二元一次方程万能公式总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

使方程左右两边相等的未知数的值叫做方程的解。接下来分享二元一次方程的万能公式,

供参考。

二元一次方程万能公式

b^2-4ac>=0,方程有实数根,否则是虚数根。

实数解是:

[-b+sqrt(b^2-4ac)]/2a

[-b-sqrt(b^2-4ac)]/2a

二元一次方程的解法

代入消元法

(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个

未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b

的形式;

(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元

一次方程;

(3)解这个一元一次方程,求出x的值;

(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;

(5)把这个方程组的解写成x=c y=d的形式。

换元法

解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某

些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。

加减消元法

(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以

适当的数,使两个方程里的某一个未知数的系数互为相反数或相等。

(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程。

(3)解这个一元一次方程,求得一个未知数的值。

(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值。

相关文档
最新文档