高分子成型加工原理

合集下载

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工是将高分子材料通过一系列的工艺操作和设备,使其转变成所需形状和尺寸的过程。

以下是高分子材料成型加工的一些常见方法:
1. 注塑成型:将高分子材料以固体或液态形式注入到模具中,在高压和高温下使其熔化并充满模具腔体,然后冷却固化,最终得到所需形状的制品。

注塑成型广泛应用于塑料制品的生产,如塑料容器、零件等。

2. 挤出成型:将高分子材料通过挤出机加热熔化,然后通过模具的挤压作用将熔融物料挤出成连续的型材,经冷却固化后得到所需形状的制品。

挤出成型常用于生产管道、板材、薄膜等产品。

3. 吹塑成型:利用吹塑机将高分子材料加热熔化,然后通过气流将其吹成空气袋状,同时在模具中形成所需形状,最后冷却固化得到制品。

吹塑成型常用于生产塑料瓶、塑料薄膜等。

4. 压延成型:将高分子材料以固体或液态形式置于两个或多个辊子之间,通过辊子的旋转和挤压,使其逐渐变薄并得到所需形状和尺寸,最后冷却固化。

压延成型常用于生产塑料薄膜、塑料板材等。

5. 注塑吹塑复合成型:将注塑成型和吹塑成型结合在一起,先通过
注塑将制品的大部分形状成型,然后通过吹塑将其膨胀、加压并使得内部空腔形成所需形状。

注塑吹塑复合成型常用于生产中空制品,如玩具、塑料容器等。

除了上述常见的成型加工方法外,还有其他方法如压缩成型、发泡成型、旋转成型等,不同的高分子材料和产品要求会选择适合的成型加工方法。

成型加工过程中需要考虑材料的熔化温度、流动性、冷却速度等因素,同时也要注意模具设计和工艺参数的优化,以获得良好的成型效果和制品质量。

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工简介高分子材料成型加工是指通过加热、挤压、拉伸等工艺将高分子材料转变成所需形状和尺寸的过程。

高分子材料广泛应用于各个领域,如塑料制品、橡胶制品、纤维材料等。

本文将介绍高分子材料成型加工的基本原理、常用的加工方法以及在实际应用中的注意事项。

基本原理高分子材料成型加工是利用高分子材料的可塑性进行加工的过程。

高分子材料的可塑性是指在一定的温度和压力下,可以被加工成各种形状的性质。

其基本原理可以归纳为以下几点:1.熔融:高分子材料在一定的温度范围内可以被熔化成流体状态,使得材料更易于流动和变形。

2.成型:将熔融的高分子材料注入到模具中,通过模具的形状和尺寸限制,使得熔融材料在冷却后得到所需的形状和尺寸。

3.冷却固化:熔融材料在模具中冷却后逐渐固化成固体,成为最终的成型品。

常用的加工方法注塑成型注塑成型是一种常用的高分子材料成型加工方法,适用于制造各种塑料制品。

其基本流程包括:1.材料准备:选择合适的塑料颗粒作为原料,将其加入注塑机的进料口中。

2.加热熔融:注塑机将原料加热、熔融,并将熔融的塑料材料注入到模具中。

3.冷却固化:模具中的熔融塑料材料在冷却后逐渐固化成固体,形成最终的成型品。

4.取出成品:将固化的成型品从模具中取出,并进行后续加工,如修整边缘、打磨表面等。

挤出成型挤出成型是另一种常用的高分子材料成型加工方法,适用于制造各种管材、板材等长型产品。

其基本流程包括:1.材料准备:将高分子材料以颗粒形式加入到挤出机的料斗中。

2.加热熔融:挤出机将颗粒状的高分子材料加热、熔融,并通过螺杆将熔融的材料挤出。

3.模具成型:挤出的熔融材料通过模具的形状和尺寸限制,被冷却成所需的形状和尺寸。

4.冷却固化:在模具中冷却后,熔融材料逐渐固化成固体,形成最终的成型品。

5.切割成品:挤出机会根据需要将成型品切割成所需的长度,以便后续使用。

除了注塑成型和挤出成型,还有许多其他的高分子材料成型加工方法,如压延成型、注射拉伸成型等,根据材料和产品的需求选择合适的加工方法。

高分子加工原理与技术2-成型原理

高分子加工原理与技术2-成型原理

Q=
1 JBiblioteka τ γ·=1 Jηaγ·2
(2-2)
用摩擦热加热塑料是通过挤出机或注射机的螺杆与 料筒的相对旋转运动等途径来实现的。由于聚合物的 表观粘度随摩擦升温而降低,使物料熔体烧焦的可能 性不大,而且塑化效率高,塑化均匀。
2.1.2 高分子材料的流变性能
(1)流动类型
➢层流和湍流 ➢稳定流动与不稳定流动 ➢等温流动和非等温流动 ➢一维流动、二维流动和三维流动 ➢拉伸流动和剪切流动 ➢拖曳流动和压力流动
第2章 高分子材料成型原理
2.1 高分子材料的加工性能 2.1.1 高分子材料的熔融性能
热传导 热传递 对流
辐射
高分子材料的熔融方法:
无熔体移走的传导熔融 有强制熔体移走(由拖曳或压力引起)的传导熔融 耗散混合——熔融 利用电的、化学的或其它能源的耗散熔融方法 压缩熔融
热扩散系数及其影响因素
聚合物熔体在管隙中的流动分析
➢ 圆管通道 ➢ 圆锥形通道
流动缺陷
塑料流体在流道中流动时,常因种种原因使流动出现 不正常现象或缺陷。这种缺陷如果发生在成型时中,则常 会使制品的外观质量受到损伤,例如表面出现闷光、麻面、 波纹以致裂纹等,有时制品的强度或其它性能也会裂变。 这些现象与工艺条件、高聚物的非牛顿性、端末效应、离 模膨胀和熔体破裂有关。
(2)非牛顿型流动
图2-6 各类型流体的流动曲线 a-宾汉流体 b, e-假塑性流体 c-膨胀性流体 d-牛顿型流体
描述假塑性和膨胀性的非牛顿流体的流变行为, 用幂律函数方程 :
τ = Kγ·n
式中 K——流体稠度,Pa·s n——流动指数,也称非牛顿指数。
(3) 时间依赖性流体 这类流体的流变特征除与剪切速率与剪切应力

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工高分子材料成型加工是指对高分子材料进行加工和塑造的过程。

高分子材料是由聚合物组成的材料,具有重要的物理性能和化学性能。

高分子材料成型加工可以通过不同的方法进行,包括热塑性成型、热固性成型和加工液态聚合物等。

热塑性成型是最常见的高分子材料成型加工方式,其中包括挤出、注塑、压塑、吹塑等方法。

挤出是将高分子材料通过加热和压力作用,从挤出机的模具中挤出成所需的形状和尺寸。

注塑是将熔融的高分子材料注入到注射模具中,然后快速冷却硬化成所需的形状。

压塑是将熔融的高分子材料放入模具中,然后通过压力使其充满整个模具并形成所需的形状。

吹塑是将热塑性聚合物通过气压吹塑成所需的形状。

热固性成型是另一种常见的高分子材料成型加工方式,其中包括热压成型、热镶嵌、热熔覆、模塑等方法。

热压成型是将预浸有热固性树脂的纤维布料放入模具中,然后在高温和高压下固化成所需的形状。

热镶嵌是将热固性树脂涂在基材上,然后将纤维布料放在上面,再通过高温和压力使其固化成一体。

热熔覆是将热固性树脂熔融后涂覆在基材上,然后通过加热使其固化成一体。

模塑是将热固性树脂放置在模具中,然后通过加热使其固化成所需的形状。

加工液态聚合物是一种新兴的高分子材料成型加工方式,其中包括3D打印、光固化、涂覆等方法。

3D打印是利用计算机控制将液态聚合物逐层堆叠成所需的形状。

光固化是将液态聚合物暴露在紫外线下,通过光引发剂的作用使其固化成所需的形状。

涂覆是将液态聚合物均匀涂覆在基材上,然后通过加热或光固化使其固化成一体。

总之,高分子材料成型加工是将高分子材料加工和塑造成所需的形状和尺寸的过程。

不同的加工方式适用于不同类型的高分子材料和产品要求。

高分子材料成型加工原理

高分子材料成型加工原理

1注射成型的特点:生产周期快,适应性强,生产率高和易于自动化2注射成型加工三要素:材料,设备,模具3成型工艺三要素:温度T 压力P 时间t 。

压力:塑化压力,注射压力,保压压力4什么是注射成型:注射成型亦称注射模塑或利用注塑机的注塑,是热塑性塑料的一种重要成型方法 5注塑成型就是将塑料在气塑成型机的料筒内加热熔化,当呈流动状态时在栓塞或螺杆加压下熔融塑料被压缩并向前移动,进而通过料筒前端的喷嘴以很快速度注入温度较低的闭合磨具内,经过一定的时间冷却定型后,开启磨具即得制品(间歇操作)6螺杆分类:1加料段,作用,输送物料,物料状态,固体状态,部分熔化,螺纹特点,等距等深,最深2压缩段,压实物料,熔融状态,等距不等深,渐变3均化段,定温定量定压,熔融状态,等距等深,最浅均化段,定温定量定压,熔融状态,等距等深,最浅 7填料的表面处理:作用1使颗粒分散均匀,不凝结在一起2所有填充剂粒子被聚合物包围润湿3使其充剂表面与聚合物有良好的粘合力 8偶联剂(硅烷类):一是具有良性结构物质分子中一部分基团与无机物表面化学基团反应形成顽固的化学键,另一部分有亲有机性质,可与有机物反应,从而把两种性质不同材料结合起来9什么是挤出成型:挤出成型亦称挤压模塑或挤塑,即借助螺杆或柱塞的挤压作用,使受热熔化的塑料在压力推动下,强行推动口模而成为具有恒定截面的连续型材料的一种定型方法10挤出成型适用范围:挤出法几乎能成型所有的热塑性塑料,也可加工某些热固性塑料11挤出成型制品:生产的制品有管材,板材,薄膜,线缆包覆物以及塑料与其它材料的复合材料等12挤出成型的设备:单螺杆挤出机的基本结构:主机,挤出机辅助设备 挤出机分类:单螺杆,双螺杆,立式,卧式,排气式,非排气式,螺杆,柱塞13什么是一次成型:在大多数情况下一次成型是通过加热使塑料处于粘流态的条件下,在大多数情况下一次成型是通过加热使塑料处于粘流态的条件下,经过流动,经过流动,经过流动,成型和成型和冷却硬化(或交联固化)而将塑料制成各种形状的产品方法14什么是二次成型:二次成型则是将一次成型所得的片,管,板等塑料成品,加热使其处于类橡胶状态(在材料的Tg Tg——Tf 或Tm 间)通过外力作用使其形变而成型为各种较简单性状,再经冷却定型而得产品15共混聚合物选择原则:化学结构原则(相近)溶解度参数原则(接近)流变学原则(等粘度原则)(接近)胶体化学原则(表面张力)(接近)分子扩散动力学原则 16什么是填充和增强改性:在聚合物中填加其它无机和有机物以改变其力学,在聚合物中填加其它无机和有机物以改变其力学,工艺,工艺,使用性能活降低成本的改性方法17注射机主要参数:1公称注射量,做一次最大行程射出的聚苯乙烯的量2注射压力,注射过程中最大压力3注射速度4塑化能力,单位时间塑化物料的多少5锁模力18什么是增强改性:在聚合物中加入增强材料以及改变聚合物的性能尤其是力学性能的改性方法,在聚合物中加入增强材料以及改变聚合物的性能尤其是力学性能的改性方法,增强材增强材料:玻纤,碳纤,晶须,硼纤维19什么是填料,什么是增强材料:为了改善塑料的成型加工性能,提高制品的某些技术指标,赋予塑料制品某些新的性能,或为了降低成本和聚合物单耗而加入的一类物质称填料。

高分子材料成型加工原理

高分子材料成型加工原理

⾼分⼦材料成型加⼯原理第⼀章绪论1.按所属成型加⼯阶段划分,塑料成型加⼯可分为⼏种类型?分别说明其特点。

(1)⼀次成型技术⼀次成型技术,是指能将塑料原材料转变成有⼀定形状和尺⼨制品或半制品的各种⼯艺操作⽅法。

⽬前⽣产上⼴泛采⽤的挤塑、注塑、压延、压制、浇铸和涂覆等。

(2)⼆次成型技术⼆次成型技术,是指既能改变⼀次成型所得塑料半制品(如型材和坯件等)的形状和尺⼨,⼜不会使其整体性受到破坏的各种⼯艺操作⽅法。

⽬前⽣产上采⽤的只有双轴拉伸成型、中空吹塑成型和热成型等少数⼏种⼆次成型技术。

(3)⼆次加⼯技术这是⼀类在保持⼀次成型或⼆次成型产物硬固状态不变的条件下,为改变其形状、尺⼨和表观性质所进⾏的各种⼯艺操作⽅法。

也称作“后加⼯技术”。

⼤致可分为机械加⼯、连接加⼯和修饰加⼯三类⽅法。

2.成型⼯⼚对⽣产设备的布置有⼏种类型?(1)过程集中制⽣产设备集中;宜于品种多、产量⼩、变化快的制品;衔接⽣产⼯序时所需的运输设备多、费时、费⼯、不易连续化。

(2)产品集中制⼀种产品⽣产过程配套;宜于单⼀、量⼤、永久性强的制品、连续性强;物料运输⽅便,易实现机械化和⾃动化,成本降低。

3.塑料制品都应⽤到那些⽅⾯?(1)农牧、渔业(2)包装(3)交通运输(4)电⽓⼯业(5)化学⼯业(6)仪表⼯业(7)建筑⼯业(8)航空⼯业(9)国防与尖端⼯业(10)家具(11)体育⽤品和⽇⽤百货4.如何⽣产出⼀种新制品?(1)熟悉该种制品在物理、机械、热、电及化学性能等⽅⾯所应具备的指标;(2)根据要求,选定合适的塑料,从⽽决定成型⽅法;(3)成本估算;(4)试制并确定⽣产⼯艺规程、不断完善。

第⼆章塑料成型的理论基础1.什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对⾼分⼦材料加⼯有何实际意义?2.请说出晶态与⾮晶态聚合物的熔融加⼯温度范围,并讨论两者作为材料的耐热性好坏。

晶态聚合物:Tm——Td;⾮晶态聚合物:Tf——Td。

对于作为塑料使⽤的⾼聚物来说,在不结晶或结晶度低时最⾼使⽤温度是Tg,当结晶度达到40%以上时,晶区互相连接,形成贯穿整个材料的连接相,因此在Tg以上仍不会软化,其最⾼使⽤温度可提⾼到结晶熔点。

高分子材料加工原理第五章

高分子材料加工原理第五章

(2)纺丝流体从喷丝孔中的剪切流动
向纺丝线上的拉伸流动的转化
(3)流体丝条的单轴拉伸流动
(4)纤维的固化
(二)纤维成型过程中成纤聚合物的变化
(1)几何形态变化 (do (2)物理形态变化 ①宏观状态参数 T-X (温度场) Ci-X (浓度场) ②微观状态参数 取向度 结晶度 网络结构 V-X (速度场) P-X (应力场) dx)
ρxAxVx=常数
T(x):由补偿式接 触温度计、红外线 拍照等确定 ρ(T) ① 高速摄影法 不发生 结晶时
ρx ≈ K Vx
dx: ②取样器取样法确定
③ 激光衍射法
έ(x) =
dVx dx
Test stand for temperature and velocity measurement: Infrared Camera and Laser Doppler Anemometer
(3)化学结构变化
(三)纺丝过程的基本规律
1.在纺丝线的任何一点上,聚合物的流动是稳态 和连续的.
纺丝线:熔体挤出细流和固化初生纤维的总称. 稳态: , T , Ci , P, 0
t
连续:在稳态纺丝条件下,纺程上各点
每一瞬时所流经的聚合物质量相等(流动
连续性方程) : 熔体纺丝 溶液纺丝 ρxAxVx=常数 ρxAxVxCix=常数
2.纺丝线上的主要成形区域内,占支配地位的形变是单轴拉伸
3.纺丝过程是一个状态参数连续 变化的非平 衡态动力学过程 同 一时间不同位置V 、 T 、 Ci 、 P 等连续变化.
4.纺丝动力学包括几个同时进行并相互联系的单元过程
动能传递、传热、传质、结构参数变化等.
(四)纺丝流体的可纺性

高分子材料成型加工原理笔记(精简)

高分子材料成型加工原理笔记(精简)

11 减轻挠度的方法:通常可将辊筒设计和加工成略带腰鼓型,或调整两辊筒的轴,使其交叉一定角度或加预应力,就能在一定程度上克服或减轻分离力的有害作用,提高压延制品厚度的均匀性。

12 在压延过程中,热塑性塑料由于受到很大的剪切应力的作用,因此大分子会顺着薄膜前进方向发生定向作用,使生成的薄膜在物理机械性能上出现各向异性,这种现像称为压延效应。

压延效应的大小,受压延温度、转速、供料厚度和物料性能等的影响,升温或增加压延时间,均可减轻压延效应。

5 压延分离力:在辊筒对物料挤压和剪切的同时,辊筒液受到来自物料的反作用力,这种力图使两辊分开的力称为分离力或横压力。

1、简述离模膨胀的含义、原因及主要影响因素。

答:定义:被挤出的聚合物熔体断面积远比口模断面积大的现象。

离模膨胀比定义为充分松弛的挤出物直径d 与口模直径D之比。

原因:a、取向效应b、弹性变形效应c、正应力效应影响因素:1)长径比一定,B随剪切速率增加而增大。

在熔体破裂临界剪切速率之前有最大值Bmax,而后下降;2)低于τc之下,B随τ增加而增大。

高于τc 时,B值则下降;3)在低于临界ɤc的一定的剪切速率下,B随温度升高而降低;4)剪切速率恒定,B随长径比L/D的增大而降低。

L/D超过某一数值时,B为常数。

5)离模膨胀比随熔体在口模内停留时间呈指数关系地减少。

6)离模膨胀比随聚合物的品种和结构不同而异。

线性、柔性聚合物位阻低,松弛时间短,B值小;粘度大,分子量高,分布窄,非牛顿性强,松弛缓慢,B值大。

5、为什么在一种设备上螺杆转速(n)不能过高?并且靠增加转速来提高生产率也是有限度的?答:随着转速的增加,物料所受到的剪切作用加大,即剪切速率增大,因为大多数聚合物都是假塑性流体,因此,随γ↑,η↓,则漏流↑,逆流↑,所以,当转速高到一定程度时,漏流和逆流对产量的影响就不能忽略了。

在实际生产中,也不能靠提高螺杆的转速无限制的增加生产能力,随n不断提高,剪切速率达到一定范围后,就会出现熔体破裂现象。

②注塑-高分子聚合物成型加工实验报告

②注塑-高分子聚合物成型加工实验报告

②注塑-高分子聚合物成型加工实验报告注塑是一种常见的高分子聚合物成型加工方法,其原理是通过加热并熔化高分子物料,然后将熔融物料通过高压注射到模具中进行形状固化。

本实验报告旨在研究注塑过程中的影响因素,并分析其对成型品质量的影响。

一、实验目的1.了解注塑过程中的材料熔融和模具冷却过程。

2.研究注塑工艺参数对成型品质量的影响。

3.掌握利用注塑成型方法制备高分子聚合物制品的技术要点。

二、实验原理1.材料熔融过程:将固态高分子物料放入注塑机的料斗中,通过加热和搅拌使其熔化,并保持一定的熔融温度。

2.熔融物料的注射过程:熔融物料通过加压送入注射缸中,并通过射嘴注入模具腔中,填充整个腔道。

3.模具冷却过程:填充完毕后,模具中的冷却系统开始起到作用,使熔融物料迅速冷却定型。

4.成品脱模:冷却完毕后,打开模具,取出成型品。

三、实验步骤1.准备高分子物料:根据实验要求选择合适的高分子物料,并将其切成小块或颗粒。

2.配置注塑机:将注塑机以及模具进行调试配置,保证其正常工作。

3.设置工艺参数:根据实验要求,设置合适的注塑工艺参数,如注射速度、压力、温度等。

4.开始注塑:按下启动按钮,开始注塑过程,观察熔融过程、注射过程以及模具冷却过程。

5.脱模和检验:冷却完毕后,打开模具,取出成型品,并进行检验。

四、实验结果及数据分析对不同工艺参数下的注塑成型品进行外观质量检验,如表面平整度、尺寸精度、色泽等方面进行评估和分析。

五、实验结论根据实验结果可总结出不同工艺参数对注塑成型品质量的影响,如注射速度对表面平整度的影响、熔融温度对尺寸精度的影响等。

六、实验总结通过本次实验,我们深入了解了注塑的工艺流程及其影响因素,并掌握了注塑成型技术的要点。

同时,实验结果也为我们提供了参考,以便在实际应用中选择合适的工艺参数,提高成型品质量。

高分子材料成型加工原理

高分子材料成型加工原理

高分子材料成型加工原理
高分子材料成型加工是一种将高分子材料加工成所需要形状并赋予特定性能的过程。

这类材料具有高分子化学键的共价键,通过化学交联或物理交联可以具有不同的物理、力学和化学性质。

高分子材料成型加工的原理是利用热、化学或/和机械能对高分子材料进行重构,形成所需形状和特性。

高分子材料成型加工可分为热成型和冷成型两类。

热成型是在高温和高压下加工材料,形成所需形状和性质。

这类材料通常被称为热塑性材料。

冷成型是在正常温度和压力下进行加工,这种材料通常被称为热固性材料。

两种材料的加工方法略有不同。

热成型加工的主要方法包括挤出法、注射法、吹塑法、热压缩法和热成型法等。

这些方法的共同点是使用高温和高压,使高分子材料流动并具有所需形状。

与热成型不同,冷成型是通过化学反应或光固化将高分子材料固化成所需形状。

这些加工方法包括浇注、压制、浸渍、喷涂和光固化等。

在实践中,选择合适的高分子材料加工方法非常重要。

通过了解高分子材料的特性和与加工方法相关的因素,可以选择出最适合的成型加工方法。

这种方法可以提高产量,保证产品质量和降低成本。

高分子材料成型加工综述

高分子材料成型加工综述

高分子材料成型加工综述高分子材料是一类具有广泛应用前景的材料,其主要特点是分子链结构较长,具有良好的可塑性和变形性能。

高分子材料成型加工是将原料经过一系列加工技术,制成所需要的成品制品的过程,是高分子材料应用的重要环节。

本文将就高分子材料成型加工的工艺方法、应用领域以及发展趋势进行综述。

一、高分子材料成型加工的工艺方法1.注塑成型注塑成型是一种用于制作高分子材料制品的主要方法,其原理是将加热熔化的高分子材料通过注射器注入模具中,经冷却后形成所需的成品制品。

这种方法适用于生产批量较大的制品,成品具有较高的精度和表面质量。

2.挤出成型挤出成型是将加热的高分子材料通过挤出机挤压成型,是一种连续生产的方法。

挤出成型适用于生产各种型材、板材、管材等,具有成本低、生产效率高等优点。

3.压缩成型吹塑成型是将高分子材料挤出成管状,再通过内部加压气体吹出成型,适用于生产一些薄壁产品,如塑料瓶、塑料薄膜等。

5.旋转成型旋转成型是将液态高分子材料置于模具中,在模具旋转过程中形成所需的成品制品。

这种方法适用于生产一些中空、对称形状的制品。

1.包装领域高分子材料在包装领域得到了广泛的应用,如塑料瓶、塑料袋、泡沫塑料等,这些制品都是通过高分子材料的成型加工制成的。

高分子材料包装制品具有成本低、制造周期短、重量轻、抗冲击性好等优点,因此得到了包装行业的青睐。

2.建筑领域高分子材料在建筑领域应用也十分广泛,如塑料管道、塑料隔热材料、弹性地板等。

这些制品通过高分子材料成型加工制成,具有耐腐蚀、耐老化、绝缘性能好等特点,因此在建筑领域有着重要的作用。

3.汽车领域4.医疗领域1.绿色环保随着人们对环境保护意识的增强,高分子材料成型加工也趋向于绿色环保。

未来的高分子材料成型加工将更加注重材料的可降解性和可循环利用性,研发出更环保的成型加工工艺和材料。

2.智能化生产随着信息技术的发展,高分子材料成型加工也将实现智能化生产。

未来的高分子材料成型加工将更加注重自动化、数字化生产,提高生产效率和成品质量。

高分子材料成型加工原理

高分子材料成型加工原理

高分子材料成型加工原理随着科技的不断发展,高分子材料在现代工业中的应用越来越广泛。

高分子材料的特性决定了它在成型加工过程中的行为和性能,因此深入了解高分子材料的成型加工原理对于工业生产至关重要。

高分子材料的特性高分子材料是由化学反应产生的大分子化合物,具有许多独特的物理和化学特性。

高分子材料通常是由重复单元组成的长链状分子,这些分子之间的相互作用是高分子材料的特性之一。

高分子材料的分子链通常具有很高的分子量,这使得它们具有很高的黏度和粘滞性。

高分子材料的分子链通常是柔软的,这使得它们容易被拉伸和变形。

此外,高分子材料还具有良好的绝缘性和化学稳定性,这使得它们在许多应用中都具有很高的价值。

高分子材料的成型加工过程高分子材料的成型加工过程通常包括以下几个步骤:1. 加热和熔融高分子材料通常需要加热和熔融才能进行成型加工。

在加热和熔融的过程中,高分子材料的分子链会变得更加柔软和流动,这使得它们更容易被塑造成所需的形状。

2. 塑形在高分子材料加热和熔融之后,可以对其进行塑形。

塑形通常包括挤出、注塑、吹塑、压缩成型等多种方法。

在塑形的过程中,高分子材料会被压缩、拉伸、挤出或注入到所需的形状中。

3. 冷却和固化在高分子材料塑形之后,需要进行冷却和固化。

冷却和固化的过程中,高分子材料会逐渐变硬,分子链之间的相互作用也会逐渐增强。

这使得高分子材料能够保持所需的形状和性能。

高分子材料成型加工的影响因素高分子材料成型加工的过程受到许多因素的影响,包括材料的性质、成型加工条件、机器设备和操作人员等。

1. 材料的性质高分子材料的成型加工过程受到材料的物理和化学性质的影响。

例如,高分子材料的熔点、流动性和分子量等特性会影响其成型加工的温度和压力等条件。

2. 成型加工条件成型加工条件是影响高分子材料成型加工过程的另一个重要因素。

例如,成型加工的温度、压力、速度和冷却时间等条件都会影响高分子材料的成型效果和性能。

3. 机器设备机器设备是高分子材料成型加工过程中的另一个重要因素。

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工
高分子材料成型加工是指通过热压、冷压、注塑、挤出等
成型技术,将高分子材料转变成所需形状和尺寸的产品的
过程。

高分子材料成型加工可以分为热固性塑料成型和热
塑性塑料成型两种形式。

热固性塑料成型是指在加热过程中,高分子材料经化学交
联形成三维网络结构的过程。

常见的热固性塑料成型加工
方式有热压、注塑和挤出。

热压是通过将高分子材料置于
加热板之间,加热和加压使其熔融并填充模具中,然后冷
却硬化成形。

注塑是将高分子材料加热熔融后注入模具中,冷却硬化成形。

挤出是通过高分子材料在加热和压力的作
用下,从模具口中挤出成型,然后冷却硬化形成。

热塑性塑料成型是指高分子材料在一定温度范围内,经过
塑化加工后,能够通过冷却形成所需产品的过程。

常见的
热塑性塑料成型加工方式有注塑、挤出和吹塑。

注塑的原
理与热固性塑料成型相似,但材料在加热过程中并不发生
交联反应。

挤出是通过高分子材料在加热和压力的作用下,从模具口中挤出成型,然后冷却硬化形成。

吹塑是将高分
子材料加热熔融后,通过压缩空气使其膨胀成薄壁容器形状,然后冷却硬化成型。

总之,高分子材料成型加工是将高分子材料通过加热、压力、塑化等工艺,转变成所需形状和尺寸的产品的过程,广泛应用于各个领域的塑料制品生产中。

探析高分子材料成型加工技术

探析高分子材料成型加工技术

探析高分子材料成型加工技术高分子材料成型加工技术是应用于高分子材料加工领域的一种重要技术。

高分子材料具有良好的可塑性、可溶性、变形性以及化学稳定性等特点,因此在工业制造、生活用品、医疗健康等领域都有广泛应用。

本文将从高分子材料成型加工的原理、常见的成型加工方法、加工精度控制和质量管理等方面进行分析。

一、高分子材料成型加工的原理高分子材料成型加工的原理是将高分子材料通过加热、压力、拉伸、挤出等加工方式进行成型。

在加工过程中,高分子材料的分子链会发生改变,形成新的物理结构,从而达到所需的形状和性能。

常见的高分子材料成型加工方法包括挤出、注塑、吹塑、压延、热成型、胶接等。

二、常见的高分子材料成型加工方法1.挤出加工:将高分子材料加入挤出机的筒仓中,通过螺杆的旋转使材料在加热筒中加热熔化,然后将熔融的高分子材料通过模具挤出成型,最后冷却固化形成所需的形状。

2.注塑加工:将高分子材料加入注塑机的料斗中,通过螺杆将材料熔化后压入模具中形成所需的形状,最后冷却固化后取出成品。

3.吹塑加工:将高分子材料加热熔化后,通过枪头将熔融的材料喷射到模具中,随着模具的旋转和吹气的作用形成中空的容器,最后冷却固化后取出成品。

4.压延加工:将高分子材料加热熔化后,通过制动器使材料通过压延辊,形成所需厚度和宽度,最后冷却固化后取出成品。

5.热成型加工:将高分子材料加入加热炉中加热软化,然后通过特定模具压制或拉伸成型,最后冷却固化后取出成品。

6.胶接加工:将两个高分子材料部分加热软化后,通过粘接剂将两个材料粘接在一起,最后冷却固化形成一体化的成品。

三、加工精度控制和质量管理在高分子材料成型加工中,加工精度的控制和质量管理非常重要。

加工精度的控制主要包括温度控制、压力控制、速度控制和模具形状等方面。

而在质量管理方面,则包括检测、调整和孔板法控制等方法。

其中,检测方法主要有外观质量检验、尺寸检验、力学性能测试、环境耐久性测试等;调整方法主要包括加工参数调整、模具调整、工艺改进等;孔板法控制则是将固定孔板放在产品的粘接面上,在湿度和温度条件下进行测试,测试结果评估产品的接触面积和粘接强度。

高分子成型原理

高分子成型原理

高分子成型原理
高分子成型是一种通过将高分子材料加热、熔化,然后注入到模具中,在模具中冷却固化得到所需形状的方法。

其主要原理包括以下几个方面:
1. 熔融:高分子材料在加热条件下变成可流动的熔体,使其能够被注入到模具中。

加热的温度通常高于材料的熔点,以确保材料完全熔化。

2. 注塑:将熔化的高分子材料通过注射机注入到模具中。

注射机通过螺杆推动熔融的材料进入模具腔室,以达到所需的形状和尺寸。

3. 冷却:在注塑完成后,模具中的熔体开始冷却并逐渐固化。

冷却速度对成型制品的性能和质量有重要影响,因此通常会采取降温系统或冷却装置来控制冷却速度。

4. 开模:当成型制品完全固化后,模具会打开进行取出。

一般通过顶出机构或者模具的自动弹簧弹出来保证成品的完整性。

高分子成型原理的关键在于控制好熔融、注塑、冷却和开模等各个环节。

同时,还需要考虑材料的特性、模具的设计和加工参数等因素,以确保最终成型制品的质量和性能。

高分子材料成型原理

高分子材料成型原理

高分子材料成型原理高分子材料成型是指将高分子材料加工成所需形状的过程。

高分子材料是指由大量重复单元组成的聚合物,可通过化学方法或物理方法制备而成。

成型是高分子材料应用的重要环节,涉及到材料的加工性能、成型工艺和成型设备。

下面将详细介绍高分子材料成型的原理。

高分子材料成型主要有热成型、挤出成型、压缩成型、注塑成型和吹塑成型等常见方式。

热成型是将高分子材料加热到一定温度,并将其放置在模具中冷却成型。

挤出成型是通过加热高分子材料,在一定的压力下挤压通过挤压机的模具口成型。

压缩成型是将加热后的高分子材料置于开放式或闭合式模具中,在一定的压力下压实成型。

注塑成型是将高分子材料加热熔化后注入模具中,并通过模具的冷却使之凝固成型。

吹塑成型是利用高温高压空气对熔化的材料进行吹塑形成中空物件。

高分子材料成型的原理主要涉及材料的熔融性和流动性、加工工艺参数的选择和控制、模具的设计和制造等方面。

首先,材料的熔融性和流动性对成型过程中的熔融、流动和凝固起着关键作用。

高分子材料在加热过程中会熔化,形成熔体。

这种熔体具有较低的黏度和较高的流动性,可以通过加工设备的压力和形状来控制其流动和凝固。

熔体在流动过程中,一方面受到流动时的摩擦力和剪切力,另一方面受到冷却慢的边界面和模具的限制而凝固。

因此,材料的熔融性和流动性对成型的形状、尺寸、结构和性能有重要影响。

其次,成型工艺参数的选择和控制对材料成型起着至关重要的作用。

工艺参数包括温度、压力、速度和模具温度等。

温度直接影响材料的熔化和流动性,过高的温度会导致材料过分流动或剪切变性;过低的温度会导致材料凝固不全或产生缺陷。

压力决定材料的流动性和充实性,过高的压力会使材料过度充实或破坏;过低的压力会使材料流动性差或充实不足。

速度影响材料的填充速度和凝固速度,过高的速度会导致材料流失或产生空隙;过低的速度会使材料充实不足或凝固不全。

模具温度决定材料的凝固速度和尺寸稳定性,过高的温度会使材料凝固迅速或产生变形;过低的温度会使材料凝固慢或产生缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、什么叫混合、混炼?并指出各自的特点。

混合是一种趋向于减少混合物非均匀性的操作。

混炼是指用炼胶机将生胶或塑炼生胶与配合剂练成混炼胶的工艺。

混合:温度低(一般低于聚合物熔点),剪切速率小;混炼:温度高(一般高于聚合物熔点),剪切速率大。

2、试述捏合机、高速混合机、开炼机、密炼机的基本结构、工作原理和机器的规格型号。

(1) Z形捏合机基本结构:带有加热(冷却)夹套的鞍形混合室、一对Z形搅拌器、电气传动装置等。

捏合机除了通过夹套加热和冷却外,还可在搅拌器中心开设通道,通加热或冷却载体,以便准确及时地控制捏合时物料的温度。

工作原理:混合时,物料借助于相向转动的一对搅拌器沿着混合室的侧壁上翻,而后在混合室的中间下落,再次为搅拌器所作用。

这样重复循环,物料得到多次折叠和撕捏作用,从而得到均匀混合。

(2)高速混合机基本结构:附有加热或冷却夹套的圆筒形混合室、一个装在混合室底部的高速转动的搅拌叶轮、排料装置、折流板(挡板)以及电气传动装置等。

工作原理:高速混合机工作时,高速旋转的叶轮借助表面与物料的摩擦力和侧面对物料的推力使物料沿叶轮切向运动。

同时,由于离心力的作用物料被抛向混合室内壁,并且沿内壁面爬升,当升到一定高度后,由于重力的作用,物料又落回到叶轮中心,接着又被抛起。

物料的表面不断得到更新,由于叶轮的转速很高,物料运动速度很快,快速运动的物料粒子之间相互碰撞、摩擦,使得团块破碎,物料因摩擦升温,同时迅速地进行着交叉混合,这些作用促进了各组分的均匀分布和对液态添加剂的吸收。

规格型号:GH200,GH表示高速混合机,200表示工作容量200升。

实际加料量为工作容量的50~75%。

(3)开炼机基本结构:两只辊筒、辊距调节装置、安全装置、加热冷却系统和传动系统等。

辊筒为中空结构,内部可通加热或冷却载体,也可直接放置电加热棒加热。

工作原理:开炼机工作时,两个辊筒相向旋转,且速度不等。

放在辊筒上的物料由于与辊筒的摩擦和粘附作用以及物料之间的粘结力而被拉入辊隙之间,在辊隙内物料受到强烈的挤压和剪切,这种剪切使物料产生大的形变,从而增加了各组分之间的界面,产生了分布混合。

该剪切也使物料受到大的应力,当应力大于物料的许用应力时,物料会分散开,即分散混合。

所以提高剪切作用就能提高混合塑炼效果。

规格型号:SK-160;SK表示塑料开炼机,160表示辊筒直径160mm。

XK橡胶双辊开炼机。

3、决定开炼机正常工作的条件是什么?开炼机正常工作时的两个条件:①物料与辊筒的摩擦角应大于接触角;②两个辊筒之间存在速比。

减小辊筒间距和加大辊筒速比,可以加大剪切作用。

4、高速混合机中折流板的作用是什么?改变混合时物料的流型;内部安装测温传感器,测试物料的温度。

5、常见的连续混合设备有哪几种,各有什么特点?连续混合设备主要有单螺杆挤出机、双螺杆挤出机、行星螺杆挤出机和连续混炼机。

6、生胶在成型加工前为什么要进行塑炼?塑炼主要是为了降低生胶的弹性,增加可塑性,获得适当流动性,使橡胶与配合剂在混炼过程中易于混合分散均匀,也利于胶料进行各种成型操作。

此外,还要使生胶的可塑性均匀一致,从而使制得的胶料质量也均匀一致。

模压成型部分1、试简述热固性塑料的模压成型(压缩模塑)工艺过程。

模压成型通常称压缩模塑,是将模塑塑料在已加热到指定温度的模具中加压,使物料熔融流动并均匀地充满模腔,在加热和加压的条件下,经过一定的时间,使其发生化学交联反应而变成具有三维体型结构的热固性塑料制品。

2、为什么热塑性塑料较少采用模压成型的方法加工?热塑性塑料模压成型时,必须将模具冷却到塑料固化温度以下才能定型为制品,为此需交替加热与冷却模具,生产周期长,故生产中很少采用。

3、什么是BMC、SMC?它们常采用何种方法成型?BMC:块状模塑料,用预混法制成的聚酯树脂模塑料,模塑料成团块状,故也称料团。

SMC:片状模塑料,用预浸法制成的片状聚酯树脂模压料。

4、热固性塑料、热塑性塑料、橡胶的模压成型有什么不同?成型过程中热塑性塑料不发生化学变化,而后两者有物理和化学变化。

1、挤出成型生产线一般由哪几部分组成?各部分的作用是什么?挤出系统、加料装置、传动系统、加热和冷却系统及控制系统等。

挤出系统通常包括:加料装置、料筒、螺杆、机头和口模等。

2、常规三段全螺纹螺杆的主要参数有那些?如何选择这些参数的大小?a.螺杆直径DS 指其外径,通常在30~200mm之间,最常见的是45~150mm。

螺杆的直径大,挤出机的产量高,所以挤出机的规格型号常一螺杆的直径表示。

如挤出机型号SJ-45,表示塑料挤出机螺杆直径45mm。

b.螺杆的长径比L/DS 指螺杆工作部分的有效长度与直径DS之比。

L/DS大能提高挤出机的生产能力,有利于物料的混合,螺杆的适应性强,但加工安装困难,不适于热敏性物料的加工。

L/DS小对塑料的混合塑化不利。

c.螺杆的压缩比A几何压缩比:指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之比。

一般约等于H1/H3(H1,H3分别为加料段和均化段槽深)。

物理压缩比:是指塑料在熔融状态下的密度与固体松散状态下的密度之比。

挤出机的几何压缩比应大于物理压缩比d.螺槽深度H一般螺槽的深度H1、H2、H3分别表示固体输送段、熔融段、熔体输送段等三段的槽深。

H3小时挤出机对物料的剪切速率大,有利于传热和塑化,但挤出生产率低。

H3大则反之。

H3大适于加工热敏性物料(如HPVC)的加工;H3小的浅槽螺杆可用于熔体粘度低和热稳定性好的塑料的挤出成型。

e.螺旋角θ是螺纹与螺杆横截面之间的夹角。

θ角大,挤出机的产量高,但螺杆对塑料的挤压和剪切作用减小。

f.螺棱部分宽度E 螺棱宽度E太小会使漏流增加,产量降低;E太大会增加螺棱上的功率消耗,螺棱上的物料过热的危险(传热量大,剪切热大)。

g.螺杆与料筒的间隙δδ的大小影响挤出机的生产能力和物料的塑化。

δ值大,生产效率低,不利于热传导,剪切速率低,不利于物料的熔融和混合;δ过小,剪切速率大,易引起物料过热降解,对螺杆、料筒的加工和安装要求高。

3、何谓螺杆的几何压缩比、物理压缩比?两者关系如何?几何压缩比:指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之比。

一般约等于H1/H3(H1,H3分别为加料段和均化段槽深)。

物理压缩比:是指塑料在熔融状态下的密度与固体松散状态下的密度之比。

挤出机的几何压缩比应大于物理压缩比4、挤出机内物料的压力是如何产生的?为什么物料必须有一定的压力?压力由机头阻力、螺杆的压缩比和螺杆、料筒对物料的输送作用等产生。

为了使挤出的物料密实,挤出机料筒内必须有一定的压力5、挤出机加料斗料斗座为什么必须冷却?防止高温料筒的热量传向料斗,避免料斗中的料因受热而产生“架桥”现象。

6、普通挤出机螺杆有几种型式?各适用于什么场合?根据压缩段(熔融段)长度的大小,普通螺杆又分为通用型螺杆、渐变型螺杆和突变型螺杆三种。

(a)渐变型螺杆的压缩段较长,有的螺杆(如加工聚氯乙烯的螺杆)螺杆全长均起压缩作用,这样的螺杆即为渐变型螺杆。

这种螺杆适于加工非晶型塑料。

(b)突变型螺杆的压缩段很短,压缩段长度为3~5DS。

这种螺杆适于加工熔融温度范围窄的结晶型塑料。

(c)通用型螺杆的压缩段长度介于渐变型和突变型螺杆之间。

适于大多数物料的加工。

7、提高固体输送效率的方法有那些?a) 增大物料与料筒的摩擦系数,减小物料与螺杆的摩擦系数。

具体措施是:对螺杆表面进行抛光,降低表面粗糙度;螺杆中心通冷却水,适当降低螺杆的表面温度。

在加料段的料筒内壁开设一些纵向沟槽,以增加物料与料筒间的径向摩擦力。

b) 适当增加螺槽深度H1和螺旋角。

8、物料在常规挤出机的熔体输送段的流动类型有哪几种?其产生这几种流动的原因是什么?试画出流动类型的速度分布图(特别注意流动方向)。

a) 正流是物料沿螺槽方向(Z向)向机头的流动,是均化段熔体的主流,它起到挤出物料的作用。

(这种流动是由物料在螺槽中受料筒摩擦拖曳作用而产生的故也称为拖曳流)。

b)逆流沿螺槽与正流方向相反的流动,它是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失。

正流和逆流的综合流称为净流。

c) 横流物料沿x轴和y轴两方向在螺槽内往复运动,也是螺杆旋转时螺棱的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流。

d) 漏流物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,它也是由于机头和口模等对物料的阻力所产生的反压流动。

挤出机的生产能力=正流-逆流-漏流9、何谓螺杆特性曲线、机头(口模)特性曲线?它们的斜率大小代表何种意义?螺杆特性曲线 n4>n3>n2>n1螺杆特性线的倾斜程度主要取决于均化段螺槽深度H3。

H3越大特性线越倾斜,意味着挤出机的产量对机头阻力(挤出压力)敏感,我们称该螺杆特性软;H3越小螺杆特性线越平,意味着挤出机的产量对机头阻力(挤出压力)不敏感,我们称该螺杆特性硬。

图中D3斜率大为低阻力机头,D1斜率小为高阻力机头10、简述并图示挤出机的综合工作图。

高阻力机头(D1)配特性曲线硬的螺杆(H3′)可获得较高的产量,而低阻力机头(D2)配特性线软的螺杆(H3)能得到较高的产量。

11、影响挤出机生产率的因素有那些?(1)机头压力与生产率的关系(2)螺杆转速与生产率的关系(3)螺杆几何尺寸与生产率的关系(4)机头口模的阻力与生产率的关系12、常规螺杆存哪些问题?a.熔融段固体床与熔池同处一个螺槽中,降低了熔融效率,挤出产量不高。

(熔池不断增宽,固体床逐渐变窄,减少了固体床与料筒的接触面积,从而减少了料筒传给固体床的热量)。

b.固体床过早解体形成固体床碎片(固体床破碎),造成熔融速度缓慢。

c.固体床过早破碎,还造成一部分物料得不到彻底熔融,另一部分物料过热,导致物料温度不均匀。

d.压力波动、温度波动和产量波动大。

e.普通螺杆往往不能适应一些特殊物料的加工或进行混炼、着色等工艺。

13、新型螺杆中的分离型螺杆、屏障型螺杆、分流型螺杆的工作原理是怎样的?A.分离型螺杆:熔融段采取措施(采用主附螺纹,开设熔体槽等),将已熔物料与未熔的固相尽早分离,促使未熔物料更快地熔融,已熔物料不再承受导致过热的剪切。

B.屏障型螺杆:螺杆工作时,物料从熔融段进入均化段后,含有未熔融的固体颗粒到达屏障型混炼段时,被分成若干股料进入屏障混炼段的进料槽,熔融料和粒度小于Δ的故相碎片才能越过间隙进入出料槽,粒度较大的固相碎片被屏障挡住并继续熔融。

塑化不良的小颗粒在通过间隙Δ时受到强烈的剪切作用,而完全熔融。

进入出料槽的物料在槽中产生涡流而得到混合。

C.分流型螺杆:在螺杆的某一部位设置许多突起部分或沟槽或孔道将螺槽内的料流分割,以改变物料的流动状况,以促进熔融、增强混炼和均化的一类螺杆。

相关文档
最新文档