为 O (0,0,0),B ⎝⎛⎭⎫63,-63,0,C⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63,故PC →=⎝⎛⎭⎫63,263,-63,BC →=(0,6,0),CD =⎝⎛⎭⎫-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1).同理可求出平面DPC 的一个法向量为n 2=⎝⎛⎭⎫0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
立体几何(学生版)--2025新高考数学新题型
立体几何题型01 空间几何体的有关计算题型02 点线面位置关系、空间角及距离题型03 内切球、外接球问题题型04 空间向量题型01 空间几何体的有关计算1(2024·山西晋城·统考一模)若一个正n棱台的棱数大于15,且各棱的长度构成的集合为{2,3},则n 的最小值为,该棱台各棱的长度之和的最小值为.2(2024·浙江·校联考一模)已知圆台的上下底面半径分别是1,4,且侧面积为10π,则该圆台的母线长为.3(2024·安徽合肥·合肥一六八中学校考一模)球O的半径与圆锥M的底面半径相等,且它们的表面积也相等,则圆锥M的侧面展开图的圆心角大小为,球O的体积与圆锥M的体积的比值为.4(2024·湖南长沙·雅礼中学校考一模)已知圆锥的母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.5(2024·广东深圳·校考一模)已知圆锥的侧面展开图是一个半径为4的半圆.若用平行于圆锥的底面,且与底面的距离为3的平面截圆锥,将此圆锥截成一个小圆锥和一个圆台,则小圆锥和圆台的体积之比为.6(2024·辽宁沈阳·统考一模)正方体的8个顶点分别在4个互相平行的平面内,每个平面内至少有一个顶点,且相邻两个平面间的距离为1,则该正方体的棱长为()A.2B.3C.2D.57(2024·云南曲靖·统考一模)为努力推进“绿美校园”建设,营造更加优美的校园环境,某校准备开展校园绿化活动.已知栽种某绿色植物的花盆可近似看成圆台,圆台两底面直径分别为18厘米,9厘米,母线长约为7.5厘米.现有2000个该种花盆,假定每一个花盆装满营养土,请问共需要营养土约为( )(参考数据:π≈3.14)A.1.702立方米B.1.780立方米C.1.730立方米D.1.822立方米8(2024·新疆乌鲁木齐·统考一模)某广场设置了一些石凳供大家休息,这些石凳是由棱长为40cm的正方体截去八个一样的四面体得到的,则()A.该几何体的顶点数为12B.该几何体的棱数为24C.该几何体的表面积为(4800+8003)cm 2D.该几何体外接球的表面积是原正方体内切球、外接球表面积的等差中项9(2024·山西晋城·统考一模)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4,C 1 E =3EC,平面ABE 将该正四棱柱分为上、下两部分,记上部分对应的几何体为Ω上,下部分对应的几何体为Ω下,则()A.Ω下的体积为2B.Ω上的体积为12C.Ω下的外接球的表面积为9πD.平面ABE 截该正四棱柱所得截面的面积为25题型02 点线面位置关系、空间角及距离10(2024·河北·校联考一模)已知直线l 、m 、n 与平面α、β,下列命题正确的是()A.若α⎳β,l ⊂α,n ⊂β,则l ⎳nB.若α⊥β,l ⊂α,则l ⊥βC.若l ⊥n ,m ⊥n ,则l ⎳mD.若l ⊥α,l ⎳β,则α⊥β11(2024·浙江·校联考一模)已知直线a ,b 和平面α,a ⊄α,b ∥α,则“a ∥b ”是“a ∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12(2024·广东深圳·校考一模)已知α,β是两个不同的平面,m ,n 是两条不同的直线,则下列说法正确的是()A.若m ⊥n ,m ⊥α,n ⊥β,则α⊥βB.若m ⎳n ,m ⎳α,n ⎳β,则α⎳βC.若m ⊥n ,m ⎳α,α⊥β,则n ⊥βD.若m ⎳n ,m ⊥α,α⊥β,则n ⎳β13(2024·吉林白山·统考一模)正八面体可由连接正方体每个面的中心构成,如图所示,在棱长为2的正八面体中,则有()A.直线AE与CF是异面直线B.平面ABF⊥平面ABEC.该几何体的体积为432 D.平面ABE与平面DCF间的距离为26314(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,∠BAD=120°,AC⊥BD,△BCD是等边三角形.(1)证明:平面PAD⊥平面PCD.(2)求二面角B-PC-D的正弦值.15(2024·辽宁沈阳·统考一模)如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,且BC=BD= BA,∠CBA=∠CBD=120°,点P在线段AC上,点Q在线段CD上.(1)求证:AD⊥BC;(2)若AC⊥平面BPQ,求BPBQ的值;(3)在(2)的条件下,求平面ABD与平面PBQ所成角的余弦值.16(2024·重庆·统考一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB= AP,AB⊥AD,AB+AD=6,CD=2,∠CDA=45°.(1)若E为PB的中点,求证:平面PBC⊥平面ADE;(2)若平面PAB与平面PCD所成的角的余弦值为66.(ⅰ)求线段AB的长;(ⅱ)设G为△PAD内(含边界)的一点,且GB=2GA,求满足条件的所有点G组成的轨迹的长度.17(2024·云南曲靖·统考一模)在图1的直角梯形ABCD中,∠A=∠D=90°,AB=BC=2,DC=3,点E是DC边上靠近于点D的三等分点,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1= 6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得二面角P-EB-C1的大小为45°?若存在,求出线段DP的长度,若不存在说明理由.18(2024·云南曲靖·统考一模)如图所示,正方体ABCD -A B C D 的棱长为1,E ,F 分别是棱AA ,CC 的中点,过直线EF 的平面分别与棱BB ,DD 交于点M ,N ,以下四个命题中正确的是()A.四边形EMFN 一定为菱形B.四棱锥A -MENF 体积为13C.平面EMFN ⊥平面DBB DD.四边形EMFN 的周长最小值为419(2024·山东济南·山东省实验中学校考一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PB 与底面ABCD 所成的角为π4,底面ABCD 为直角梯形,∠ABC =∠BAD =π2,AD =2,PA =BC =1,点E 为棱PD 上一点,满足PE =λPD0≤λ≤1 ,下列结论正确的是()A.平面PAC ⊥平面PCD ;B.在棱PD 上不存在点E ,使得CE ⎳平面PABC.当λ=12时,异面直线CE 与AB 所成角的余弦值为255;D.点P 到直线CD 的距离3;20(2024·新疆乌鲁木齐·统考一模)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA =AB ,点E ,F 分别是棱PB ,BC 的中点.(1)求直线AF 与平面PBC 所成角的正弦值;(2)在截面AEF 内是否存在点G ,使DG ⊥平面AEF ,并说明理由.21(2024·山西晋城·统考一模)如图,P 是边长为2的正六边形ABCDEF 所在平面外一点,BF 的中点O 为P 在平面ABCDEF 内的射影,PM =2MF.(1)证明:ME ⎳平面PBD .(2)若PA =2,二面角A -PB -D 的大小为θ,求cos2θ.22(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是AD 1的中点,点Q 是直线CD 1上的动点,则下列说法正确的是()A.△PBD 是直角三角形B.异面直线PD 与CD 1所成的角为π3C.当AB 的长度为定值时,三棱锥D -PBQ 的体积为定值D.平面PBD ⊥平面ACD123(2024·浙江·校联考一模)在三棱柱ABC-A1B1C1中,四边形BCC1B1是菱形,△ABC是等边三角形,点M是线段AB的中点,∠ABB1=60°.(1)证明:B1C⊥平面ABC1;(2)若平面ABB1A1⊥平面ABC,求直线B1C与平面A1MC1所成角的正弦值.24(2024·广东深圳·校考一模)如图,在圆锥SO中,AB是圆O的直径,且△SAB是边长为4的等边三角形,C,D为圆弧AB的两个三等分点,E是SB的中点.(1)证明:DE⎳平面SAC;(2)求平面SAC与平面SBD所成锐二面角的余弦值.25(2024·广西南宁·南宁三中校联考一模)在如图所示的五面体ABCDEF中,ABEF共面,△ADF是正三角形,四边形ABCD为菱形,∠ABC=2π3,EF⎳平面ABCD,AB=2EF=2,点M为BC中点.(1)证明:EM∥平面BDF;(2)已知EM=2,求平面BDF与平面BEC所成二面角的正弦值.26(2024·安徽合肥·合肥一六八中学校考一模)如图,菱形ABCD的对角线AC与BD交于点O,AB =5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H,将△DEF沿EF折到△DEF 位置,OD =10.(1)证明:D H⊥平面ABCD;(2)求平面BAD 与平面ACD 的夹角的余弦值.27(2024·安徽合肥·合肥一六八中学校考一模)设b、c表示两条直线,α、β表示两个平面,则下列命题正确的是()A.若b⎳α,c⊂α,则b⎳cB.若b⊂α,b⎳c,则c⊂αC.若c⎳α,α⊥β,则c⊥βD.若c⎳α,c⊥β,则α⊥β28(2024·吉林延边·统考一模)已知三棱柱ABC-A1B1C1,侧面AA1C1C是边长为2的菱形,∠CAA1 =πA1是矩形,且平面AA1C1C⊥平面ABB1A1,点D是棱A1B1的中点.3,侧面四边形ABB1(1)在棱AC上是否存在一点E,使得AD∥平面B1C1E,并说明理由;(2)当三棱锥B-A1DC1的体积为3时,求平面A1C1D与平面CC1D夹角的余弦值.29(2024·黑龙江齐齐哈尔·统考一模)如图1,在平面四边形PABC中,PA⊥AB,CD⎳AB,CD=2AB=2PD=2AD=4.点E是线段PC上靠近P端的三等分点,将△PDC沿CD折成四棱锥P-ABCD,且AP=22,连接PA,PB,BD,如图2.(1)在图2中,证明:PA⎳平面BDE;(2)求图2中,直线AP与平面PBC所成角的正弦值.30(2024·重庆·统考一模)如图,在边长为1的正方体ABCD-A1B1C1D1中,E是C1D1的中点,M是线段A1E上的一点,则下列说法正确的是()A.当M点与A1点重合时,直线AC1⊂平面ACMB.当点M移动时,点D到平面ACM的距离为定值C.当M点与E点重合时,平面ACM与平面CC1D1D夹角的正弦值为53D.当M点为线段A1E中点时,平面ACM截正方体ABCD-A1B1C1D1所得截面面积为73332 31(2024·福建厦门·统考一模)如图,在四棱锥E-ABCD中,AD⎳BC,2AD=BC=2,AB=2,AB⊥AD,EA⊥平面ABCD,过点B作平面α⊥BD.(1)证明:平面α⎳平面EAC;(2)已知点F为棱EC的中点,若EA=2,求直线AD与平面FBD所成角的正弦值.32(2024·吉林延边·统考一模)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,DE =BF =1,DE ∥BF ,DE ⊥平面ABCD ,动点P 在线段EF 上,则下列说法正确的是()A.AC ⊥DPB.存在点P ,使得DP ∥平面ACFC.三棱锥A -CDE 的外接球被平面ACF 所截取的截面面积是9π2D.当动点P 与点F 重合时,直线DP 与平面ACF 所成角的余弦值为3101033(2024·福建厦门·统考一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 题型03 内切球、外接球问题34(2024·黑龙江齐齐哈尔·统考一模)已知四面体ABCD 的各个面均为全等的等腰三角形,且CA =CB =2AB =4.设E 为空间内任一点,且A ,B ,C ,D ,E 五点在同一个球面上,则()A.AB ⊥CDB.四面体ABCD 的体积为214C.当AE =23时,点E 的轨迹长度为4πD.当三棱锥E -ABC 的体积为146时,点E 的轨迹长度为32π35(2024·吉林白山·统考一模)在四面体A -BCD 中,BC =22,BD =23,且满足BC ⊥BD ,AC ⊥BC ,AD ⊥BD .若该三棱锥的体积为863,则该锥体的外接球的体积为.36(2024·吉林延边·统考一模)已知一个圆锥的侧面展开图是一个圆心角为25π5,半径为5的扇形.若该圆锥的顶点及底面圆周都在球O 的表面上,则球O 的体积为.37(2024·河南郑州·郑州市宇华实验学校校考一模)已知正三棱柱ABC-A1B1C1的底面边长为2,以A1为球心、3为半径的球面与底面ABC的交线长为3π6,则三棱柱ABC-A1B1C1的表面在球内部分的总面积为.38(2024·江西吉安·吉安一中校考一模)已知球O的直径PQ=4,A,B,C是球O球面上的三点,△ABC是等边三角形,且∠APQ=∠BPQ=∠CPQ=30°,则三棱锥P-ABC的体积为( ).A.334B.934C.332D.273439(2024·湖南长沙·雅礼中学校考一模)如图所示,有一个棱长为4的正四面体P-ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是()A.直线AE与PB所成的角为π2B.△ABE的周长最小值为4+34C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为63D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为26-25 40(2024·江西吉安·吉安一中校考一模)如图,在正三棱锥P-ABC中,有一半径为1的半球,其底面圆O与正三棱锥的底面贴合,正三棱锥的三个侧面都和半球相切.设点D为BC的中点,∠ADP=α.(1)用α分别表示线段BC和PD长度;(2)当α∈0,π2时,求三棱锥的侧面积S的最小值.41(2024·江西吉安·吉安一中校考一模)地球仪是地理教学中的常用教具.如图1所示,地球仪的赤道面(与转轴垂直)与黄道面(与水平面平行)存在一个夹角,即黄赤交角,大小约为23.5°.为锻炼动手能力,某同学制作了一个半径为4cm 的地球仪(不含支架),并将其放入竖直放置的正三棱柱ABC -A 1B 1C 1中(姿态保持不变),使地球仪与该三棱柱的三个侧面相切,如图2所示.此时平面AB 1C 恰与地球仪的赤道面平行,则三棱柱ABC -A 1B 1C 1的外接球体积为.(参考数据:tan23.5°≈0.43)题型04 空间向量42(2024·福建厦门·统考一模)已知平面α的一个法向量为n=(1,0,1),且点A (1,2,3)在α内,则点B (1,1,1)到α的距离为.43(2024·广西南宁·南宁三中校联考一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB +yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为6344(2024·湖南长沙·雅礼中学校考一模)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠DAB =90°,cos <AA 1 ,AB >=22,cos <AA 1 ,AD >=12,点M 为BD 中点.(1)证明:B 1M ⎳平面A 1C 1D ;(2)求二面角B -AA 1-D 的正弦值.。
高考数学正方体创新型及能力型题81例
高考数学正方体创新型及能力型题81例正方体是常见的也是重要的几何体,正方体有6个表面、8个顶点、12条棱、12条面对角线、4条体对角线、6个对角面;正方体既有外接球又有内切球;在正方体内可构造出别的多面体.以正方体为为载体,可考查各种线线、线面、面面关系以及面积、体积等,因此这类问题是高考命题的一个热点,本资料从高考试卷及高考模拟试卷中精选此类问题中的创新型及能力型能力试题81例,供高三学生备考及数学教师备课时参考. 一、选择题1.正方体1111ABCD A BCD -的棱上到异面直线AB ,C 1C 的距离相等的点的个数为( C )A .2B .3C . 4D .52.与正方体1111ABCD A BCD -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( D )(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个3.在正方体ABCD -A1B1C1D1中与AD1成600角的面对角线的条数是( C ) (A )4条 (B )6条 (C )8条 (D )10条4.在正方体AC1中,过它的任意两条棱作平面,则能作得与A1B 成300角的平面的个数为( B )A 、2个B 、4个C 、6个D 、85.设E ,F 是正方体AC1的棱AB 和D1C1的中点,在正方体的12条面对角线中,与截面A1ECF 成60°角的对角线的数目是 ( C )A .0B .2C .4D .66.正方体1111ABCD A BCD -的棱11CC AA ,中点分别为E ,F ,则与直线11D C EF AD ,,都相交的直线有( D )(A )有且只有1条 (B )有且只有2条 (C )有且只有3条 (D )有无数条7.如图,正方体1111ABCDA B C D 中,E ,F分别为棱AB ,1CC 的中点,在平面11ADD A内且与平面1D EF 平行的直线( A ) (A )有无数条 (B )有2条 (C )有1条 (D )不存在(8)在正方体''''ABCDA B C D 中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45的点P 的个数为( B ) (A )0 (B )3 (C )4 (D )69.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( B ). A.8种 B. 12种 C. 16种 D. 20种10.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( C ).A .56B .52C .48D .4011.在正方体ABCD-A ’B ’C ’D ’中12条棱中能组成异面直线的总对数是( B ) A.48对 B.24对 C.12对 D.6对12.将正方体各顶点标上字母, 使其成为正方体1111ABCD A BCD , 不同的标字母方式共有 ( B )A .24种B .48种C .72种D .144种13.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( C )ABCDA 1B 1C 1D 1EFA .17B .27C .37D .4714.以正方体的任意三个顶点为顶点作三角形,从中随机地取出两个三角形,则这两个三角形不共面的概率为 ( D )A .367385B . 376385C .192385D .1838515.正方体ABCD —A1B1C1D1的各个顶点与各棱的中点共20个点中,任取两点连成直线,在这些直线中任取一条,它与BD1 垂直的概率为( D )A . 16621B .19021C . 19027D .1662716.一个各面都涂满红色的4×4×4(长、宽、高均为4)正方体,被锯成同样大小的单位(长宽高均为1)小正方体,将这些小正方体放在一个不透明的袋子中,充分混合后,从中任取一个小正方体,则取出仅有一面涂有色彩的小正方体的概率为( )A .14B .12 C .18 D .3817.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( C ).A .33aB .43aC .63aD .123a18.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( D ).A. 23B. 76C. 45D. 5619.棱长为1的正方体ABCD -A1B1C1D1被以A 为球心,AB 为半径的球相截,则被截形体的表面积为( A )A .45πB .87πC .πD .47π20.图中都是由边长为1的正方体叠成的图形,例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位,以此规律,则第(5)个图形的表面积是(D )个平方单位。
2024届高考数学专项立体几何大题含答案
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一) 创新试题
1.如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1.
(I )求证:A 1C //平面AB 1D ;
(II )求二面角B —AB 1—D 的大小;
(III )求点c 到平面AB 1D 的距离.
2. 如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。
(1)试确定PB
P A 1的值,使得PC ⊥AB ;
(2)若3
21 PB P A ,求二面角P —AB —C 的大小; (3)在(2)条件下,求C 1到平面PAC 的距离。
1解法一(I )证明:连接A 1B ,设A 1B ∩AB 1 = E ,连接DE.
∵ABC —A 1B 1C 1是正三棱柱,且AA 1 = AB ,∴四边形A 1ABB 1是正方形,
∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C.
∵DE ⊂平面AB 1D ,A 1C ⊄平面AB 1D ,∴A 1C ∥平面AB 1D.
(II )解:在面ABC 内作DF ⊥AB 于点F ,在面A 1ABB 1内作FG ⊥AB 1于点G ,连接DG.
∵平面A 1ABB 1⊥平面ABC , ∴DF ⊥平面A 1ABB 1,
∴FG 是DG 在平面A 1ABB 1上的射影, ∵FG ⊥AB 1, ∴DG ⊥AB 1
∴∠FGD 是二面角B —AB 1—D 的平面角
设A 1A = AB = 1,在正△ABC 中,DF=.43在△ABE 中,82343=⋅=BE FG , 在Rt △DFG 中,3
6tan ==∠FG DF FGD ,所以,二面角B —AB 1—D 的大小为.36arctan (III )解:∵平面B 1BCC 1⊥平面ABC ,且AD ⊥BC ,
∴AD ⊥平面B 1BCC 1,又AD ⊂平面AB 1D ,∴平面B 1BCC 1⊥平面AB 1D.
在平面B 1BCC 1内作CH ⊥B 1D 交B 1D 的延长线于点H ,
则CH 的长度就是点C 到平面AB 1D 的距离.
由△CDH ∽△B 1DB ,得.5
511=⋅=D B CD BB CH 即点C 到平面AB 1D 的距离是
.55 解法二:
建立空间直角坐标系D —xyz ,如图,
(I )证明:
连接A 1B ,设A 1B ∩AB 1 = E ,连接DE.设A 1A = AB = 1, 则).0,0,21(),21,43,41(),1,23,0(),0,0,0(1C E A D -),21,43,41(),1,23,21(1-=--=∴DE C A .//,211DE C A DE C A ∴-=∴ D AB C A D AB DE 111,平面平面⊄⊂ ,.//11D AB C A 平面∴ (II )解:)1,0,21(),0,23,0(1-B A , )1,0,2
1(),0,23,0(1-==∴D B AD , 设),,(1r q p n =是平面AB 1D 的法向量,则0,0111=⋅=⋅D B n AD n 且, 故)1,0,2(,1.02
1,0231===-=-n r r p q 得取;同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B —AB 1—D 的大小为θ,5
15||||cos 2121=⋅=n n n n θ , ∴二面角B —AB 1—D 的大小为.5
15arccos
(III )解由(II )得平面AB 1D 的法向量为)1,0,2(1=n ,取其单位法向量).0,0,21(),5
1,0,52
(==DC n 又 ∴点C 到平面AB 1D 的距离.5
5||=⋅=n DC d 2.解析答案:解法一:(1)当11=PB
P A 时,PC ⊥AB 取AB 的中点D ′,连结CD ′、PD ′∵△ABC 为正三角形, ∴CD ′⊥AB 。
当P 为A 1B 的中点时,PD ′//A 1A , ∵A 1A ⊥底面ABC , ∴PD ′⊥底面ABC , ∴PC ⊥AB
(2)当3
21=PB P A 时,过P 作PD ⊥AB 于D ,如图所示,则PD ⊥底在ABC 过D 作DE ⊥AC 于E ,连结PE ,则PE ⊥AC ∴∠DEP 为二面角P —AC —B 的平面角。
又∵PD//A 1A , ∴231==PA BP DA BD , ∴a AD 5
2=∴ .53235260sin a a AD DE =⨯=︒⋅= 又∵a PD A A PD 53,5
31=∴=∴ 3tan ==∠DE PD PED ∴∠PED=60° 即二面角P —AC —B 的大小为60°
(3)设C 1到面PAC 的距离为d ,则11ACC P PAC C V V --=
∵PD//A 1A ∴PD//平面A 1C ∴DE 即为P 点到平面A 1C 的距离。
又PE=a a a DE PD 5
32)53()53(2222=+=+2∴DE S d S ACC PAC ⋅=⋅∆∆13131 ∴a a d a a 53)21(31)53221
(312⋅=⋅⋅解得 2a d = 即C 1到平面PAC 的距离为a 21 解法二:以A 为原点,AB 为x 轴,过A 点与AB 垂直的直线为y 轴,AA 1为z 轴,建立空间直角坐标系A —x yz ,如图所示,则B (a ,0,0),A 1(0,0,a ),C )0,2
3,2(a a
,设),0,(z x P (1)由0)0,0,(),23,2(0=⋅--
=⋅a z a a x AB CP ,得 即2
,0)2(a x a a x =∴=⋅-, ∴P 为A 1B 的中点。
即
11=PB P A 时,PC ⊥AB 。
(2)当),0,(3
2),0,(323211z x a a z x PB P A PB P A --=-==,得时,由
即 )5
3,0,52(53522)(3,233a a P a
z a x z a z x a x ∴⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧-=--= 设平面PAC 的一个法向量n =),,(z y x ''' 则⎪⎪⎩
⎪⎪⎨⎧=⋅'''=⋅'''⎪⎩⎪⎨⎧=⋅=⋅0)0,23,2(),,(0)53,0,52(),,(00a a z y x a a z y x AC AP ,即n n 即⎪⎪⎩⎪⎪⎨⎧='+'='+'⋅0232,05352y a x a z a x a 取 ).2,3,3(2,33--=∴-='-='='n z y x ,则 又平面ABC 的一个法向量为n 0=(0,0,1) ∴2
1142||||,cos 000-=⨯-=⋅∙>=<n n n n n n ∴二面角P —AC —B 的大小为180°-120°=60°
(3)设C 1到平面PAC 的距离为d , 则.24|,0,0()2,3,3(||||||,cos |||111a a C C C C C C d =-∙--=∙=
><⋅=n n n 即C 1到平面PAC 的距离为
2
a .。