2.设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.
解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21.
因为a 1≠0,所以a 1=1.
令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2. 当n ≥2时,由2a n -1=S n,2a n -1-1=S n -1, 两式相减得2a n -2a n -1=a n ,即a n =2a n -1.
于是数列{a n }是首项为1,公比为2的等比数列. 因此,a n =2n -
1.
所以数列{a n }的通项公式为a n =2n -
1.
(2)由(1)知,na n =n ·2n -
1.
记数列{n ·2n -
1}的前n 项和为B n ,于是
B n =1+2×2+3×22+…+n ×2n -
1.①
2B n =1×2+2×22+3×23+…+n ×2n .② ①-②,得
-B n =1+2+22+…+2n -
1-n ·2n =2n -1-n ·2n .
从而B n =1+(n -1)·2n .
即数列{na n }的前n 项和为1+(n -1)·2n .
3.设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +
1+1,n ∈N *,且a 1=1,设数列{b n }满
足b n =a n +2n .
(1)求证数列{b n }为等比数列,并求出数列{a n }的通项公式; (2)若数列c n =6n -3b n
,T n 是数列{c n }的前n 项和,证明:T n <3.
(1)解 当n ≥2时,由⎩⎪⎨⎪
⎧
2S n =a n +1-2n +
1+1,2S n -1=a n
-2n
+1 ⇒2a n =a n +1-a n -2n ⇒a n +1=3a n +2n ,
从而b n +1=a n +1+2n +
1=3(a n +2n )=3b n ,
故{b n }是以3为首项,3为公比的等比数列, b n =a n +2n =3×3n -
1=3n ,
a n =3n -2n (n ≥2),
因为a 1=1也满足,于是a n =3n -2n . (2)证明 c n =6n -3b n =2n -1
3
n -1,
则T n =130+331+5
32+…+2n -33n -2+2n -13n -1,①
13T n =131+332+5
33+…+2n -33n -1+2n -13n ,② ①-②,得23T n =130+231+232+…+2
3n -1-2n -13n
=1+2
3·1-13n -1
1-
13
-2n -13n
=2-1
3n -1-2n -13n
=2-2(n +1)
3n ,
故T n =3-n +1
3
n -1<3.
4.已知单调递增数列{a n }的前n 项和为S n ,满足S n =12(a 2
n +n ).
(1)求数列{a n }的通项公式;
(2)设c n =⎩⎪⎨⎪⎧
1a 2n +1-1,n 为奇数,
3×2a n -1+1,n 为偶数,求数列{c n }的前n 项和T n .
解 (1)n =1时,a 1=1
2(a 21+1),得a 1=1,
由S n =12
(a 2
n +n ),①
则当n ≥2时,S n -1=1
2(a 2n -1+n -1),②
①-②得a n =S n -S n -1=12
(a 2n -a 2
n -1+1), 化简得(a n -1)2-a 2n -1=0,
a n -a n -1=1或a n +a n -1=1(n ≥2), 又{a n }是单调递增数列,故a n -a n -1=1,
所以{a n }是首项为1,公差为1的等差数列,故a n =n . (2)c n =⎩⎪⎨⎪⎧
1a 2n +1-1,n 为奇数,3×2a n -1+1,n 为偶数,
当n 为偶数时,
T n =(c 1+c 3+…+c n -1)+(c 2+c 4+…+c n ) =(
122
-1+142-1+…+1n 2-1
)+3×(21+23+…+2n -
1)+n 2
=11×3+13×5+…+1
(n -1)×(n +1)+3×2(1-4n
2)
1-4+n 2
=12×(11-13+13-15+…+1n -1-1n +1)+2×(4n 2-1)+n
2 =2
n +1
+n 2-2n -4
2(n +1)
.
当n 为奇数时,