工业机器人发展毕业论文中英文资料外文翻译文献
机器人机构设计中英文对照外文翻译文献
Abstract
In optimal design for robot structures, design modelsneed to he modified and computed repeatedly. Becausemodifying usually can not automaticallyberun, itconsumes a lot of time.Thispaper gives a method thatuses APDL language of ANSYS5.5software togenerate an optimal control program, which mikeoptimal procedure run automatically and optimalefficiency be improved.
A lot of methods are used in optimization design ofstructure. Finite element method is a much effectivemethod. In general, modeling and modifying are manual,whichisfeasible when model is simple. When modeliscomplicated, optimization timeislonger. In the longeroptimization time, calculation time is usually very little,a majorityoftime is used for modeling and modifying.It is key of improving efficiency of structureoptimization how to reduce modeling and modifyingtime.
工业机器人发展毕业论文中英文资料外文翻译文献
工业机器人发展中英文资料外文翻译文献The development of industrial robotsIndustrial robot is a robot, it consists of a CaoZuoJi. Controller. Servo drive system and detection sensor device composition, it is a kind of humanoid operating automatic control, can repeat programming, can finish all kinds of assignments in three difficulties in authorship space the electromechanical integration automation production equipment, especially suitable for many varieties, become batch flexible production. It to stabilize and improve the product quality, raise efficiency in production, improve working conditions of the rapid renewal plays an extremely important role.Widely used industrial robots can gradually improve working conditions, stronger and controllable production capacity, speed up product updating and upgrading. Improve production efficiency and guarantee the quality of its products, eliminate dull work, save labor, provide a safe working environment, reduces the labor intensity, and reduce labor risk, improve the machine tool, reduce the workload and reduce process production time and inventory, enhance the competitiveness of enterprises.As technology advances, the development of industrial robot, the process can be divided into three generations -- generation, for demonstration reproduce, and it mainly consists of robot hand controller and demonstration teaching machines composed, can press advance box to record information guide action, the current industry repeated reappearance application of execution most. The second to feel robot, such as powerful sleep touch and vision, it has for some outside information feedback adjustment ability, currently has entered the application stage. Third generation of intelligent robot it has sense and understanding ability, in the external environment for the working environment changed circumstances, can also successfully complete the task, it is still in the experimental research phase.The United States is the birthplace of the robot, as early as in 1961, America's ConsolidedControlCorp and AMF companies developed the first practical demonstration emersion robot. After 40 years of development,the United States in the world of robotics has been in the lead position. Still Its technology comprehensive, advanced, adaptability is strong.Japan imported from America in 1967, the first robot in 1976 later, with the rapid development of the microelectronics and the market demand has increased dramatically, Japan was labor significant deficiencies in enterprise, industrial robots by "savior"'s welcome, make its Japanese industrial robots get fast development, the number of now whether robots or robot densities are top of the world, known as the "robot kingdom," said. The robot introduced from Germany time than Britain and Sweden about late 1956, but the Labour shortages caused by war, national technical level is higher social environment, but for the development and application of industrial robot provides favorable conditions. In addition, in Germany, for some dangerous prescribed, poisonous or harmful jobs, robot instead of ordinary people to the labor. This is the use of robots exploit a wide range of markets, and promote the development of the industrial robot technology. At present, the German industrial robots total of the world, which only behind to Japan.The French government has been more important robot technology, and through a series of research program, support established a complete science and technology system, make the development of the French robot smoothly. In government organization project, pay special attention to the robot research based technique, the focus is on the application research on in robot. And by industry support the development application and development of work, both supplement each other, make robots in France enterprises develop rapidly and popularize and make France in the international industrial machine with indispensable if position.British jamie since the late 1970s, promote and implement a department measures listed support the development of policies and make robots British industrial robots than today's robot powers started to early, and once in Japan has made the early brilliance. However, at this time the government for industrial robots implemented the constraining errors. This mistake in Britain dust, the robot industry in Western Europe was almost in the bottom of it. In recent years, Italy, Sweden, Spain, Finland, Denmark and other countries because of its own domestic robots market in great demand, development at a very fast pace. At present, the international on industrial robot company mainly divided into Japanese and European series. In AnChuan of Japanese are mainly the ethical products, the oTC, panasonic, FANLUC, not two more, etc. The products of the company kawasaki The main Asiatic KUKA, German CLOOS, Sweden's ABB, Italy CO work pelatiah U and Austria GM company.Industrial robot in China started in early 1970s, after 30 years development, roughly experienced three stages: in the 1970s and 1980s budding transplanter and the application of the 1990s initialization period. With the 20th century 70's world technology rapid development, the application of industrial robots in world created a climax, in this context, our country in 1972 start developing their industrial robots. Enter after the 1980s, with the further reform and opening, in high technology waves pound, our research and development of robot technology from the government's attention and support, "during the seventh state funds, thanked the parts were set robot and research, completed demonstration emersion type industrial robot complete technology development, developed spray paint, welding, arc welding and handling robot. , the national high technology research and development program begin to carry out, after several years research and made a large number of scientific research. Successfully developed a batch of special robot.From 9O 2O century since the early, China's national economy achieve two fundamental period of transformation into a a new round of economic restructuring and technological progress, China's industrial robots upsurge in practice and have made strides, and have developed spot welding, welding, assembling, paint, cutting, handling, palletizing etc various USES of industrial robot, and implement a batch of robot application engineering, formed a batch of industrial robots for our country industrialization base, the industrial robot soar laid a foundation. But compared with the developed countries, China also has the very big disparity of industrial robots.Along with the development of industrial robot depth and the breadth and raise the level of robot, industrial robots are has been applied in many fields. From the traditional automobile manufacturing sector to the manufacturing extensions. Such as mining robots, building robots and hydropower system used for maintenance robots, etc. In defense of military, medicine and health, food processing and life service areas such as the application of industrial robots will be more and more. The manufacturing of automobiles is a technology and capital intensive industry, is also the most widely used of industrial robots, accounting for almost to the industry for more than half of the industrial robots. In China, the industrial robot first is also used in automobile and engineering machinery industries. In car production of industrial robot is a major in the equipment, the brake parts and whole production of arc welding, spot welding, painting, handling, glue, stamping process used in large amounts. Our country is forecast to rise period, entered the automobile ownership in the next few years, car will still growing at around 15 percent annually. So the next few years the industrial robot demand willshow high growth trend, about 50% in growth, industrial robots in our automobile industry application will get a rapid development.Industrial robot in addition to the wide application of in the automotive industry in electronic, food processing, nonmetal processing, daily consumer goods and wood furniture processing industries for industrial robots demand is growing rapidly. In Asia, 2005 72,600 sets, installation industrial robots, compared with 2004 grew by 40%, and application in electronic industry accounted for about 31%. In Europe, according to statistics, since 2004 and 2005 in l: tI industry robot in the food processing industry increased 17% the application of left and right sides, in the application of nonmetal processing industry increased 20%, and daily necessities in consumption industries increased by 32% in wood furniture processing industry, up 18% or so. Industrial robot in oil has a wide application in, such as sea oil drilling, oil platforms, pipeline detection, refinery, large oil tank and tank welding etc all can use robots to complete. In the next few years, sensing technology, laser technology, engineering network technology will be widely used in industrial robots work areas, these technologies can cause the industrial robot application more efficient, high quality, lower cost. It is predicted that future robots will in medical and health care, biological technology and industry, education, relief, ocean exploitation, machine maintenance, transportation and agriculture and aquatic products applied field.In China, the industrial robot market share are mostly foreign industrial robots enterprise holds. Before the gunman in the international, domestic industrial robots enterprise facing great pressure of competition. Now China is from a "manufacturing power" to "manufacturing power forward," Chinese manufacturing industry faces and the international community, participate in the international division of labor in the great challenge of industrial automation increase immediate, government must can increase the funds for robots and policy support, will give the industry of industrial robots development into new momentum. With independent brand "devil robot" MoShi special technology company dedicated to providing solutions to the mainboard and robot, is willing with all my colleagues a build domestic industrial robot happy tomorrow!ReferencesElectronic Measurement and Intrumenttations,Cambridge University Press,1996工业机器人的发展工业机器人是机器人的一种,它由操作机.控制器.伺服驱动系统和检测传感器装置构成,是一种仿人操作自动控制,可重复编程,能在三难空间完成各种作业的机电一体化的自动化生产设备,特别适合于多品种,变批量柔性生产。
机器人技术发展中英文对照外文翻译文献
机器人技术发展中英文对照外文翻译文献(文档含英文原文和中文翻译)外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need.Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, for instance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide.Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now I have a brief account of China's robot development of the basic profiles. As our country there are many other factors that problem. Our country in robotics research of the 20th century the late 1970s. At that time, we organized at the national, a Japanese industrial automation products exhibition. In this meeting, there are two products, is a CNC machine tools, an industrial robot, this time, our country's many scholars see such a direction, has begun to make a robot research But this time, are basically confined to the theory of phase .Then the real robot research, in 7500 August 5, 1995, 15 nearly 20 years of development, The most rapid development, in 1986 we established a national plan of 863 high-technology development plan, As robot technology will be an important theme of the development of The state has invested nearly Jiganyi funds begun to make a robot, We made the robot in the field quickly and rapid development.At present, units like the CAS ShenYng Institute of Automation, the original machinery, automation of the Ministry, as of Harbin Industrial University, Beijing University of Aeronautics and Astronautics, Qinghua University, Chinese Academy of Sciences, also includes automation of some units, and so on have done a very important study, also made a lot of achievements Meanwhile, in recent years, we end up in college, a lot of flats in robot research, Many graduate students and doctoral candidates are engaged in robotics research, we are more representative national study Industrial robots, underwater robots, space robots, robots in the nuclear industry are on the international level should be taking the lead .On the whole of our country Compared with developed countries, there is still a big gap, primarily manifested in the We in the robot industry, at present there is no fixed maturity product, but in theseunderwater, space, the nuclear industry, a number of special robots, we have made a lot of achievements characteristics.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue,relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign t o complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, people would not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through amanipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.We regard this country excel, it should be said that the United States, Russia and France, in our nation, also to the international forefront, which is the CAS ShenYang Institute of Automation of developing successful, 6,000 meters underwater without cable autonomous underwater robot, the robot to 6,000 meters underwater, can be conducted without cable operations. His is 2000, has been obtained in our country one of the top ten scientific and technological achievements. This indicates that our country in this underwater robot, have reached the advanced international level, 863 in the current plan, the development of 7,000 meters underwater in a manned submersible to the ocean further development and operation, This is a great vote of financial and material resources.In this space robotics research has also been a lot of development. In Europe, including 16 in the United States space program, and the future of this space capsule such a scheme, One thing is for space robots, its main significance lies in the development of the universe and the benefit of mankind and the creation of new human homes, Its main function is to scientific investigation, as production and space scientific experiments, satellites and space vehicles maintenance and repair, and the construction of the space assembly. These applications, indeed necessary, for example, scientific investigation, as if to mock the ground some physical and chemical experiments do not necessarily have people sitting in the edge of space, because the space crew survival in the day the cost is nearly one million dollars. But also very dangerous, in fact, some action is very simple, through the ground, via satellite control robot, and some regularly scheduled completion of the action is actually very simple. Include the capsule as control experiments, some switches, buttons, simple flange repair maintenance, Robot can be used to be performed by robots because of a solar battery, then the robot will be able to survive, we will be able to work, We have just passed the last robot development on the application of the different areas ofapplication, and have seen the robots in industry, medical, underwater, space, mining, construction, service, entertainment and military aspects of the application .Also really see that the application is driven by the development of key technologies, a lack of demand, the robot can not, It is because people in understanding the natural transformation of the natural process, the needs of a wide range of robots, So this will promote the development of key technologies, the robot itself for the development of From another aspect, as key technology solutions, as well as the needs of the application, on the promotion of the robot itself a theme for the development of intelligent, and from teaching reappearance development of the current local perception of the second-generation robot, the ultimate goal, continuously with other disciplines and the development of advanced technology, the robot has become rich, eventually achieve such an intelligent robot mainstream.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。
文献翻译-工业机器人
扬州大学广陵学院毕业设计(论文)外文资料翻译系部:机电专业:机械设计制造及其自动化姓名:学号:外文出处Mold design and manufacturing professional(用外文写)English附件:2.3注塑模具2.3.1 注塑成型注塑成型主要应用于生产热塑性塑料零件,而且它也是其中最古老的一种。
目前注塑成型占所有塑料树脂消耗的30%。
典型的注射成型产品的杯子,容器,壳体,工具手柄,旋钮,电线和通讯组件(如电话接收器),玩具,水暖配件。
聚合物熔体由于其大的分子量而有着高的粘性,它们不能在重力下作用下直接注入像金属罐一样的模具中,但必须在高压下注入模具之中。
因此,一个金属铸件的机械性能主要由热量从模具的外壁传递的速率来决定,并且这同时决定了最终铸件中的晶粒尺寸和晶粒方向。
在注塑成型的过程中,注射熔体中的高压产生的剪切力是最终材料中分子取向的主要原因。
因此,成品的机械性能是由注入条件和模具中的冷却条件共同决定的。
注塑成型已经应用于热塑性材料和热固性材料,发泡部件,并具有被修饰以产生反应注射成型(RM)工艺,其中两个热固性树脂体系的组分同时注入模具中并在其中迅速的聚合,然而,大多数注塑成型过程在热塑性材料上执行,我们接下来的讨论内容将集中在这些成型上面。
一个典型的注塑成型周期或顺序由五个阶段组成(见图2-1)(1)注射或充模(2)包装或压缩(3)保持(4)冷却(5)部分弹出塑料颗粒(或粉末)被装进漏斗内,通过压射缸的开口并在那里被旋转的螺杆结转,螺杆的旋转迫使颗粒在高压下撞击热壁使它们融化。
加热温度从265度到500度。
随着压力的增大,旋转螺杆被迫向后挤压,直到足够的塑料被积累到能够使之发射。
注射活塞(或螺钉)迫使熔融塑料从料筒,通过喷嘴,浇口和流道系统,最后进入模腔。
在注入期间,模腔的容积被填充。
当塑料接触冷作模具表面,它迅速凝固(冻结)产生表层。
由于其核心保持在熔融状态下,塑料流过核心来完成模具填充,典型的,在注射过程中空腔被填充到95%~98%。
工业机器人中英文翻译、外文文献翻译、外文翻译
工业机器人中英文翻译、外文文献翻译、外文翻译外文原文:RobotAfter more than 40 years of development, since its first appearance till now, the robot has already been widely applied in every industrial fields, and it has become the important standard of industry modernization.Robotics is the comprehensive technologies that combine with mechanics, electronics, informatics and automatic control theory. The level of the robotic technology has already been regarded as the standard of weighing a national modern electronic-mechanical manufacturing technology.Over the past two decades, the robot has been introduced into industry to perform many monotonous and often unsafe operations. Because robots can perform certain basic more quickly and accurately than humans, they are being increasingly used in various manufacturing industries.With the maturation and broad application of net technology, the remote control technology of robot based on net becomes more and more popular in modern society. It employs the net resources in modern society which are already three to implement the operatio of robot over distance. It also creates many of new fields, such as remote experiment, remote surgery, and remote amusement. What's more, in industry, it can have a beneficial impact upon the conversion of manufacturing means.The key words are reprogrammable and multipurpose because most single-purpose machines do not meet these two requirements. The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to accommodate a variety of manufacturing tasks. The term “multipurpose” means that the robot can perform many different functions, depending on the program and tooling currently in use.Developed from actuating mechanism, industrial robot can imitation some actions and functions of human being, which can be used to moving all kinds of material components tools and so on, executing mission by execuatable program multifunctionmanipulator. It is extensive used in industry and agriculture production, astronavigation and military engineering.During the practical application of the industrial robot, the working efficiency and quality are important index of weighing the performance of the robot. It becomes key problems which need solving badly to raise the working efficiencies and reduce errors of industrial robot in operating actually. Time-optimal trajectory planning of robot is that optimize the path of robot according to performance guideline of minimum time of robot under all kinds of physical constraints, which can make the motion time of robot hand minimum between two points or along the special path. The purpose and practical meaning of this research lie enhance the work efficiency of robot.Due to its important role in theory and application, the motion planning of industrial robot has been given enough attention by researchers in the world. Many researchers have been investigated on the path planning for various objectives such as minimum time, minimum energy, and obstacle avoidance.The basic terminology of robotic systems is introduced in the following:A robot is a reprogrammable, multifunctional manipulator designed to move parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs that give a complete picture of a robotic system.Preprogrammed locations are paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some operation, such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous operation. Furthermore, these preprogrammed locations, as well as other programming feature, an industrial robot is very much like a computer, where data can be stored and later recalled and edited.The manipulator is the arm of the robot. It allows the robot to bend, reach, and twist. This movement is provided by the manipulator’s axes, also called the degrees of freedom of the robot. A robot can have from 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on a robot.The tooling and grippers are not part of the robotic system itself: rather, they areattachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts, spot-weld, paint, arc-well, drill, deburr, and do a variety of tasks, depending on what is required of the robot.The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller, the robot manipulator, a work table, safety features, or a conveyor. All the equipment that is required in order for the robot to do its job is included in the work cell. In addition, signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.The robotic system has three basic components: the manipulator, the controller, and the power source.ManipulatorThe manipulator, which dose the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached.The base of the manipulator is usually fixed to the floor of the work area. Sometimes, though, the base may be movable. In this case, the base is attached to either a rail or a track, allowing the manipulator to be moved from one location to anther.As mentioned previously, the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base, which, in turn, is secured to a mounting. This mounting ensures that the manipulator will remain in one location.At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.The manipulator’s axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator. As the robot’s physical size increases, the size of the work cell must also increase.The movement of the manipulator is controlled by actuators, or drive system. The actuator, or drive system, allows the various axes to move within the work cell. The drive system can use electric, hydraulic, or pneumatic power. The energy developed by the drive system is converted to mechanical power by various mechanical drive systems. The drive systems are coupled through mechanical linkages. These linkages, in turn, drive the different axes of the robot. The mechanical linkages may be composed of chains, gears, and ball screws.ControllerThe controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall. The controller stores all program data for the robotic system. It can store several different programs, and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. This is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to the very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between therobot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacturing (CAM) system.As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain some type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic tape. Each memory storage device stores program information for later recall or for editing.Power supplyThe power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the manipulator. For example, if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of the robot.For each robotic system, power is required to operate the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or an electric power source. These power sources are part of the total components of the robotic work cell.Classification of RobotsIndustrial robots vary widely in size, shape, number of axes, degrees of freedom, and design configuration. Each factor influences the dimensions of the robot’s working envelope or the volume of space within which it can move and perform its designated task. A broader classification of robots can been described as blew.Fixed and Variable-Sequence Robots. The fixed-sequence robot (also called a pick-and place robot) is programmed for a specific sequence of operations. Its movements are from point to point, and the cycle is repeated continuously. Thevariable-sequence robot can be programmed for a specific sequence of operations but can be reprogrammed to perform another sequence of operation.Playback Robot. An operator leads or walks the playback robot and its end effector through the desired path. The robot memorizes and records the path and sequence of motions and can repeat them continually without any further action or guidance by the operator.Numerically Controlled Robot. The numerically controlled robot is programmed and operated much like a numerically controlled machine. The robot is servo-controlled by digital data, and its sequence of movements can be changed with relative ease.Intelligent Robot. The intellingent robot is capable of performing some of the functions and tasks carried out by human beings. It is equipped with a variety of sensors with visual and tactile capabilities.Robot ApplicationsThe robot is a very special type of production tool; as a result, the applications in which robots are used are quite broad. These applications can be grouped into three categories: material processing, material handling and assembly.In material processing, robots use to process the raw material. For example, the robot tools could include a drill and the robot would be able to perform drilling operations on raw material.Material handling consists of the loading, unloading, and transferring of workpieces in manufacturing facilities. These operations can be performed reliably and repeatedly with robots, thereby improving quality and reducing scrap losses.Assembly is another large application area for using robotics. An automatic assembly system can incorporate automatic testing, robot automation and mechanical handling for reducing labor costs, increasing output and eliminating manual handling concerns.Hydraulic SystemThere are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluidsystems can transmit power more economically over greater distances than can mechanical type. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission systems are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:1.Pumps which convert available power from the prime mover to hydraulicpower at the actuator.2.Valves which control the direction of pump-flow, the level of powerproduced, and the amount of fluid-flow to the actuators. The power level isdetermined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power outputat the point required.4.The medium, which is a liquid, provides rigid transmission and control aswell as lubrication of components, sealing in valves, and cooling of thesystem.5.Connectors which link the various system components, provide powerconductors for the fluid under pressure, and fluid flow return totank(reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality andquantity as well as cooling of the fluid..Hydraulic systems are used in industrial applications such as stamping presses, steel mills, and general manufacturing, agricultural machines, mining industry, aviation, space technology, deep-sea exploration, transportation, marine technology, and offshore gas and petroleum exploration. In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the powerlimit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1.Ease and accuracy of control. By the use of simple levers and push buttons,the operator of a fluid power system can readily start, stop, speed up or slowdown, and position forces which provide any desired horsepower withtolerances as precise as one ten-thousandth of an inch. Fig. shows a fluidpower system which allows an aircraft pilot to raise and lower his landinggear. When the pilot moves a small control valve in one direction, oil underpressure flows to one end of the cylinder to lower the landing gear. To retractthe landing gear, the pilot moves the valve lever in the opposite direction,allowing oil to flow into the other end of the cylinder.2.Multiplication of force. A fluid power system (without using cumbersomegears, pulleys, and levers) can multiply forces simply and efficiently from afraction of an ounce to several hundred tons of output.3.Constant force or torque. Only fluid power systems are capable of providingconstant force or torque regardless of speed changes. This is accomplishedwhether the work output moves a few inches per hour, several hundred inchesper minute, a few revolutions per hour, or thousands of revolutions perminute.4.Simplicity, safety, economy. In general, fluid power systems use fewermoving parts than comparable mechanical or electrical systems. Thus, theyare simpler to maintain and operate. This, in turn, maximizes safety,compactness, and reliability. For example, a new power steering controldesigned has made all other kinds of power systems obsolete on manyoff-highway vehicles. The steering unit consists of a manually operateddirectional control valve and meter in a single body. Because the steering unitis fully fluid-linked, mechanical linkages, universal joints, bearings, reductiongears, etc. are eliminated. This provides a simple, compact system. Inapplications. This is important where limitations of control space require asmall steering wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely eliminate. Also, most hydraulic oils can cause fires if an oil leak occurs in an area of hot equipment.Pneumatic SystemPneumatic system use pressurized gases to transmit and control power. As the name implies, pneumatic systems typically use air (rather than some other gas ) as the fluid medium because air is a safe, low-cost, and readily available fluid. It is particularly safe in environments where an electrical spark could ignite leaks from system components.In pneumatic systems, compressors are used to compress and supply the necessary quantities of air. Compressors are typically of the piston, vane or screw type. Basically a compressor increases the pressure of a gas by reducing its volume as described by the perfect gas laws. Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite air source similar to an electrical system where you merely plug into an electrical outlet for electricity. In this way, pressurized air can be piped from one source to various locations throughout an entire industrial plant. The compressed air is piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components such as valve and cylinders. The air then flows through a pressure regulator which reduces the pressure to the desired level for the particular circuit application. Because air is not a good lubricant (contains about 20% oxygen), pneumatics systems required a lubricator to inject a very fine mist of oil into the air discharging from the pressure regulator. This prevents wear of the closely fitting moving parts of pneumatic components.Free air from the atmosphere contains varying amounts of moisture. This moisture can be harmful in that it can wash away lubricants and thus cause excessive wear andcorrosion. Hence, in some applications, air driers are needed to remove this undesirable moisture. Since pneumatic systems exhaust directly into the atmosphere , they are capable of generating excessive noise. Therefore, mufflers are mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high-speed airborne particles.There are several reasons for considering the use of pneumatic systems instead of hydraulic systems. Liquids exhibit greater inertia than do gases. Therefore, in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating and decelerating actuators and when suddenly opening and closing valves. Due to Newton’s law of motion ( force equals mass multiplied by acceleration ), the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air. Liquids also exhibit greater viscosity than do gases. This results in larger frictional pressure and power losses. Also, since hydraulic systems use a fluid foreign to the atmosphere , they require special reservoirs and no-leak system designs. Pneumatic systems use air which is exhausted directly back into the surrounding environment. Generally speaking, pneumatic systems are less expensive than hydraulic systems.However, because of the compressibility of air, it is impossible to obtain precise controlled actuator velocities with pneumatic systems. Also, precise positioning control is not obtainable. While pneumatic pressures are quite low due to compressor design limitations ( less than 250 psi ), hydraulic pressures can be as high as 10,000 psi. Thus, hydraulics can be high-power systems, whereas pneumatics are confined to low-power applications. Industrial applications of pneumatic systems are growing at a rapid pace. Typical examples include stamping, drilling, hoist, punching, clamping, assembling, riveting, materials handling, and logic controlling operations.工业机器人机器人自问世以来到现在,经过了40多年的发展,已被广泛应用于各个工业领域,已成为工业现代化的重要标志。
工业机械手外文文献翻译、中英文翻译
第一章概述1. 1机械手的发展历史人类在改造自然的历史进程中,随着对材料、能源和信息这三者的认识和用,不断创造各种工具(机器),满足并推动生产力的发展。
工业社会向信息社会发展,生产的自动化,应变性要求越来越高,原有机器系统就显得庞杂而不灵活,这时人们就仿造自身的集体和功能,把控制机、动力机、传动机、工作机综合集中成一体,创造了“集成化”的机器系统——机器人。
从而引起了生产系统的巨大变革,成为“人——机器人——劳动对象”,或者“人——机器人——动力机——工作机——劳动对象”。
机器人技术从诞生到现在,虽然只有短短三十几年的历史,但是它却显示了旺盛的生命力。
近年来,世界上对于发展机器人的呼声更是有增无减,发达国家竞相争先,发展中国家急起直追。
许多先进技术国家已先后把发展机器人技术列入国家计划,进行大力研究。
我国的机器人学的研究也已经起步,并把“机器人开发研究”和柔性制造技术系统和设备开发研究等与机器人技术有关的研究课题列入国家“七五”、“八五”科技发展计划以及“八六三”高科技发展计划。
工业机械手是近代自动控制领域中出现的一项新技术,并已经成为现代机械制造生产系统中的一个重要组成部分。
这种新技术发展很快,逐渐形成一门新兴的学科——机械手工程。
1. 2机械手的发展意义机械手的迅速发展是由于它的积极作用正日益为人们所认识:其一、它能部分地代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配。
从而大大地改善工人的劳动条件,显著地提高劳动生产率,加快实现工业生产机械化和自动化的步伐。
因而,受到各先进工业国家的重视,投入大量的人力物力加以研究和应用。
近年来随着工业自动化的发展机械手逐渐成为一门新兴的学科,并得到了较快的发展。
机械手广泛地应用于锻压、冲压、锻造、焊接、装配、机加、喷漆、热处理等各个行业。
特别是在笨重、高温、有毒、危险、放射性、多粉尘等恶劣的劳动环境中,机械手由于其显著的优点而受到特别重视。
机械毕业设计英文外文翻译173工业机器人
附录2英文文献Industrial RobotsThere are a variety of definitions of the term robot. Depending on the definition used, the number of robot installations worldwide varies widely .Numerous single-purpose machines are used in manufacturing plants that might appear to be robots. These machines are hardwired to perform a single function and cannot be reprogrammed to perform a different function. Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted. This definition was developed by the Robot Institute of America:A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.Note that this definition contains the words reprogrammable and multifunctional. It is these two characteristics that separate the true industrial robot from the carious single-machines used in modern manufacturing firms. The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to accommodate a variety of manufacturing tasks.The term “multifunctional” means that th e robot can, through reprogramming and the use of different end-effectors, perform a number of different manufacturing tasks. Definitions written around these two critical characteristics are becoming the accepted definitions among manufacturing professionals.The components of a robot system could be discussed either from a physical point of view or from a systems point of view. Physically, we would divide the system into the robot, power system, and controller (computer).Likewise; the robot itself could be partitioned anthropomorphically into base, shoulder, elbow, wrist, gripper, and tool. Most of these terms require little explanation.Consequently, we will describe the components of a robot system from the point of view of information transfer. That is, what information or signal enters the component; what logical or arithmetic operation does the component perform; and what information or signal does the component produce? It is important to note that the same physical component may perform many different information processing operations (e.g., a central computer performs many different calculations on different data). Likewise, two physically separate components may perform identical information operations (e.g., the shoulder and elbow actuators both convert signals to motion in vary similar ways).Associated with each joint on the robot is an actuator which causes that joint to move. Typical actuators are electric motors and hydraulic cylinders. Typically, a robot system will contain six actuators, since six are required for full control of position and orientation. Many robot applications do not require this full flexibility, and consequently, robots are often built with five or fewer actuators.The first articulated arm came about in 1951 and was used by the U.S. Atomic Energy Commission. In 1954, the first programmable robot was designed by George Devil. It was based on two important technologies:Numerical control (NC) technology.Remote manipulator technology.Numerical control technology provided a form of machine control ideally suited to robots. It allowed for the control of motion by stored programs. These programs contain data points to which the robot sequentially moves, timing signals to initiate action and to stop movement, and logic statements to allow for decision marking.Remote manipulator technology allowed a machine to be more than just another NC machine. It allowed such machines to become robots that can perform a variety of manufacturing tasks in both inaccessible and unsafe environments. By merging these two technologies, Devil developed the first industrial robot, an unsophisticated programmable materials handling machine.The first commercially produced robot was developed in 1959. In 1962, the first industrial robot to be used on a produced robot was installed by General Motors Corporation. This robot was produced by Unimation. A major step forward in robot control occurred in 1973 with the development of the T³industrial robot by Cincinnati Milacron. The T³robot was the first commercially produced industrial robot controlled by a minicomputer. Figure 53. I shows a T³ robot with all the motions indicated, it is also called jointed-spherical robot.Numerical control and remote manipulator technology prompted the wide-scale development and use of industrial robots. But major technological developments do not take place simply because of such new capabilities. Something must provide the impetus for taking advantage of these capabilities. In the case of industrial robots, the impetus was economics.The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms. At the same time, foreign competition became a serious problem for U.S. manufacturers. Foreign manufacturers who had undertaken automation on a wide-scale basis, such as those in Japan, began to gain an increasingly large share of the U.S. and world market for manufactured goods, particularly automobiles.Through a variety of automation techniques, including robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles, more cheaply than no automated U.S. manufacturers. Consequently, in order to survive, U.S. manufacturers were forced to consider any technological developments that could help improve productivity.It became imperative to produce better products at lower costs in order to be competitive with foreign manufacturers. Other factors such as the need to find better ways of performing dangerous manufacturing tasks centralized to the development of industrial robots. However, the principal rationale has always been, and is still, improved productivity.One of the principal advantages of robots is that they can be used in settings that are dangerous to humans. Welding and parting are examples of applications where robots can be used more safely than human. Even though robots are closely associated with safety in the workplace, they can, in themselves, be dangerous.Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines. Robot work envelopes should be accurately calculated and a danger zone surrounding the envelope clearly marked off. Red flooring strips and barriers can be used to keep human workers out of a robot’s w ork envelope.Even with such precautions it is still a good idea to have an automatic shutdown system in situations where robots are used. Such a system should have the capacity to sense the need for an automatic shutdown of operations. Fault-tolerant computers and redundant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe environment.中文翻译工业机器人有许多关于机器人这个术语的定义。
机器人技术的发展论文中英文对照资料外文翻译文献
机器人技术的发展论文中英文对照资料外文翻译文献摘要随着科技的不断发展,机器人技术在各个领域得到了广泛的应用。
本文翻译了几篇关于机器人技术的发展的文献,这些文献包括中文和英文内容。
其中,有关于机器人对人类生活的影响的讨论,也有机器人在工业、医疗等领域中的应用。
这些文献为大家提供了对机器人技术的深入了解,对于有关机器人技术的研究具有一定的参考价值。
正文中文文献机器人与人类生活随着机器人技术的不断发展,机器人已经开始逐渐进入人们的日常生活。
机器人从一开始的只能执行简单的任务,到现在已经能够和人类进行交互,甚至是取代人类在某些领域的工作。
随着机器人不断普及,对于机器人技术的伦理问题也越来越引人注目。
例如,机器人将如何与人类共存?机器人将如何对人类的生活产生影响?这些问题都亟待解决。
工业领域中的机器人工业领域是机器人技术得到广泛应用的领域之一。
机器人在工业生产中的应用不仅可以提高生产效率,还能减少人工操作对环境造成的影响。
目前,工业机器人已经能够完成许多需要人脑思考的任务,例如对产品进行分类、贴标签等。
随着机器人技术的不断发展,相信未来机器人在工业领域中的应用也会越来越广泛。
医疗领域中的机器人医疗领域是机器人技术应用的另一个重要领域。
机器人在医疗中的应用包括手术机器人、护理机器人等。
手术机器人可以进行精细的手术操作,并且可以通过微创手术减少患者的痛苦。
护理机器人可以为需要护理的人提供便利和帮助,减轻护理人员的负担。
这些机器人的出现,不仅提高了医疗领域的工作效率,还帮助了许多需要医疗服务的人。
英文文献Advances in Robotics TechnologyThis article reviews the recent advances in robotics technology. One of the biggest usages of robots is in the industrial sector, where the use in manufacturing process yields benefits such as increased efficiency and reduced costs. There are also a variety of robots for medical purposes, such as surgery and rehabilitation. In addition, robots are being used in the military and exploration of hostile environments to reduce risk to human life. The article concludes that robotics technology will continue to evolve and transform various industries with the potential to improve efficiency and reduce human error.Social Interaction with Robots结论本文翻译了关于机器人技术发展的中英文文献,并提供了机器人对人类生活的影响,机器人在工业、医疗中的应用等信息。
工业机器人外文参考文献
工业机器人外文参考文献工业机器人外文参考文献1. Gao, Y., & Chen, J. (2018). Review of industrial robots for advanced manufacturing systems. Journal of Manufacturing Systems, 48, 144-156.2. Karaman, M., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846-894.3. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90-98.4. Lee, J. H., & Kim, E. B. (2019). Energy-efficient path planning for industrial robots considering joint dynamics. Journal of Mechanical Science and Technology, 33(3),1343-1351.5. Li, D., Li, Y., Wang, X., & Li, H. (2019). Design and implementation of a humanoid robot with flexible manipulators. Robotica, 37(12), 2008-2025.6. Liu, Y., Ren, X., & Wang, T. (2019). A novel adaptive fuzzy sliding mode control for a nonholonomic mobile robot. Soft Computing, 23(3), 1197-1209.7. Loh, A. P., & Tan, K. K. (2014). Vision-based controlof industrial robots using an adaptive neural network. Robotics and Computer-Integrated Manufacturing, 30(2), 177-184.8. Niemeyer, G., & Slotine, J. J. (1990). Stable adaptive teleoperation. The International Journal of Robotics Research, 9(1), 85-98.9. Park, J. Y., & Cho, C. H. (2018). Optimal path planning for industrial robots using a hybrid genetic algorithm. International Journal of Precision Engineering and Manufacturing, 19(5), 755-761.10. Wang, Z., Wang, X., & Liu, Y. (2019). Design and analysis of a novel humanoid robot with intelligent control. International Journal of Advanced Manufacturing Technology, 102(5-8), 1391-1403.。
机器人外文文献翻译、中英文翻译
外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。
机器人技术发展趋势论文中英文对照资料外文翻译文献
中英文对照资料外文翻译文献机器人技术发展趋势谈到机器人,现实仍落后于科幻小说。
但是,仅仅因为机器人在过去的几十年没有实现它们的承诺,并不意味着机器人的时代不会到来,或早或晚。
事实上,多种先进技术的影响已经使得机器人的时代变得更近——更小、更便宜、更实用和更具成本效益。
肌肉、骨骼和大脑任何一个机器人都有三方面:·肌肉——有效联系有关物理荷载以便于机器人运动。
·骨骼——一个机器人的物理结构取决于它所做的工作;它的尺寸大小和重量则取决于它的物理荷载。
·大脑——机器人智能;它能独立思考和做什么;需要多少人工互动。
由于机器人在科幻世界中所被描绘过的方式,很多人希望机器人在外型上与人类相似。
但事实上,机器人的外形更多地取决于它所做的工作或具备的功能。
很多一点儿也不像人的机器也被清楚地归为机器人。
同样,很多看起来像人的机器却还是仅仅属于机械结构和玩具。
很多早期的机器人是除了有很大力气而毫无其他功能的大型机器。
老式的液压动力机器人已经被用来执行3-D任务即平淡、肮脏和危险的任务。
由于第一产业技术的进步,完全彻底地改进了机器人的性能、业绩和战略利益。
比如,20世纪80年代,机器人开始从液压动力转换成为电动单位。
精度和性能也提高了。
工业机器人已经在工作时至今日,全世界机器人的数量已经接近100万,其中超过半数的机器人在日本,而仅仅只有15%在美国。
几十年前,90%的机器人是服务于汽车生产行业,通常用于做大量重复的工作。
现在,只有50%的机器人用于汽车制造业,而另一半分布于工厂、实验室、仓库、发电站、医院和其他的行业。
机器人用于产品装配、危险物品处理、油漆喷雾、抛光、产品的检验。
用于清洗下水道,探测炸弹和执行复杂手术的各种任务的机器人数量正在稳步增加,在未来几年内将继续增长。
机器人智能即使是原始的智力,机器人已经被证明了在生产力、效率和质量方面都能够创造良好的效益。
除此之外,一些“最聪明的”机器人没有用于制造业;它们被用于太空探险、外科手术遥控,甚至于宠物,比如索尼的AIBO电子狗。
关于现代工业机械手外文文献翻译@中英文翻译@外文翻译
附录About Modenr Industrial Manipulayor Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. Modern industrial robots are true marvels of engineering. A robot the size of a person can easily carry a load over one hundred pounds and move it very quickly with a repeatability of 0.006inches. Furthermore these robots can do that 24hours a day for years on end with no failures whatsoever. Though they are reprogrammable, in many applications they are programmed once and then repeat that exact same task for years.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With he rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly; with the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realizedthe importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plasticholding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission ratio. Both of the transmission mechanisms have a characteristic of compact structure. The design of drive system often is limited by the environment condition and the factor of cost and technical lever. The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system. In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality. On this basis, the analysis of stepping motor in power calculating and style selecting is also given. The analysis of kinematics anddynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism. The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective. The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks. Manipulators controlled in this manner move at slow speeds with unnecessary vibrations. Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel processing techniques.In the industrial production and other fields, people often endangered by such factors as high temperature, corrode, poisonous gas and so forth at work, which have increased labor intensity and even jeopardized the life sometimes. The corresponding problems are solved since the robot arm comes out. The arms can catch, put and carry objects, and its movements are flexible and diversified. It applies to medium and small-scale automated production in which production varieties can be switched. And it is widely used on soft automatic line. The robot arms are generally made by withstand high temperatures, resist corrosion of materials to adapt to the harsh environment. So they reduced the labor intensity of the workers significantly and raised work efficiency. The robot arm is an importantcomponent of industrial robot, and it can be called industrial robots on many occasions. Industrial robot is set machinery, electronics, control, computers, sensors, artificial intelligence and other advanced technologies in the integration of multidisciplinary important modern manufacturing equipment. Widely using industrial robots, not only can improve product quality and production, but also is of great significance for physical security protection, improvement of the environment for labor, reducing labor intensity, improvement of labor productivity, raw material consumption savings and lowering production costs.There are such mechanical components as ball footbridge, slides, air control mechanical hand and so on in the design. A programmable controller, a programming device, stepping motors, stepping motors drives, direct current motors, sensors, switch power supply, an electromagnetism valve and control desk are used in electrical connection.Robot is the automated production of a kind used in the process of crawling and movin g piece features automatic device, which is mechanized and automated production process d eveloped a new type of device. In recent years, as electronic technology, especially compute r extensive use of robot development and production of hightech fields has become a rapidl y developed a new technology, which further promoted the development of robot, allowing robot to better achieved with the combination of mechanization and automation. Robot can replace humans completed the risk of duplication of boring work, to reduce human labor int ensity and improve labor productivity. Manipulator has been applied more and more widely, in the machinery industry, it can be used for parts assembly, work piece handling, loading a nd unloading, particularly in the automation of CNC machine tools, modular machine toolsmore commonly used. At present, the robot has developed into a FMS flexible manufacturin g systems and flexible manufacturing cell in an important component of the FMC. The mac hine tool equipment and machinery in hand together constitute a flexible manufacturing syst em or a flexible manufacturing cell, it was adapted to small and medium volume production , you can save a huge amount of the work piece conveyor device, compact, and adaptable. When the work piece changes, flexible production system is very easy to change will help e nterprises to continuously update the marketable variety, improve product quality, and better adapt to market competition. At present, China's industrial robot technology and its enginee ring application level and comparable to foreign countries there is a certain distance, applica tion and industrialization of the size of the low level of robot research and development of a direct impact on raising the level of automation in China, from the economy, technical cons iderations are very necessary. Therefore, the study of mechanical hand design is very meani ngful.关于现代工业机械手机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济技术的开展和各行各业对自动化程度要求的提高,机器人技术得到了迅速开展,出现了各种各样的机器人产品。
工业机器人的介绍外文文献翻译、中英文翻译、外文翻译
外文原文Introduction to Industrial RobotsIndustrial robets became a reality in the early 1960’s when Joseph Engelberger and George Devol teamed up to form a robotics company they called “Unimation”.Engelberger and Devol were not the first to dream of machines that could perform the unskilled, repetitive jobs in manufacturing. The first use of the word “robots” was by the Czechoslovakian philosopher and playwright Karel Capek in his play R.U.R.(Rossum’s Universal Robot). The word “robot” in Czech means “worker” or “slave.” The play was written in 1922.In Capek’s play , Rossum and his son discover the chemical formula for artificial protoplasm. Protoplasm forms the very basis of life.With their compound,Rossum and his son set out to make a robot.Rossum and his son spend 20 years forming the protoplasm into a robot. After 20 years the Rossums look at what they have created and say, “It’s absurd to spend twenty years making a man if we can’t make him quicker than nature, you might as w ell shut up shop.”The young Rossum goes back to work eliminating organs he considers unnecessary for the ideal worker. The young Rossum says, “A man is something that feels happy , plays piano ,likes going for a walk, and in fact wants to do a whole lot of things that are unnecessary … but a working machine must not play piano, must not feel happy, must not do a whole lot of other things. Everything that doesn’t contribute directly to the progress of work should be eliminated.”A half century later, engi neers began building Rossum’s robot, not out of artificial protoplasm, but of silicon, hydraulics, pneumatics, and electric motors. Robots that were dreamed of by Capek in 1922, that work but do not feel, that perform unhuman or subhuman, jobs in manufacturing plants, are available and are in operation around the world.The modern robot lacks feeling and emotions just as Rossum’s son thought it should. It can only respond to simple “yes/no” questions. The moderrn robot is normally bolted to the floor. It has one arm and one hand. It is deaf, blind, and dumb. In spite of all of these handicaps, the modern robot performs its assigned task hour after hour without boredom or complaint.A robot is not simply another automated machine. Automation began during the industrial revolution with machines that performed jobs that formerly had been done by human workers. Such a machine, however , can do only the specific job for which it was designed, whereas a robot can perform a variety of jobs.A robot must have an arm. The arm must be able to duplicate the movements of a human worker in loading and unloading other automated machines, spraying paint, welding, and performing hundreds of other jobs that cannot be easily done with conventional automated machines.DEFINITION OF A ROBOTThe Robot Industries Association(RIA) has published a definition for robots in an attempt to clarify which machines are simply automated machines and which machines are truly robots. The RIA definition is as follows:“A robot is a reprogrammabl e multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.”This definition, which is more extensive than the one in the RIA glossary at the end of this book, is an excellent definition of a robot. We will look at this definition, one phrase at a time, so as to understand which machines are in fact robots and which machines are little more than specialized automation.First, a robot is a “reprogrammable multifunctional manipulator.” In this phrase RIA tells us that a robot can be taught (“reprogrammed”) to do more than one job by changing the informaion stored in its memory. A robot can be reprogrammed to load and unload machines, weld, and do ma ny other jobs (“multifunctional”). A robot is a“manipulator”. A manipulator is an arm( or hand ) that can pick up or move things. At this point we know that a robot is an arm that can be taught to do different jobs.The definition goes on to say that a ro bot is “designed to move material, parts, tools, or specialized devices.” Material includes wood,steel, plastic, cardboard… anything that is used in the manufacture of a product.A robot can also handle parts that have been manufactured. For example, a robot can load a piece of steel into an automatic lathe and unload a finished part out of the lathe.In addition to handling material and parts, a robot can be fitted with tools such as grinders, buffers, screwdrivers, and welding torches to perform useful work.Robots can also be fitted with specialized instruments or devices to do special jobs in a manufacturing plant. Robots can be fitted with television cameras for inspection of parts or products. They can be fitted with lasers to accurately mearure the size of parts being manufactured.The RIA definition closes with the phrase,”…through variable programmed motions for the performance of a variety of tasks.” This phrase emphasizes the fact that a robot can do many different jobs in a manufacturing plant. The variety of jobs that a robot can do is limited only by the creativity of the application engineer.JOBS FOR ROBOTSJobs performed by robots can be divided into two major categories:hazardous jobs and repetitive jobs.Hazardous JobsMany applications of robots are in jobs that are hazardous to humans. Such jobs may be considered hazardous because of toxic fumes, the weight of the material being handled, the temperature of the material being handled, the danger of working near rotating or press machinery, or environments containing high levels of radiation. Repetitive JobsIn addition to taking over hazardous jobs, robots are well suited to doingextremely repetitive jobs that must be done in manufacturing plants.many jobs in manufacturing plants require a person to act more like a machine than like a human. The job may be to pick a piece up from here and place it there. The same job is done hundreds of times each day. The job requires little or no judgment and little or no skill. This is not said as a criticism of the person who does the job , but is intended simply to point out that many of these jobs exist in industry and must be done to complete the manufacture of products. A robot can be placed at such a work station and can perform the job admirably without complaining or experiencing the fatigue and boredom normally associated with such a job.Although robots eliminate some jobs in industry, they normally eliminate jobs that humans should never have been asked to do. Machines should perform as machines doing machine jobs, and humans should be placed in jobs that require the use of their ability,creativity, and special skills.POTENTIAL FOR INCREASED PRODUCTIVITYIn addition to removing people from jobs they should not have been placed in, robots offer companies the opportunity of achieving increased productivity. When robots are placed in repetitive jobs they continue to operate at their programmed pace without fatigue. Robots do not take either scheduled or unscheduled breaks from the job. The increase in productivity can result in at least 25% more good parts being produced in an eight-hour shift. This increase in productivity increases the company's profits, which can be reinvested in additional plants and equipment. This increase in productivity results in more jobs in other departments in the plant. With more parts being produced, additional people are needed to deliver the raw materials to the plant, to complete the assembly of the finished products, to sell the finished products, and to deliver the products to their destinations.ROBOT SPEEDAlthough robots increase productivity in a manufacturing plant, they are notexceptionally fast. At present, robots normally operate at or near the speed of a human operator. Every major move of a robot normally takes approximately one second. For a robot to pick up a piece of steel from a conveyor and load it into a lathe may require ten different moves taking as much as ten seconds. A human operator can do the same job in the same amount of time . The increase in productivity is a result of the consistency of operation. As the human operator repeats the same job over and over during the workday, he or she begins to slow down. The robot continues to operate at its programmed speed and therefore completes more parts during the workday.Custom-built automated machines can be built to do the same jobs that robots do. An automated machine can do the same loading operation in less than half the time required by a robot or a human operator. The problem with designing a special machine is that such a machine can perform only the specific job for which it was built. If any change is made in the job, the machine must be completely rebuilt, or the machine must be scrapped and a new machine designed and built. A robot, on the other hand, could be reprogrammed and could start doing the new job the same day.Custom-built automated machines still have their place in industry. If a company knows that a job will not change for many years, the faster custom-built machine is still a good choice.Other jobs in factories cannot be done easily with custom-built machinery. For these applications a robot may be a good choice. An example of such an application is spray painting. One company made cabinets for the electronics industry. They made cabinets of many different sizes, all of which needed painting. It was determined that it was not economical for the company to build special spray painting machines for each of the different sizes of enclosures that were being built. Until robots were developed, the company had no choice but to spray the various enclosures by hand.Spray painting is a hazardous job , because the fumes from many paints are both toxic and explosive. A robot is now doing the job of spraying paint on the enclosures.A robot has been “taught” to spray all the different sizes of enclosures that the company builds. In addition, the robot can operate in the toxic environment of the spray booth without any concern for the long-term effect the fumes might have on aperson working in the booth.FLEXIBLE AUTOMATIONRobots have another advantage: they can be taught to do different jobs in the manufacturing plant. If a robot was originally purchased to load and unload a punch press and the job is no longer needed due to a change in product design, the robot can be moved to another job in the plant. For example, the robot could be moved to the end of the assembly operation and be used to unload the finished enclosures from a conveyor and load them onto a pallet for shipment.ACCURACY AND REPEATABILITYOne very important characteristic of any robot is the accuracy with which it can perform its task. When the robot is programmed to perform a specific task, it is led to specific points and programmed to remember the locations of those points. After programming has been completed, the robot is switched to “run” and the program is executed. Unfortunately, the robot will not go to the exact location of any programmed point. For example, the robot may miss the exact point by 0.025 in. If 0.025 in. is the greatest error by which the robot misses any point- during the first execution of the program, the robot is said to have an accuracy of 0.025 in.In addition to accuracy , we are also concerned with the robot’s repeatability. The repeatability of a robot is a measure of how closely it returns to its programmed points every time the program is executed. Say , for example, that the robot misses a programmed point by 0.025 in. the first time the program is executed and that, during the next execution of the program, the robot misses the point it reached during the previous cycle by 0.010 in. Although the robot is a total of 0.035 in. from the original programmed point, its accuracy is 0.025 in. and its repeatability is 0.010 in.THE MAJOR PARTS OF A ROBOTThe major parts of a robot are the manipulator, the power supply, and the controller.The manipulator is used to pick up material, parts, or special tools used in manufacturing. The power supply suppplies the power to move the manipulator. The controller controls the power supply so that the manipulator can be taught to perform its task.外文翻译工业机器人的介绍20世纪60年代当约瑟夫和乔治合作创立了名为Unimation的机器公司,工业机器人便成为了一个事实。
工业机器人中英文翻译、外文文献翻译、外文翻译
外文原文:RobotAfter more than 40 years of development, since its first appearance till now, the robot has already been widely applied in every industrial fields, and it has become the important standard of industry modernization.Robotics is the comprehensive technologies that combine with mechanics, electronics, informatics and automatic control theory. The level of the robotic technology has already been regarded as the standard of weighing a national modern electronic-mechanical manufacturing technology.Over the past two decades, the robot has been introduced into industry to perform many monotonous and often unsafe operations. Because robots can perform certain basic more quickly and accurately than humans, they are being increasingly used in various manufacturing industries.With the maturation and broad application of net technology, the remote control technology of robot based on net becomes more and more popular in modern society. It employs the net resources in modern society which are already three to implement the operatio of robot over distance. It also creates many of new fields, such as remote experiment, remote surgery, and remote amusement. What's more, in industry, it can have a beneficial impact upon the conversion of manufacturing means.The key words are reprogrammable and multipurpose because most single-purpose machines do not meet these two requirements. The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to acc ommodate a variety of manufacturing tasks. The term “multipurpose” means that the robot can perform many different functions, depending on the program and tooling currently in use.Developed from actuating mechanism, industrial robot can imitation some actions and functions of human being, which can be used to moving all kinds of material components tools and so on, executing mission by execuatable program multifunction manipulator. It is extensive used in industry and agriculture production, astronavigation and military engineering.During the practical application of the industrial robot, the working efficiency andquality are important index of weighing the performance of the robot. It becomes key problems which need solving badly to raise the working efficiencies and reduce errors of industrial robot in operating actually. Time-optimal trajectory planning of robot is that optimize the path of robot according to performance guideline of minimum time of robot under all kinds of physical constraints, which can make the motion time of robot hand minimum between two points or along the special path. The purpose and practical meaning of this research lie enhance the work efficiency of robot.Due to its important role in theory and application, the motion planning of industrial robot has been given enough attention by researchers in the world. Many researchers have been investigated on the path planning for various objectives such as minimum time, minimum energy, and obstacle avoidance.The basic terminology of robotic systems is introduced in the following:A robot is a reprogrammable, multifunctional manipulator designed to move parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs that give a complete picture of a robotic system.Preprogrammed locations are paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some operation, such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous operation. Furthermore, these preprogrammed locations, as well as other programming feature, an industrial robot is very much like a computer, where data can be stored and later recalled and edited.The manipulator is the arm of the robot. It allows the robot to bend, reach, and twist. This movement is provided by t he manipulator’s axes, also called the degrees of freedom of the robot. A robot can have from 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on a robot.The tooling and grippers are not part of the robotic system itself: rather, they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts, spot-weld, paint, arc-well, drill, deburr, and do a variety of tasks, depending on what is required of the robot.The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller, the robot manipulator, a work table, safety features, or a conveyor. All the equipment that is required in order for the robot to do its job is included in the work cell. In addition, signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.The robotic system has three basic components: the manipulator, the controller, and the power source.ManipulatorThe manipulator, which dose the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached.The base of the manipulator is usually fixed to the floor of the work area. Sometimes, though, the base may be movable. In this case, the base is attached to either a rail or a track, allowing the manipulator to be moved from one location to anther.As mentioned previously, the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base, which, in turn, is secured to a mounting. This mounting ensures that the manipulator will remain in one location.At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.The manipulator’s axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator. As the robot’s physical siz e increases, the size of the work cell must also increase.The movement of the manipulator is controlled by actuators, or drive system. The actuator, or drive system, allows the various axes to move within the work cell. The drive system can use electric, hydraulic, or pneumatic power. The energy developed bythe drive system is converted to mechanical power by various mechanical drive systems. The drive systems are coupled through mechanical linkages. These linkages, in turn, drive the different axes of the robot. The mechanical linkages may be composed of chains, gears, and ball screws.ControllerThe controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall. The controller stores all program data for the robotic system. It can store several different programs, and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. This is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to the very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacturing (CAM) system.As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain some type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic tape. Each memory storage device stores program information for later recall or for editing.Power supplyThe power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the manipulator. For example, if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of the robot.For each robotic system, power is required to operate the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or an electric power source. These power sources are part of the total components of the robotic work cell.Classification of RobotsIndustrial robots vary widely in size, shape, number of axes, degrees of freedom, and design configuration. Each factor influences the dimensions of the robot’s working envelope or the volume of space within which it can move and perform its designated task. A broader classification of robots can been described as blew.Fixed and Variable-Sequence Robots. The fixed-sequence robot (also called a pick-and place robot) is programmed for a specific sequence of operations. Its movements are from point to point, and the cycle is repeated continuously. The variable-sequence robot can be programmed for a specific sequence of operations but can be reprogrammed to perform another sequence of operation.Playback Robot. An operator leads or walks the playback robot and its end effectorthrough the desired path. The robot memorizes and records the path and sequence of motions and can repeat them continually without any further action or guidance by the operator.Numerically Controlled Robot. The numerically controlled robot is programmed and operated much like a numerically controlled machine. The robot is servo-controlled by digital data, and its sequence of movements can be changed with relative ease.Intelligent Robot. The intellingent robot is capable of performing some of the functions and tasks carried out by human beings. It is equipped with a variety of sensors with visual and tactile capabilities.Robot ApplicationsThe robot is a very special type of production tool; as a result, the applications in which robots are used are quite broad. These applications can be grouped into three categories: material processing, material handling and assembly.In material processing, robots use to process the raw material. For example, the robot tools could include a drill and the robot would be able to perform drilling operations on raw material.Material handling consists of the loading, unloading, and transferring of workpieces in manufacturing facilities. These operations can be performed reliably and repeatedly with robots, thereby improving quality and reducing scrap losses.Assembly is another large application area for using robotics. An automatic assembly system can incorporate automatic testing, robot automation and mechanical handling for reducing labor costs, increasing output and eliminating manual handling concerns.Hydraulic SystemThere are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical type. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission systems are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:1.Pumps which convert available power from the prime mover to hydraulicpower at the actuator.2.Valves which control the direction of pump-flow, the level of powerproduced, and the amount of fluid-flow to the actuators. The power level isdetermined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power outputat the point required.4.The medium, which is a liquid, provides rigid transmission and control aswell as lubrication of components, sealing in valves, and cooling of thesystem.5.Connectors which link the various system components, provide powerconductors for the fluid under pressure, and fluid flow return totank(reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality andquantity as well as cooling of the fluid..Hydraulic systems are used in industrial applications such as stamping presses, steel mills, and general manufacturing, agricultural machines, mining industry, aviation, space technology, deep-sea exploration, transportation, marine technology, and offshore gas and petroleum exploration. In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations,manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1.Ease and accuracy of control. By the use of simple levers and push buttons,the operator of a fluid power system can readily start, stop, speed up or slowdown, and position forces which provide any desired horsepower withtolerances as precise as one ten-thousandth of an inch. Fig. shows a fluidpower system which allows an aircraft pilot to raise and lower his landinggear. When the pilot moves a small control valve in one direction, oil underpressure flows to one end of the cylinder to lower the landing gear. To retractthe landing gear, the pilot moves the valve lever in the opposite direction,allowing oil to flow into the other end of the cylinder.2.Multiplication of force. A fluid power system (without using cumbersomegears, pulleys, and levers) can multiply forces simply and efficiently from afraction of an ounce to several hundred tons of output.3.Constant force or torque. Only fluid power systems are capable of providingconstant force or torque regardless of speed changes. This is accomplishedwhether the work output moves a few inches per hour, several hundred inchesper minute, a few revolutions per hour, or thousands of revolutions perminute.4.Simplicity, safety, economy. In general, fluid power systems use fewermoving parts than comparable mechanical or electrical systems. Thus, theyare simpler to maintain and operate. This, in turn, maximizes safety,compactness, and reliability. For example, a new power steering controldesigned has made all other kinds of power systems obsolete on manyoff-highway vehicles. The steering unit consists of a manually operateddirectional control valve and meter in a single body. Because the steering unitis fully fluid-linked, mechanical linkages, universal joints, bearings, reductiongears, etc. are eliminated. This provides a simple, compact system. Inapplications. This is important where limitations of control space require asmall steering wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion,automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely eliminate. Also, most hydraulic oils can cause fires if an oil leak occurs in an area of hot equipment.Pneumatic SystemPneumatic system use pressurized gases to transmit and control power. As the name implies, pneumatic systems typically use air (rather than some other gas ) as the fluid medium because air is a safe, low-cost, and readily available fluid. It is particularly safe in environments where an electrical spark could ignite leaks from system components.In pneumatic systems, compressors are used to compress and supply the necessary quantities of air. Compressors are typically of the piston, vane or screw type. Basically a compressor increases the pressure of a gas by reducing its volume as described by the perfect gas laws. Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite air source similar to an electrical system where you merely plug into an electrical outlet for electricity. In this way, pressurized air can be piped from one source to various locations throughout an entire industrial plant. The compressed air is piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components such as valve and cylinders. The air then flows through a pressure regulator which reduces the pressure to the desired level for the particular circuit application. Because air is not a good lubricant (contains about 20% oxygen), pneumatics systems required a lubricator to inject a very fine mist of oil into the air discharging from the pressure regulator. This prevents wear of the closely fitting moving parts of pneumatic components.Free air from the atmosphere contains varying amounts of moisture. This moisture can be harmful in that it can wash away lubricants and thus cause excessive wear and corrosion. Hence, in some applications, air driers are needed to remove this undesirable moisture. Since pneumatic systems exhaust directly into the atmosphere , they are capable of generating excessive noise. Therefore, mufflers are mounted on exhaust portsof air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high-speed airborne particles.There are several reasons for considering the use of pneumatic systems instead of hydraulic systems. Liquids exhibit greater inertia than do gases. Therefore, in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating and decelerating actuators and when suddenly opening and closing valves. Due to Newton’s law of motion ( force equals mass multiplied by acceleration ), the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air. Liquids also exhibit greater viscosity than do gases. This results in larger frictional pressure and power losses. Also, since hydraulic systems use a fluid foreign to the atmosphere , they require special reservoirs and no-leak system designs. Pneumatic systems use air which is exhausted directly back into the surrounding environment. Generally speaking, pneumatic systems are less expensive than hydraulic systems.However, because of the compressibility of air, it is impossible to obtain precise controlled actuator velocities with pneumatic systems. Also, precise positioning control is not obtainable. While pneumatic pressures are quite low due to compressor design limitations ( less than 250 psi ), hydraulic pressures can be as high as 10,000 psi. Thus, hydraulics can be high-power systems, whereas pneumatics are confined to low-power applications. Industrial applications of pneumatic systems are growing at a rapid pace. Typical examples include stamping, drilling, hoist, punching, clamping, assembling, riveting, materials handling, and logic controlling operations.工业机器人机器人自问世以来到现在,经过了40多年的发展,已被广泛应用于各个工业领域,已成为工业现代化的重要标志。
工业机械手中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:ManipulatorRobot developed in recent decades as high-tech automated production equipment. Industrial rob ot is an important branch of industrial robots. It features can be programmed to perform tasks in a variety of expectations, in both structure and performance advantages of their own people and mac hines, in particular, reflects the people's intelligence and adaptability. The accuracy of robot operat ions and a variety of environments the ability to complete the work in the field of national econom y and there are broad prospects for development. With the development of industrial automation, t here has been CNC machining center, it is in reducing labor intensity, while greatly improved labo r productivity. However, the upper and lower common in CNC machining processes material, usua lly still use manual or traditional relay-controlled semi-automatic device. The former time-consum ing and labor intensive, inefficient; the latter due to design complexity, require more relays, wiring complexity, vulnerability to body vibration interference, while the existence of poor reliability, fa ult more maintenance problems and other issues. Programmable Logic Controller PLC-controlled robot control system for materials up and down movement is simple, circuit design is reasonable, with a strong anti-jamming capability, ensuring the system's reliability, reduced maintenance rate, and improve work efficiency. Robot technology related to mechanics, mechanics, electrical hydrau lic technology, automatic control technology, sensor technology and computer technology and oth er fields of science, is a cross-disciplinary integrated technology.First, an overview of industrial manipulatorRobot is a kind of positioning control can be automated and can be re-programmed to change in multi-functional machine, which has multiple degrees of freedom can be used to carry an object in order to complete the work in different environments. Low wages in China, plastic products ind ustry, although still a labor-intensive, mechanical hand use has become increasingly popular. Elect ronics and automotive industries that Europe and the United States multinational companies very e arly in their factories in China, the introduction of automated production. But now the changes are those found in industrial-intensive South China, East China's coastal areas, local plastic processing plants have also emerged in mechanical watches began to become increasingly interested in, beca use they have to face a high turnover rate of workers, as well as for the workers to pay work-relate d injuries fee challenges.With the rapid development of China's industrial production, especially the reform and opening up after the rapid increase in the degree of automation to achieve the workpiece handling, steering, transmission or operation of brazing, spray gun, wrenches and other tools for processing and asse mbly operations since, which has more and more attracted our attention. Robot is to imitate the ma nual part of the action, according to a given program, track and requirements for automatic capture , handling or operation of the automatic mechanical devices.In real life, you will find this a problem. In the machine shop, the processing of parts loading ti me is not annoying, and labor productivity is not high, the cost of production major, and sometime s man-made incidents will occur, resulting in processing were injured. Think about what could rep lace it with the processing time of a tour as long as there are a few people, and can operate 24 hour s saturated human right? The answer is yes, but the robot can come to replace it.Production of mechanical hand can increase the automation level of production and labor produ ctivity; can reduce labor intensity, ensuring product quality, to achieve safe production; particularl y in the high-temperature, high pressure, low temperature, low pressure, dust, explosive, toxic and radioactive gases such as poor environment can replace the normal working people. Here I would l ike to think of designing a robot to be used in actual production.Why would a robot designed to provide a pneumatic power: pneumatic robot refers to the comp ressed air as power source-driven robot. With pressure-driven and other energy-driven comparison have the following advantages: 1. Air inexhaustible, used later discharged into the atmosphere, do es not require recycling and disposal, do not pollute the environment. (Concept of environmental p rotection) 2. Air stick is small, the pipeline pressure loss is small (typically less than asphalt gas pa th pressure drop of one-thousandth), to facilitate long-distance transport. 3. Compressed air of the working pressure is low (usually 4 to 8 kg / per square centimeter), and therefore moving the mate rial components and manufacturing accuracy requirements can be lowered. 4. With the hydraulic t ransmission, compared to its faster action and reaction, which is one of the advantages pneumatic outstanding. 5. The air cleaner media, it will not degenerate, not easy to plug the pipeline. But there are also places where it fly in the ointment: 1. As the compressibility of air, resulting in poor aer odynamic stability of the work, resulting in the implementing agencies as the precision of the velo city and not easily controlled. 2. As the use of low atmospheric pressure, the output power can not be too large; in order to increase the output power is bound to the structure of the entire pneumatic system size increased.With pneumatic drive and compare with other energy sources drive has the following advantage s:Air inexhaustible, used later discharged into the atmosphere, without recycling and disposal, do not pollute the environment. Accidental or a small amount of leakage would not be a serious impa ct on production. Viscosity of air is small, the pipeline pressure loss also is very small, easy long-d istance transport.The lower working pressure of compressed air, pneumatic components and therefore the materi al and manufacturing accuracy requirements can be lowered. In general, reciprocating thrust in 1 t o 2 tons pneumatic economy is better.Compared with the hydraulic transmission, and its faster action and reaction, which is one of th e outstanding merits of pneumatic.Clean air medium, it will not degenerate, not easy to plug the pipeline. It can be safely used in fl ammable, explosive and the dust big occasions. Also easy to realize automatic overload protection. Second, the composition, mechanical handRobot in the form of a variety of forms, some relatively simple, some more complicated, but the basic form is the same as the composition of the , Usually by the implementing agencies, transmis sion systems, control systems and auxiliary devices composed.1.Implementing agenciesManipulator executing agency by the hands, wrists, arms, pillars. Hands are crawling institution s, is used to clamp and release the workpiece, and similar to human fingers, to complete the staffin g of similar actions. Wrist and fingers and the arm connecting the components can be up and down , left, and rotary movement. A simple mechanical hand can not wrist. Pillars used to support the ar m can also be made mobile as needed.2. TransmissionThe actuator to be achieved by the transmission system. Sub-transmission system commonly us ed manipulator mechanical transmission, hydraulic transmission, pneumatic and electric power tra nsmission and other drive several forms.3. Control SystemManipulator control system's main role is to control the robot according to certain procedures, direction, position, speed of action, a simple mechanical hand is generally not set up a dedicated co ntrol system, using only trip switches, relays, control valves and circuits can be achieved dynamic drive system control, so that implementing agencies according to the requirements of action. Actio n will have to use complex programmable robot controller, the micro-computer control. Three, mechanical hand classification and characteristicsRobots are generally divided into three categories: the first is the general machinery does not re quire manual hand. It is an independent not affiliated with a particular host device. It can be progra mmed according to the needs of the task to complete the operation of the provisions. It is character ized with ordinary mechanical performance, also has general machinery, memory, intelligence tern ary machinery. The second category is the need to manually do it, called the operation of aircraft. I t originated in the atom, military industry, first through the operation of machines to complete a pa rticular job, and later developed to operate using radio signals to carry out detecting machines suc h as the Moon. Used in industrial manipulator also fall into this category. The third category is ded icated manipulator, the main subsidiary of the automatic machines or automatic lines, to solve the machine up and down the workpiece material and delivery. This mechanical hand in foreign count ries known as the "Mechanical Hand", which is the host of services, from the host-driven; excepti on of a few outside the working procedures are generally fixed, and therefore special.Main features:First, mechanical hand (the upper and lower material robot, assembly robot, handling robot, stac king robot, help robot, vacuum handling machines, vacuum suction crane, labor-saving spreader, p neumatic balancer, etc.).Second, cantilever cranes (cantilever crane, electric chain hoist crane, air balance the hanging, e tc.)Third, rail-type transport system (hanging rail, light rail, single girder cranes, double-beam cran e)Four, industrial machinery, application of handManipulator in the mechanization and automation of the production process developed a new ty pe of device. In recent years, as electronic technology, especially computer extensive use of robot development and production of high-tech fields has become a rapidly developed a new technology , which further promoted the development of robot, allowing robot to better achieved with the com bination of mechanization and automation.Although the robot is not as flexible as staff, but it has to the continuous duplication of work an d labor, I do not know fatigue, not afraid of danger, the power snatch weight characteristics when compared with manual large, therefore, mechanical hand has been of great importance to many sectors, and increasingly has been applied widely, for example:(1) Machining the workpiece loading and unloading, especially in the automatic lathe, combinat ion machine tool use is more common.(2) In the assembly operations are widely used in the electronics industry, it can be used to asse mble printed circuit boards, in the machinery industry It can be used to assemble parts and compo nents.(3) The working conditions may be poor, monotonous, repetitive easy to sub-fatigue working e nvironment to replace human labor.(4) May be in dangerous situations, such as military goods handling, dangerous goods and haza rdous materials removal and so on..(5) Universe and ocean development.(6), military engineering and biomedical research and testing.Help mechanical hands: also known as the balancer, balance suspended, labor-saving spreader, ma nual Transfer machine is a kind of weightlessness of manual load system, a novel, time-saving tec hnology for material handling operations booster equipment, belonging to kinds of non-standard d esign of series products. Customer application needs, creating customized cases. Manual operation of a simulation of the automatic machinery, it can be a fixed program draws ﹑ handling objects o r perform household tools to accomplish certain specific actions. Application of robot can replace t he people engaged in monotonous ﹑ repetitive or heavy manual labor, the mechanization and aut omation of production, instead of people in hazardous environments manual operation, improving working conditions and ensure personal safety. The late 20th century, 40, the United States atomic energy experiments, the first use of radioactive material handling robot, human robot in a safe roo m to manipulate various operations and experimentation. 50 years later, manipulator and gradually extended to industrial production sector, for the temperatures, polluted areas, and loading and unl oading to take place the work piece material, but also as an auxiliary device in automatic machine tools, machine tools, automatic production lines and processing center applications, the completio n of the upper and lower material, or From the library take place knife knife and so on according t o fixed procedures for the replacement operation. Robot body mainly by the hand and sports instit utions. Agencies with the use of hands and operation of objects of different occasions, often there are clamping ﹑ support and adsorption type of care. Movement organs are generally hydraulic pn eumatic ﹑﹑ electrical device drivers. Manipulator can be achieved independently retractable ﹑rotation and lifting movements, generally 2 to 3 degrees of freedom. Robots are widely used in me tallurgical industry, machinery manufacture, light industry and atomic energy sectors.Can mimic some of the staff and arm motor function, a fixd procedure for the capture, handlingobjects or operating tools, automatic operation device. It can replace human labor in order to achie ve the production of heavy mechanization and automation that can operate in hazardous environm ents to protect the personal safety, which is widely used in machinery manufacturing, metallurgy, e lectronics, light industry and nuclear power sectors. Mechanical hand tools or other equipment co mmonly used for additional devices, such as the automatic machines or automatic production line handling and transmission of the workpiece, the replacement of cutting tools in machining centers, etc. generally do not have a separate control device. Some operating devices require direct manip ulation by humans; such as the atomic energy sector performs household hazardous materials used in the master-slave manipulator is also often referred to as mechanical hand.Manipulator mainly by hand and sports institutions. Task of hand is holding the workpiece (or t ool) components, according to grasping objects by shape, size, weight, material and operational re quirements of a variety of structural forms, such as clamp type, type and adsorption-based care suc h as holding. Sports organizations, so that the completion of a variety of hand rotation (swing), mo bile or compound movements to achieve the required action, to change the location of objects by g rasping and posture.Robot is the automated production of a kind used in the process of crawling and moving piece f eatures automatic device, which is mechanized and automated production process developed a ne w type of device. In recent years, as electronic technology, especially computer extensive use of ro bot development and production of high-tech fields has become a rapidly developed a new technol ogy, which further promoted the development of robot, allowing robot to better achieved with the combination of mechanization and automation. Robot can replace humans completed the risk of d uplication of boring work, to reduce human labor intensity and improve labor productivity. Manip ulator has been applied more and more widely, in the machinery industry, it can be used for parts a ssembly, work piece handling, loading and unloading, particularly in the automation of CNC mach ine tools, modular machine tools more commonly used. At present, the robot has developed into a FMS flexible manufacturing systems and flexible manufacturing cell in an important component o f the FMC. The machine tool equipment and machinery in hand together constitute a flexible man ufacturing system or a flexible manufacturing cell, it was adapted to small and medium volume pr oduction, you can save a huge amount of the work piece conveyor device, compact, and adaptable. When the work piece changes, flexible production system is very easy to change will help enterpr ises to continuously update the marketable variety, improve product quality, and better adapt to ma rket competition. At present, China's industrial robot technology and its engineering application le vel and comparable to foreign countries there is a certain distance, application and industrializatio n of the size of the low level of robot research and development of a direct impact on raising the level of automation in China, from the economy, technical considerations are very necessary. Theref ore, the study of mechanical hand design is very meaningful.译文:机械手机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机器人毕业设计外文翻译
外文资料:INDUSTRIAL ROBOTSMechatronicsThe success of industries in manufacturing and selling goods in a world market increasingly depends upon an ability to integrate electronics and computing technologies into a wide range of primarily mechanical products and processes. The performance of many current products-cars, washing machines, robots or machine tools-and their manufacture depend on the capacity of industry to exploit developments in technology and to introduce them at the design stag into both products and manufacturing processes. The results so that the whole industrial system to produce a cheaper and easier than in the past, more reliable, more powerful manufacturing technology, this intense competition, leading to the original electronic engineering and mechanical engineering have been gradually difference among the various disciplines with engineering design replaced with the mutual penetration, resulting in a mechanical and electrical integration, or mechatronics.In this competitive environment, the success of products and technologies are those that effectively combine the electronic and mechanical products, but not the main reason is the absence of a successful application of electronic technology. General product innovation in machine-building industry, often starting from the mechanical hardware design, but in order to achieve vision, from the initial stages of the design process must take full account of electronic technology, control engineering and computer technology. Research from the machinery and electronics to engineering design, the key is through the mechanics and electronics hidden boundaries, put them together, it is understood today the key to this transformation took place.To be successful, early in the design of the study need to establish the concept of mechatronics, when the specific program has not yet formed, so there is choice. In this way, design engineers, especially mechanical design engineers will be able to make a decision too quickly to avoid falling into the stereotypes and reduce productivity.Fully study the market trend, we will find electromechanical integration with a design, will lead to a revival of the field, such as high-speed textile machines, measurement and measurement systems, and automatic test equipment, integrated circuits Xiang kind of special equipment. In many cases sub ah, the emerging field of production and recovery are often formed by the embedded microprocessor electronics and basic mechanical system caused by the integrated and enhanced processing capacity.Flexibility of the manufacturing process the request resulted in the production of flexible operating system concepts in this system, many components such as computer numerical control machine tools, robots and automatic guided vehicles, etc. associated with joint production, exchange of information between them through Local Area Network.The products so far, most do not realize the design of electromechanical integration of diversity for the engineering sudden opportunity. The final product sold to customers is the essence of our revenue sources, which may begin the application is the date the new mechatronic products and provide enhanced functionality important difference between traditional products.The following examples may illustrate that the traditional products: Automatic transmission control engine and automatic control of the development of engines and transmissions tend to reduce the radiation, save fuel and time by preventing excessive speed and the use of the fuel flow can be adjusted to avoid false-driven gear and so on.Power-driven tools of modern power-driven tools, such as drill bits you can provide a variety of functions, including speed and torque control, reverse action and acceleration control.The new examples of mechatronic products are as follows:Standard components assembled a traditional industrial robot because of structural problems often many restrictions. Using a number of structural parts and drive, coupled with the central processor can be made by the standard components to assemble the robot system, so users can assemble to meet their own needs various robots.Video and CD player, video and CD player laser head is equipped with sophisticated, you can read the digital information on the disk. Withmicroprocessor control system can provide multi-track selection, scan preview and many other features.The above examples show that the purpose of the use of machinery is the continuous improvement of electronic consumer goods, not to keep consumer prices lower. Machinery and electronics products provide solutions to specific problems of the ideal way to use a low-cost element or standards.The personal computer controller and programmable logic controllerEarly machine tools and robots in the controller's function is to store and perform some simple procedures for the implementation of the tool or device with a predetermined speed to generate the required movement. Since 1981, IBM's first since the emergence of personal computers, many manufacturers produce microprocessors based on its so-called. Through the main memory and secondary storage devices exchange data, which allows users to use than the system microprocessor to provide the actual storage space for more storage space programming. It is this processing power and storage efficiency had a dramatic impact, making more and more industrial sectors to PC, for data acquisition and control applications. In addition to handling capabilities, PC machine control applications as a key component of many other advantages. These advantages are:(1) choice of application software more than a dedicated controller.(2) Select the tools to improve application efficiency and room for more.(3) The PC is available in a variety of forms ranging from a single card, a portable,a desktop and ruggedized industrial version for use on the factory floor.(4) bus architecture with multiple expansion slots, digital and analog input / output cards can be produced by several manufacturers.(5) special machine or a small computer than a more flexible, depending on the application can be very convenient for a variety of configurationsPC, data acquisition and control device may be an additional external and interest rates through, or it may be a plug-in board. Typically add a separate external rack, the internal packaging has to provide power to the host through the serial or parallel data communications cable. A variety of standard format modules can be inserted in the rack as needed.PC, data acquisition There are basically two ways. The first use of analog /digital conversion card connected directly with the host backplane. Conversion cards generally do port address can be any support for input / output command driven programming language. Usually connected to the card, select the base address. This allows a different card or card number the same host in the same PC connection and operation. The second method is to use the interface circuit board with a digital voltage meter and frequency meter and other equipment to control the PC, to receive data. The Common Criteria is an international Association of Electrical and Electronics Engineers IEEE-488 standard parallel communication link. Comparison of fast, easy and economical is the first approach, using the input / output port address the card to the PC, the output of the measurement data or control signals received from the PC machine. These cards are versatile, easy to obtain, and has the following characteristics:(1) multi-channel digital input / Shucu interface with optical isolation and Darlington driver settings.(2) pulse timing and counting facilities.(3) multi-channel programmable A / D conversion.(4) D / A conversion.(5) thermocouple input.PC machine control applications including the latest developments in data acquisition and control software, can provide the user with a drop-down menus and mouse-driven windows environment.Before the invention of the computer control system main relay logic circuit with electrical or pneumatic logic circuits to automate. The late 20th century invention of 60 programmable logic controllers (PLC) directly instead of the relay controller. It should be noted, in the United States, also known as programmable logic controller PLC, abbreviated as PC. Do it with a personal computer PC or IBM-PC to be confused.Programmable logic controllers and micro-computer composed of the same, there are microprocessors, memory and input / output devices. Processor performs memory control process according to input instructions, defined by the logic control program to provide output. Every step during the implementation period, the program is quickly scanned to record all of the input state, then the program logic to determine output. Controller scan each of these steps are repeated.Some small, dedicated to the sequential control of the programmable logic controller usually has 12 input ports and eight output ports are extended to both pinch the 128 input / output circuit. Input interface connected to these lines, the process of receiving input signals from the control, and these signals into a form suitable for processing. Similarly, the programmable logic controller output interface with a variety of process hardware, such as lights, motors, relays and spiral coil.Using a handheld programming keyboard, or with the corresponding software development kit with a personal computer connected to the programmable controller command input random access memory, the random access memory with battery backup power supply generally. If the programmer to establish procedures for using the symbol key, and some programming console LCD display can also display some of the graphics, using ladder logic diagram shows the format process. After a debugging program, the control method through simulation testing, you can put code into erasable programmable read-only memory chips, mounted on the programmable logic controller.Many manufacturers are in the manufacture of programmable logic controller. Although some manufacturers use their own proprietary software language, but most are still using ladder logic diagrams. Invention of this language is intended to be more acceptable to some customers, these customers are interested in is how to shift from hard-line programmable logic controller, relay control. In addition to input / output devices, the programmable logic controller also includes timers, counters, and other special function devices.Communication with other control devices exchange the traditional programmable logic controller is not the strengths of the network. Many industrial controllers are equipped with RS232 serial port, and other digital control equipment systems to exchange information.The robotIndustrial robot is a tool to improve manufacturing productivity. He can assume that humans may have dangerous jobs. The first industrial robot in nuclear power plants had to be replaced and the fuel rods. Industrial robots can work on the assembly line, such as the installation of electronic components, printed circuitboard. In this way, people can escape the monotony of the work stand out. Robots can also remove the bomb, as the disabled person services for our community to do all kinds of work.Robot is a re-programming, multi-agency work can be pre-programmed positions in all moving parts, materials, tools or other special equipment, complete a variety of different jobs.The location is pre-programmed robot to complete the work must follow the path. In some pre-programmed location, the robot will stop some operations, such as installing parts, painting or welding. These pre-programmed location is stored in the robot's memory to recall at any time of continuous operation. If the job requirements changed, the location of these pre-programmed data, together with other programming can be changed. These characteristics make industrial robot programming and computer are very similar.Robot system can control the robot's work unit. Robot work cell robots perform tasks in the work environment. Unit of work, including the robot manipulator, controller, working platforms, safety equipment and gear. In addition, the robot should be able to communicate with the outside world signals.Robot manipulator to complete the specific work of the robot system, which consists of two parts: the mechanical parts and ancillary parts. Subsidiary part of the installed robot base. Several fixed on the floor at the job site. But sometimes the base is able to move, in this case, the base placed in orbit for the robot from one location to another location should be.Subsidiary part of the robot arm. It may be a straight arm can move, it may be a hinged arm, the robot work to provide multiple axes. Articulated arm that is connected to the relevant section of the arm. End of the arm with a wrist. Wrist mounted on another shaft and fitted with flange root. In the flange also can be connected to different tools to complete different tasks. Mechanical axis allows the robot hand in a specific area to work. This area is called the robot unit of work, it depends on the size of the robot. If the robot the size of the increase will increase the size of the unit of work.Manipulator movement control drive or drive system. They drive the state work unit in the rotation. Drive system can make the electrical, hydraulic, it can be pneumatic. Drive power generated by the various institutions converted intomechanical energy, all kinds of drive system is connected by mechanical transmission. Those from the chain, gears and ball screw driven mechanical transmission device composed of the axis of the robot.Used to control the robot to control its movement and the work unit of the external device. Handheld keyboard by hanging the movement of the robot controller program input. The data stored in the controller's memory for future calls.Controllers also work in the unit with an external device to communicate. For example, the controller has an input line. Completion of processing input lines connected, high-speed controller for robot pick in the specified location processed parts. Mechanical hand a new part into the machine, the controller send a signal to start processing.Some of the drum controller is composed by a mechanical operation, the internal implementation of the input sequence of events. The controller is generally used very simple robot system. Most of the robot controller in your system much more complex, reflecting the latest developments in electronic technology. They are controlled by the microprocessor, the operation more flexible.The controller can transmit signals in the communications line. This mechanical hand and two-way communication between the controllers continuously update the location and operation of the system. The controller also includes a computer with different devices to communicate. This communication link to the robot as part of computer-aided manufacturing systems. Microprocessor system uses solid-state storage devices. These storage devices may be magnetic guns, random access memory, floppy disks and tapes.Controller and the robot powered by a power source supply. Robotic systems typically use two kinds of power: a controller may provide alternating current; the other power source used to drive each axis manipulator. For example, if the robot is controlled by a hydraulic or pneumatic drive, these devices will receive the control signal, a robot in motion.The robot sensorAlthough the robot has great ability, but often than not with a little practice, but the workers. For example, workers can find parts that fell on the ground or no parts feeder. But not the sensor, the robot will not get this information. Even the mostsophisticated sensor system, the robot is smaller than an experienced worker. Therefore, a good robot system design requires many sensor and robot controller using the phase to make it operate as close as possible the perception of workers. The most frequently used robotics sensors into contact with the non-contact. Contact sensors can be further divided into tactile sensors, force and torque sensors. Tactile or contact sensors can be measured by the drive-side and the actual contact between other objects, micro-switch is a simple tactile sensor. When the robot by the drive-side contact with other objects, the robot stop motion sensors to avoid collisions between objects to tell the robot has reached the goal; or detection to measure the size of the object. Force and torque sensors in the robot's gripper and wrist joint between the last, or the load on the robot parts, measuring reaction force and torque. Force and torque sensors and piezoelectric sensors are mounted on flexible parts of the strain gauges.Non-contact sensors include proximity sensors, vision sensors, sound detectors, sensitive components and scope. Proximity sensors detect objects near the sensor and the label. For example, eddy current sensor can accurately maintain a fixed distance between the plates. Most cheap robot proximity sensors including a light-emitting diode and a photodiode receiver transmitter, receiver reflector closer to the reflection of light. The main disadvantage of this sensor is closer to the object reflectance of light will affect the received signal. Other proximity sensors using capacitance and inductance associated with the principle.Visual sensing system is very complex, based on the TV camera or laser scanner works. Video signal by hardware pretreatment to 30-60 per second input into the computer. Computer analysis of the data and extract the required information, such as the existence of objects and object features, location, direction of operation, or assembly of components and product testing is complete.Sound sensitive devices used to sense and interpret sound waves. To detect sound waves from the basic continuous speech word for word recognition that people, all kinds of sound ranging from the complexity of sensitive components. In addition to human verbal communication, the robot can use voice control of sensitive components arc welding, I heard the voice of the collision or the collapse of the movement of the robot when the organization to predict the mechanical damage will occur and the detection of objects within the defects.There is also a non-contact systems for projector and imaging the surface of the object surface shape information or distance information.Static detection and closed-loop sensor probe used in two ways. When the detection and operation of the robot system moves alternately, it is usually necessary to use the sensor. That probe is a robot is not operating, the operation has nothing to do with the sensors, this method is called static detection. In this way, vision sensors are looking for is to capture the position and direction of the object, then the robot moves straight to the site.In contrast, closed-loop operation of motion detection robot, always under the control of the sensor. Most sensors are closed loop mode, they can always detect the actual location of the robot and the deviation between the ideal position, and drive the robot fix this error. In the closed-loop detection, even if the object in motion, for example, the conveyor belt, the robot can grasp it and sent it to the desired location.However, in the early 20th century, 80, a number of factors hindered the development of closed-loop detection. The most important reason is the image map for too long, almost equal to the robot move from one place to another time. For practical, for the robot arm motion, image analysis time by reducing down time should be able to accept and explain a few frames.In the use of force and tactile sensor control movement, reaction time to visual sensor that is no longer a problem, because very little information when the sensor transmission. In other words, we can placed on the wrist force and torque sensor 6, or place a finger on the low-resolution binary sensor array. Since the sensor more complex, we can expect delivery by the sensor data can be more of information.中文翻译:工业机器人机电一体化在国际市场中,制造业和工业产品德销售业绩取得的成绩,越来越依靠电子技术和计算机技术与传统机械制造和机械产品的广泛结合。
工业机械臂控制中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)Hand Column Type Power MachineFollow with our country the rapid development of industrial production, rapidly enhance level of automation, implementation artifacts of handling, steering, transmission or toil for welding gun, spraing gun, spanner and other tools for processing, assembly operations for example automation, should cause the attention of people more and more.Industrial robot is an important branch of industrial robots. It features can be programmed to perform tasks in a variety of expectations, in both structure and performance advantages of their own people and machines, in particular, reflects the people's intelligence and adaptability. The accuracy of robot operations and a variety of environments the ability to complete the work in the field of national economy and there are broad prospects for development. With the development of industrial automation, there has been CNC machining center, it is in reducing labor intensity,while greatly improved labor productivity. However, the upper and lower common in CNC machining processes material, usually still use manual or traditional relay-controlled semi-automatic device. The former time-consuming and labor intensive, inefficient; the latter due to design complexity, require more relays, wiring complexity, vulnerability to body vibration interference, while the existence of poor reliability, fault more maintenance problems and other issues. Programmable Logic Controller PLC-controlled robot control system for materials up and down movement is simple, circuit design is reasonable, with a strong anti-jamming capability, ensuring the system's reliability, reduced maintenance rate, and improve work efficiency. Robot technology related to mechanics, mechanics, electrical hydraulic technology, automatic control technology, sensor technology and computer technology and other fields of science, is a cross-disciplinary integrated technology.Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism. The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective. The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks. Manipulators controlled in this manner move at slow speeds with unnecessary vibrations. Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel processing techniques.Manipulator institutional form is simple, strong professionalism, only as a loading device for a machine tools, special-purpose manipulator is attached to this machine. Along with the development of industrial technology, produced independently according to the process control to achieve repetitive operation, using range is wide "program control general manipulator", hereinafter referred to as general manipulator. General manipulator used to quickly change the workingprocedure, adaptability is stronger, so he is in constant transformation in the medium and small batch production of products are widely used.NO.1 The composition of the manipulatorManipulator is in the form of a variety of, some relatively simple, some more complex, but the basic form is the same, generally by the actuators, transmission system, control system and the auxiliary device.The actuator manipulator actuators, by the hand, wrist, arm, pillars. Hand is grasping mechanism, which is used to clamp and release artifacts, as a human finger, can complete staff of similar action. Is connected to the fingers and wrist arm components, can be up and down, left and right sides and rotary movement. Simple manipulator can not the wrist. Prop used to support the arm, can also according to need to make it move.The driving system movement of the actuator by the transmission system to achieve. Common mechanical transmission system of mechanical transmission, hydraulic transmission, pneumatic transmission and power transmission etc. Several forms.The control system of manipulator control system main function is to control the manipulator according to certain procedures, movement direction, position, speed, simple manipulator is generally not set special control system, only the stroke switch, relay, control valves and control circuit can realize dynamic transmission system, the executing agency action in accordance with requirements. Action complex manipulator should adopts the programmable controller, microcomputer control. NO.2 Classification and characteristics of the manipulator Robots generally fall into three categories the first is general manipulator doesn't need manual operation. It is a kind of independence is not attached to a host device. It can according to the need of the task program, the operation of the provisions to complete. It is with the characteristics of common mechanical performance, also has general machinery, memory, intelligence of three yuan. Thesecond is the need to do manually. Called Operating machine. It originated in the atom, military industry, first by Operating machine to complete a specific assignment, later to use radio signal Operating machine to explore the moon and so on. Used in the forging industry Operating machine falls under this category. The third kind is to use special manipulator, mainly attached to automatic machine or automatic line, used to solve machine tool material and workpiece to send up and down. This manipulator in a foreign country is called "the Mechanical Hand", it is in the service of the host, driven by the host; Except a few working procedures generally is fixed, so it is special.NO.3 The application of industrial manipulatorManipulator is in the process of mechanization, automation production, developed a kind of new type of device. In recent years, with electronic technology, especially the wide application of electronic computer, the robot's development and production has become a high technology developed rapidly in the field of an emerging technology, it promoted the development of the manipulator, make the manipulator can achieve better with the combination of mechanization and automation.Manipulator although it is not as flexible as manpower, but it can have repeated work and labor, do not know fatigue, is not afraid of danger, snatch heavy weights strength characteristics such as larger than man, as a result, the manipulator has been brought to the attention of the many departments, and have been applied more and more widely.(1) Machine tools machining the workpiece loading and unloading, especially in automatic lathe, use common combination machine tools.(2) Widely used in the assembly operation, it can be used to assemble printed circuit board in the electronics industry, it can be in the machinery industry to assemble parts.(3)Can be in working conditions is poor, repetitive easy fatigue of the work environment, to instead of human Labour.(4) The development of the universe and the ocean.(5) Military engineering and biomedical research and test.Application of robots can replace people in dull, repetitive or heavy manual work, to realize mechanization and automation of production, instead of human in harmful environment of manual operation, improve labor condition, ensure the personal safety. In the late 1940 s, the United States in the nuclear experiments, firstly adopts manipulator handling radioactive materials, people in the security room to manipulate manipulator for various operation and experiment. After the '50 s, robots gradually extended to industrial production department, for use in high temperature, serious pollution of local leave work pieces and the loading and unloading materials, as auxiliary device in the machine tool automatic machine, automatic production line and processing center in the application, complete the material up and down or from libraries take put the knives and replace tool operations such as fixed procedure. Manipulator is mainly composed of hand and motion mechanism. Hand mechanism varies according to the usage situation and operation object, the common are holding, hold and the adsorption type etc. Motion mechanism usually driven by hydraulic, pneumatic, electric devices. Manipulator can be achieved independently of scaling, rotation and lifting movement, generally speaking, there are 2 ~ 3 degrees of freedom. Robots are widely used in machinery manufacturing, metallurgy, light industry and atomic energy etc.Manipulator is used in the production process automation with grab and move the workpiece is a kind of automatic device, it is in the process of mechanization, automation production, developed a new type of device. In recent years, with electronic technology, especially the wide application of electronic computer, the robot's development and production has become a high technology developed rapidly in the field of an emerging technology, it promoted the development of the manipulator, make the manipulator can achieve better with the combination of mechanization and automation. Robots can replace humans do dangerous, repeat the boring work, reduce human labor intensity and improve labor productivity. Manipulator have been applied more and more widely, it can be used forparts assembled in the machinery industry, processing the workpiece handling, loading and unloading, especially on the automatic CNC machine, combination machine tools more common use. At present, the manipulator has developed into a flexible manufacturing system of FMS and flexible manufacturing cell is an important component of FMC. The machine tool equipment and manipulator of a flexible manufacturing system or flexible manufacturing unit, it is suitable for medium and small batch production, can save a large workpiece delivery device, structure is compact, but also has a strong adaptability. When the workpiece changes, flexible production system is easy to change, is advantageous to the enterprise continuously updated marketable varieties, improve product quality, better adapt to the needs of the market competition. But at present our country's industrial robot technology and its engineering application level and foreign than there is a certain distance, scale and industrialization level is low, research and development of the manipulator has direct influence on raising the automation level of production in our country, from the consideration on the economic and technology is very necessary. Therefore, carries on the research design of the manipulator is very meaningful.NO.4 The development trend of manipulatorCurrent industrial applications of the manipulator gradually expanding, constantly improve the technology performance. Due to the short development time, it has a gradual understanding of process, the manipulator and a technically perfect step by step process, its development trend is:1.To expand the application of manipulator and processing industryAt present domestic robots used in mechanical industry more in cold working operations, while in the hot work such as casting, forging, welding, heat treatment less, and the application of assembly work, etc. So processing work items heavy, complicated shape and high environmental temperature, bring many difficulties to manipulator design, manufacture, it is need to solve the technical difficulties, make the manipulator to better service for processing work. At the same time, in otherindustries and industrial sectors, also will with the constant improvement of the industrial technology level, and gradually expand the use of the manipulator2.Improve the work performance of the industry manipulatorManipulator in the working performance of the pros and cons, determines the application and production, it can normal manipulator working performance of the repetitive positioning accuracy and speed of work two indicators, decided to ensure the quality of manipulator can complete the operation of the key factors. Therefore to solve good working stability and rapidity of the manipulator's request, besides from solve buffer localization measures, should also be development meet the requirements of mechanical properties and low price of electro-hydraulic servo valve, servo control system was applied to the mechanical hand.3.Development of modular robotsVariable application manipulator from the characteristics of the manipulator itself, more adapted to the product type, equipment updates, many varieties, small batch, but its cost is high, the special manipulator and cheap, but the scope is limited. Therefore, for some special purpose, you need special design, special processing, thus improving the product cost. In order to adapt to the request of the application field of classify, the structure of the manipulator can be designed to the form of combination. Modular manipulator is a common parts according to the requirement of the job, select necessary to accomplish the function of the unit components, based on the base of combination, deserve to go up with adaptive control part, namely the manipulator with special requirements can be completed. It can simplify the structure, take into account the specificity and design on the use of generality, more in the series design and organization of standardization, specialized production, to improve quality and reduce cost of the manipulator, is a kind of promising manipulator4. Has a "vision" and "touch" of so-called "intelligent robots"For artificial has flexible operation and the need for judgment of the situation, industrial manipulator is very difficult to replace human labor. Such as in the working process of the accident, disorders and conditions change, etc., manipulator cannot be automatically distinguish correct, but to stop, after waiting for people to rule outaccident can continue to work. As a result, people puts forward higher requirements on mechanical hand, hope to make it a "vision", "touch", etc, make it to the judgment, the choice of object, can be continuously adjusted to adapt to changing conditions, and can perform a "hand - eye coordination. This requires a computer can handle a lot of information, require them to exchange of information with machine "dialogue".This "vision", "touch" feedback, controlled by computer, is one part of the "smart" mechanism is called "intelligent robots". Is the so-called "smart" includes: the function of recognition, learning, memory, analysis, judgment. And recognition is through the "visual", "touch" and "hearing" feel "organ" of cognitive object.Which has the function of sensory robot, its performance is perfect, can accurately clamping arbitrary azimuth objects, determine an object, weight, work over obstacles, the clamping force is measured automatically, and can automatically adjust, suitable for engaged in the operation of the complex, precision, such as assembly operation, it has a certain development prospects.Intelligent robots is an emerging technology, the study of it will involve the electronic technology, control theory, communication technology, television technology, spatial structure and bionic mechanical discipline. It is an emerging field of modern automatic control technology. With the development of science and intelligent robots will replace people to do more work.工业机械手随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或是操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,应越来越引起人们的重视。
机器人外文翻译(文献翻译_中英文翻译)
外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业机器人发展毕业论文中英文资料外文翻译文献工业机器人发展中英文资料外文翻译文献The development of industrial robotsIndustrial robot is a robot, it consists of a CaoZuoJi. Controller. Servo drive system and detection sensor device composition, it is a kind of humanoid operating automatic control, can repeat programming, can finish all kinds of assignments in three difficulties in authorship space the electromechanical integration automation production equipment, especially suitable for many varieties, become batch flexible production. It to stabilize and improve the product quality, raise efficiency in production, improve working conditions of the rapid renewal plays an extremely important role.Widely used industrial robots can gradually improve working conditions, stronger and controllable production capacity, speed up product updating and upgrading. Improve production efficiency and guarantee the quality of its products, eliminate dull work, save labor, provide a safe working environment, reduces the labor intensity, and reduce labor risk, improve the machine tool, reduce the workload and reduce process production time and inventory, enhance the competitiveness of enterprises.As technology advances, the development of industrial robot, the process can be divided into three generations -- generation, fordemonstration reproduce, and it mainly consists of robot hand controller and demonstration teaching machines composed, can press advance box to record information guide action, the current industry repeated reappearance application of execution most. The second to feel robot, such as powerful sleep touch and vision, it has for some outside information feedback adjustment ability, currently has entered the application stage. Third generation of intelligent robot it has sense and understanding ability, in the external environment for the working environment changed circumstances, can also successfully complete the task, it is still in the experimental research phase.The United States is the birthplace of the robot, as early as in 1961, America's ConsolidedControlCorp and AMF companies developed the first practical demonstration emersion robot. After 40 years of development,the United States in the world of robotics has been in the lead position. Still Its technology comprehensive, advanced, adaptability is strong.Japan imported from America in 1967, the first robot in 1976 later, with the rapid development of the microelectronics and the market demand has increased dramatically, Japan was labor significant deficiencies in enterprise, industrial robots by "savior"'s welcome, make its Japanese industrial robots get fast development, the number of now whether robots or robot densities are top of the world, known as the "robot kingdom," said. The robot introduced from Germany time than Britain and Swedenabout late 1956, but the Labour shortages caused by war, national technical level is higher social environment, but for the development and application of industrial robot provides favorable conditions. In addition, in Germany, for some dangerous prescribed, poisonous or harmful jobs, robot instead of ordinary people to the labor. This is the use of robots exploit a wide range of markets, and promote the development of the industrial robot technology. At present, the German industrial robots total of the world, which only behind to Japan.The French government has been more important robot technology, and through a series of research program, support established a complete science and technology system, make the development of the French robot smoothly. In government organization project, pay special attention to the robot research based technique, the focus is on the application research on in robot. And by industry support the developmentapplication and development of work, both supplement each other, make robots in France enterprises develop rapidly and popularize and make France in the international industrial machine with indispensable if position.British jamie since the late 1970s, promote and implement a department measures listed support the development of policies and make robots British industrial robots than today's robot powers started to early, and once in Japan has made the early brilliance. However, at this time the government for industrial robots implemented the constraining errors. This mistake in Britain dust, the robot industry in WesternEurope was almost in the bottom of it. In recent years, Italy, Sweden, Spain, Finland, Denmark and other countries because of its own domestic robots market in great demand, development at a very fast pace. At present, the international on industrial robot company mainly dividedinto Japanese and European series. In AnChuan of Japanese are mainly the ethical products, the oTC, panasonic, FANLUC, not two more, etc. The products of the company kawasaki The main Asiatic KUKA, German CLOOS, Sweden's ABB, Italy CO work pelatiah U and Austria GM company.Industrial robot in China started in early 1970s, after 30 years development, roughly experienced three stages: in the 1970s and 1980s budding transplanter and the application of the 1990s initialization period. With the 20th century 70's world technology rapid development, the application of industrial robots in world created a climax, in this context, our country in 1972 start developing their industrial robots. Enter after the 1980s, with the further reform and opening, in high technology waves pound, our research and development of robot technology from the government's attention and support, "during the seventh state funds, thanked the parts were set robot and research, completed demonstration emersion type industrial robot complete technology development, developed spray paint, welding, arc welding and handling robot. , the national high technology research and development program begin to carry out, after several years research and made a large number of scientific research. Successfully developed a batch of special robot.From 9O 2O century since the early, China's national economy achieve two fundamental period of transformation into a a new round of economic restructuring and technological progress, China's industrial robots upsurge in practice and have made strides, and have developed spot welding, welding, assembling, paint, cutting, handling, palletizing etc various USES of industrial robot, and implement a batch of robot application engineering, formed a batch of industrial robots for our country industrialization base, the industrial robot soar laid a foundation. But compared with the developed countries, China also has the very big disparity of industrial robots.Along with the development of industrial robot depth and the breadth and raise the level of robot, industrial robots are has been applied in many fields. From the traditional automobile manufacturing sector to the manufacturing extensions. Such as mining robots, building robots and hydropower system used for maintenance robots, etc. In defense of military, medicine and health, food processing and life service areas such as the application of industrial robots will be more and more. The manufacturing of automobiles is a technology and capital intensive industry, is also the most widely used of industrial robots, accounting for almost to the industry for more than half of the industrial robots. In China, the industrial robot first is also used in automobile and engineering machinery industries. In car production of industrial robot is a major in the equipment, the brake parts and whole production of arc welding, spot welding, painting, handling, glue, stamping process usedin large amounts. Our country is forecast to rise period, entered the automobile ownership in the next few years, car will still growing at around 15 percent annually. So the next few years the industrial robot demand willshow high growth trend, about 50% in growth, industrial robots inour automobile industry application will get a rapid development.Industrial robot in addition to the wide application of in the automotive industry in electronic, food processing, nonmetal processing, daily consumer goods and wood furniture processing industries for industrial robots demand is growing rapidly. In Asia, 2005 72,600 sets, installation industrial robots, compared with 2004 grew by 40%, and application in electronic industry accounted for about 31%. In Europe, according to statistics, since 2004 and 2005 in l: tI industry robot in the food processing industry increased 17% the application of left and right sides, in the application of nonmetal processing industry increased 20%, and daily necessities in consumption industries increased by 32% in wood furniture processing industry, up 18% or so. Industrial robot in oil has a wide application in, such as sea oil drilling, oil platforms, pipeline detection, refinery, large oil tank and tank welding etc all can use robots to complete. In the next few years, sensing technology, laser technology, engineering network technology will be widely used in industrial robots work areas, these technologies can cause the industrial robot application more efficient, high quality, lower cost. It is predicted that future robots will in medical andhealth care, biological technology and industry, education, relief, ocean exploitation, machine maintenance, transportation and agriculture and aquatic products applied field.In China, the industrial robot market share are mostly foreign industrial robots enterprise holds. Before the gunman in the international, domestic industrial robots enterprise facing great pressure of competition. Now China is from a "manufacturing power" to "manufacturing power forward," Chinese manufacturing industry faces and the international community, participate in the international division of labor in the great challenge of industrial automation increase immediate, government must can increase the funds for robots and policy support, will give the industry of industrial robots development into new momentum. With independent brand "devil robot" MoShi special technology company dedicated to providing solutions to the mainboard and robot, is willing with all my colleagues a build domestic industrial robot happy tomorrow!ReferencesElectronic Measurement and Intrumenttations,Cambridge University Press,1996工业机器人的发展工业机器人是机器人的一种,它由操作机(控制器(伺服驱动系统和检测传感器装置构成,是一种仿人操作自动控制,可重复编程,能在三难空间完成各种作业的机电一体化的自动化生产设备,特别适合于多品种,变批量柔性生产。