2019版高考数学一轮复习第二十一章概率统计21.2相互独立事件n次独立重复试验的模型及二项分布讲义
年高考第一轮复习数学相互独立事件同时发生的概率
11.3 相互独立事件同时发生的概率●知识梳理1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p ,那么在n 次独立重复试验中,这个事件恰好发生k次的概率为P n (k )=C k n p k (1-p )n -k. 3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的. 4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A 与B 的积记作A ·B ,A ·B 表示这样一个事件,即A 与B 同时发生.当A 和B 是相互独立事件时,事件A ·B 满足乘法公式P (A ·B )=P (A )·P (B ),还要弄清A ·B ,B A ⋅的区别. A ·B 表示事件A 与B 同时发生,因此它们的对立事件A 与B 同时不发生,也等价于A 与B 至少有一个发生的对立事件即B A +,因此有A ·B ≠B A ⋅,但A ·B =B A +.●点击双基1.(2004年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2) 解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1). 答案:B2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A.0 B.1 C.2 D.3解析:由C k 5(21)k (21)5-k =C 15+k (21)k +1·(21)5-k -1, 即C k 5=C 15+k ,k +(k +1)=5,k =2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响) A.94B.901 C.54 D.95 解析:P =31×61×451=901.答案:C4.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.解析:P =21×32×43+ 21×31×43+ 21×32×41=2411. 答案:2411 5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P =(1-31)(1-31)×31=274. 答案:274 ●典例剖析【例1】 (2004年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是P (A )=106= 53,P (A )=52; P (B )=104= 52,P (B )=53. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·52=256. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为P (A ·B )=P (A )·P (B )=52·53=256. ∴两人中至少有1人抽到足球票的概率为 P =1-P (A ·B )=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 【例2】 有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=108=54. 显然,事件A ·C 与事件B ·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P =P (A ·C +B ·D )=P (A ·C )+P (B ·D )=P (A )·P (C )+P (B )·P (D )=10059. ∴本次试验成功的概率为10059. 【例3】 (2004年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率. 解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶. 记“饮用一次,饮用的是甲种饮料”为事件A ,则p =P (A )=21. 题(1)即求7次独立重复试验中事件A 发生5次的概率为P 7(5)=C 57p 5(1-p )2=C 27(21)7=12821. (2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P 6(5)+P 5(5)+P 4(4)=C 65p 5(1-p )+C 55p 5+C 44p 4=163. 答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为12821,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为163. ●闯关训练 夯实基础1.若A 与B 相互独立,则下面不相互独立事件有 A.A 与AB.A 与BC. A 与BD. A 与B解析:由定义知,易选A. 答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是A.0.12B.0.88C.0.28D.0.42 解析:P =(1-0.3)(1-0.4)=0.42. 答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题.∴P =(53)5+C 45×(53)4×(1-53)=31251053. 答案:312510534.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________. 解析:P =1-(1-0.6)(1-0.3)=0.72. 答案:0.72 培养能力5.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中, (1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少? 解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C 23·0.82·0.2+C 33·0.83=0.896.∴至少有2天预报准确的概率为0.896.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为 2·0.82·0.2+0.83=0.768.∴至少有一个连续2天预报准确的概率为0.768.6.(2004年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B . 由题意知P (A )=p 3,P (B )=p 3,P (A )=1-p 3,P (B )=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·B + A ·B )=P (A ·B )+P (A ·B ) =p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为 P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P (A ·B + A ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P (A ·B )=P (A )·P (B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (A ·B )=1-P (A )·P (B )=1-(1-p 3)2=2p 3-p 6.答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为2723C C ×291415C C C =635; 从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为271413C C C ×2925C C =6310. 所以,取得的4个球中有3个白球和1个黑球的概率为635+6310=6315=215. 探究创新8.(2004年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件,由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P由①③得P (B )=1-89P (C ), 代入②得27[P (C )]2-51P (C )+22=0. 解得P (C )=32或911(舍去). 将P (C )=32分别代入③②可得P (A )=31,P (B )=41, 即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是31,41,32.(2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则 P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-32·43·31=65. 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为65. ●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率. ●教师下载中心 教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A 和事件B 互相独立时,才有P (A ·B )=P (A )·P (B ).2.A 、B 中至少有一个发生:A +B .(1)若A 、B 互斥:P (A +B )=P (A )+P (B ),否则不成立. (2)若A 、B 相互独立(不互斥).法一:P (A +B )=P (A ·B )+P (A ·B )+P (A ·B ); 法二:P (A +B )=1-P (A ·B );法三:P (A +B )=P (A )+P (B )-P (AB ).3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”① ② ③“至少”等题型的转化,如例1.4.n 次独立重复试验中某事件发生k 次的概率P n (k )=C k n p k (1-p )n -k正好是二项式[(1-p )+p ]n 的展开式的第k +1项. 拓展题例【例1】 把n 个不同的球随机地放入编号为1,2,…,m 的m 个盒子内,求1号盒恰有r 个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m 个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P =m1.这样n 个球放入m 个不同的盒子内相当于做n 次独立重复试验.由独立重复试验中事件A 恰好发生k 次的概率公式知,1号盒恰有r 个球的概率 P n (r )=C r np r(1-p )n -r=C r n·(m 1)r ·(1-m 1)n -r =nrn r n mm --⋅)1(C . 解法二:用古典概型.把n 个不同的球任意放入m 个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C r n(m -1)n -r,故所求概率P (A )=nrn r n mm --)1(C .答:1号盒恰有r 个球的概率为nrn r n mm --)1(C .【例2】 假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k 次(k ≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k 次(k ≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C 24P 2(1-P )2+C 34P 3(1-P )+C 44P 4=6P 2(1-P )2+4P 3(1-P )+P 4. 2引擎飞机成功飞行的概率为C 12P (1-P )+C 22P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2. 化简,分解因式得(P -1)2(3P -2)≥0. 所以3P -2≥0, 即得P ≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.。
高考数学第一轮复习:《二项分布与正态分布》
高考数学第一轮复习:《二项分布与正态分布》最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.4.能解决一些简单的实际问题.【教材导读】1.条件概率和一般概率的关系是什么?提示:一般概率的性质对条件概率都适用,是特殊与一般的关系.2.事件A,B相互独立的意义是什么?提示:一个事件发生的概率对另一个事件发生的概率没有影响.3.在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A恰好发生k次的概率值为什么是C k n p k(1-p)n-k?提示:n次恰好发生k次,为C k n个互斥事件之和,每个互斥事件发生的概率为p k(1-p)k,故有上述结论.4.正态分布中最为重要的是什么?提示:概念以及正态分布密度曲线的对称性.1.条件概率及其性质条件概率的定义条件概率的性质一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义设A、B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)与对立事件的关系如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,设在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图(1)所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图(2)所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ <X≤μ+σ)=0.6826;②P(μ-2σ <X≤μ+2σ)=0.9544;③P(μ-3σ <X≤μ+3σ)=0.9974.【重要结论】1.P(A)=a,P(B)=b,P(C)=c,则事件A,B.C至少有一个发生的概率为1-(1-a)(1-b)(1-c).2.X~N(μ,σ),若P(X<a)=P(X>b),则正态密度曲线关于直线x=a+b2对称.1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()(A)1 (B)5 3(C)5 (D)9B解析:因为μ=2,根据正态分布的性质得a+2+2a-32=2,解得a=53.2.已知随机变量X服从正态分布N(2,32),且P(X≤1)=0.30,则P(2<X<3)等于() (A)0.20 (B)0.50(C)0.70 (D)0.80A 解析:∵该正态密度曲线的对称轴方程为x =2, ∴P(X ≥3)=P(X ≤1)=0.30,∴P (1<X <3)=1-P(X ≥3)-P(X ≤1)=1-2×0.30=0.40,∴P (2<X <3)=12P (1<X <3)=0.20. 3.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )(A)56 (B)45 (C)3132(D)12C 解析: ∵函数f(x)=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12,∴P(X ≤4)=1-P(X =5)=1-125=3132.4.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长幼苗的概率为________.答案:0.725.在一次高三数学模拟考试中,第22题和23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12,则其中甲、乙两名学生选做同一道题的概率为________.答案:12考点一 条件概率(1)某射击手射击一次命中的概率是0.7,两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )(A)710 (B)67 (C)47(D)25(2)把一枚硬币任意抛掷三次,事件A 为“至少一次出现反面”,事件B 为“恰有一次出现正面”,则P(B|A)=________.解析:(1)设第一次射中为事件A 、随后一次射中为事件B , 则P(A)=0.7,P(AB)=0.4,所以P(B|A)=P (AB )P (A )=0.40.7=47. (2)由题意,知P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P (AB )P (A )=3878=37.答案:(1)C (2)37【反思归纳】 (1)一般情况下条件概率的计算只能按照条件概率的定义套用公式进行,在计算时要注意搞清楚问题的事件含义,特别注意在事件A 包含事件B 时,AB =B.(2)对于古典概型的条件概率,计算方法有两种:可采用缩减基本事件全体的办法计算P(B|A)=n (AB )n (A );直接利用定义计算P(B|A)=P (AB )P (A ). 【即时训练】 (1)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.(2)某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率是________.解析:(1)解法一 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P(AB)=C 55C 2100,所以P(B|A)=P (AB )P (A )=5×4100×995100=499.解法二 第一次取到不合格产品后,也就是在第二次取之前,还有99件产品,其中有4件不合格的,因此第二次取到不合格品的概率为499.(2)记事件A 为这个家用电器使用了三年, 事件B 为这个家用电器使用到四年,显然事件B A ,即事件AB =B ,故P(A)=0.8,P(AB)=0.4, 所以P(B|A)=P (AB )P (A )=0.5. 答案:(1)499 (2)0.5考点二独立事件的概率甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解析:设A k,B k分别表示“甲、乙在第k次投篮投中”,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(A3)=13+23×12×13+(23)2×(12)2×13=13+19+127=1327.(2)ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P(ξ=2)=P(A1B1A2)+P(A1B1A2B2)=23×12×13+(23)2×(12)2=29,P(ξ=3)=P(A1B1A2B2)=(23)2×(12)2=19.综上知,ξ的分布列为ξ 1 2 3P 232919所以E(ξ)=1×23+2×29+3×19=139.【反思归纳】概率计算的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.【即时训练】 某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列. 解:(1)甲、乙所付费用可以为10元、20元、30元. 甲、乙两人所付费用都是10元的概率为 P 1=13×12=16,甲、乙两人所付费用都是20元的概率为 P 1=12×13=16,甲、乙两人所付费用都是30元的概率为 P 1=1-13-12×1-12-13=136故甲、乙两人所付费用相等的概率为 P =P 1+P 2+P 3=1336.(2)随机变量ξ的取值可以为20,30,40,50,60. P(ξ=20)=12×13=16P(ξ=30)=13×13+12×12=1336P(ξ=40)=12×13+1-12-13×13+1-13-12×12=1136P(ξ=50)=12×1-12-13+1-12-13×13=536P(ξ=60)=1-12-13×1-12-13=136 故ξ的分布列为:P16 1336 1136 536 136考点三 二项分布京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值;(2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.解:(1)根据正态曲线的对称性,由P(ξ<38)=P(ξ>68),得μ=38+682=53. 再由频率分布直方图得⎩⎪⎨⎪⎧(0.01+0.03+b +0.02+a )×10=1,0.1×35+0.3×45+10b ×55+0.2×65+10a ×75=53, 解得⎩⎪⎨⎪⎧a =0.005,b =0.035.(2)样本年龄在[70,80]的票友共有0.05×100=5(人), 由题意η=0,1,2,3,4,5,所以P(η=0)=C 05⎝ ⎛⎭⎪⎫1-235=1243, P(η=1)=C 15⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫1-234=10243, P(η=2)=C 25⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-233=40243, P(η=3)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫1-232=80243, P(η=4)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫1-231=80243, P(η=5)=C 55⎝ ⎛⎭⎪⎫235=32243, 所以η的分布列为η 012345 P1243 10243 40243 80243 8024332243所以E(η)=0×1243+1×10243+2×40243+3×80243+4×80243+5×32243=103,或根据题设,η~B ⎝ ⎛⎭⎪⎫5,23,P(η=k )=C k 5⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-235-k (k =0,1,2,3,4,5), 所以E(η)=5×23=103.【反思归纳】 在实际问题中具体列出服从二项分布的随机变量的概率分布列对解决问题有直观作用,求解服从二项分布的随机变量的概率分布列和数学期望,只要按照公式计算即可.【即时训练】 某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数所进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.解:(1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一 ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340. P(ξ=0)=C 02×⎝ ⎛⎭⎪⎫37402=13691600,P(ξ=1)=C 12×340×3740=111800, P(ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91600,故所求分布列为X 0 12P13691600111800 91600ξ的均值为E(ξ)=0×13691600+1×111800+2×91600=320,ξ的方差为D(ξ)=⎝ ⎛⎭⎪⎫0-3202×13691600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91600=111800.解法二 求ξ的分布列同解法一.ξ的均值为E(ξ)=2×340=320,ξ的方差为D(ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.考点四 正态分布(1)在某项测量中,测量结果ξ服从正态分布N (4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为( )(A)0.2 (B)0.4 (C )0.8(D)0.9(2)已知三个正态分布密度函数f i (x)=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3(B)μ1>μ2=μ3,σ1=σ2<σ3(C)μ1=μ2<μ3,σ1<σ2=σ3(D)μ1<μ2=μ3,σ1=σ2<σ3(3)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()(A)73(B)53(C)5 (D)3解析:(1)∵ξ服从正态分布N(4,σ2)(σ>0),∴曲线的对称轴是直线x=4,∴ξ在(4,+∞)内取值的概率为0.5.∵ξ在(0,4)内取值的概率为0.4,∴ξ在(0,+∞)内取值的概率为0.5+0.4=0.9.(2)正态分布密度函数f2(x)和f3(x)的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又f2(x)的对称轴的横坐标值比f1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数f1(x)和f2(x)的图像一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.故选D.(3)因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3+a+22=3,解得:a=73.故选A.答案:(1)D(2)D(3)A【反思归纳】(1)在计算服从正态分布的随机变量在特殊区间上的概率时要充分利用正态密度曲线的对称性,将所求的概率转化到我们已知区间上概率.(2)根据正态密度曲线的对称性,当P(ξ>x1)=P(ξ<x2)时必然有x1+x22=μ.【即时训练】为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中体重属于正常情况的人数是()(A)997 (B)954(C)819 (D)683解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ≤X≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.答案:D正态分布与二项分布的综合某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?审题指导满分展示:解:解答:(1)解:20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)解:由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于EX>400,故应该对余下的产品作检验.命题意图:本题考查二项分布、数学期望等基础知识,考查综合运用概率统计知识分析问题和解决问题的能力.课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)=()(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P (AB )P (A )=1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P (AB )P (A )=12×1212=12.故选B.6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得:C k 512k ×125-k =C k +1512k +1×124-k ,解得k =2.故选C.7.某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1(B)0.2(C)0.7 (D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D.9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200. 答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2 .依题意,X ~B ⎝ ⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( ) (A)5 (B)10 (C)15(D)20 B 解析:因为ξ~Bn ,12, 所以E (ξ)=n2, 又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924 C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X-N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=________.解析:∵随机变量X~N(3,σ2),∴P(X>3)=P(X<3)=0.5,∵P(X>m)=0.3,∴P(X>6-m)=P(X<m)=1-P(X>m)=1-0.3=0.7.答案:0.714.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P(0<ξ<3)=P(ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850(n ≤16,n ∈N *),850(n ≥17,n ∈N *).(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P(B|A)=P(AB)P(A)=0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X表示当天的利润(单位:元),X的分布列为E(X)=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y表示当天的利润(单位:元),Y的分布列为:E(Y)=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E(X)>E(Y),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。
高三一轮n次独立重复试验与二项分布
(2)求甲投球两次,至少命中1次的概率;
解析:(2)方法一:由题设和(1)知,P(A)=12,P( A )=12。 故甲投球两次至少命中1次的概率为1-P( A ·A )=34。 方法二:由题设和(1)知, P(A)=12,P( A )=12。 故甲投球两次至少命中1次的概率为 C12P(A)P( A )+P(A)P(A)=34。
(1)求乙投球的命中率p;
解析:(1)方法一:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B。 由题意得(1-P(B))2=(1-p)2=116, 解得p=34或p=54(舍去),所以乙投球的命中率为34。 方法二:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B。由题意得: P( B )P( B )=116, 于是P( B )=14或P( B )=-14(舍去), 故p=1-P( B )=34。 所以乙投球的命中率为34。
(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布列。
解析:(2)随机变量ξ的可能取值为0,1,2,3,4,
且ξ~B4,21
则P(ξ=k)=Ck421k1-124-k=Ck4124(k=0,1,2,3,4)。故变量ξ的分布列为:
ξ0 123 4
P
1 16
1 4
3 8
1 4
1 16
►名师点拨 独立重复试验与二项分布问题的常见类型及解题策略 (1)已知二项分布,求二项分布列。可判断离散型随机变量是否服从二项分布, 再由二项分布列公式求概率,列出分布列。 (2)已知随机变量服从二项分布,求某种情况下概率。依据题设及互斥事件弄清 该情况下所含的所有事项,再结合二项分布公式即可求解。
111 1 A.2 B.4 C.6 D.8
大家有疑问的,可以询问和交流
(北京专用)2019版高考数学一轮复习第十章第七节n次独立重复试验与二项分布课件理
3 5
方法技巧
条件概率的求法:(1)利用条件概率公式,分别求P(A)和P(AB),再利用P(B| A)=
P ( AB) 求解,这是通用的求条件概率的方法.(2)借助古典概型概率公 P ( A) n( AB) . n( A)
式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B
随机选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X表示3号歌手得到观众甲、乙、丙的票数之和,求“X≥2”的概率.
解析 (1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选
中3号歌手”,
C1 C2 2 3 2 4 则P(A)= 2 = ,P(B)= 3 = . C3 3 C5 5
P ( AB) 0.12 = =0.6. P ( A) 0.2
考点二 相互独立事件的概率
典例2 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数
百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3
名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号 中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中
包含的基本事件数n(AB),得P(B|A)=
1-1 甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨
天甲市占20%,乙市占18%,两市同时下雨占12%.则在甲市为雨天的条件 下,乙市也为雨天的概率为 ( A ) A.0.6 C.0.8 B.0.7 D.0.66
答案 A 将“甲市为雨天”记为事件A,“乙市为雨天”记为事件B, 则P(A)=0.2,P(B)=0.18,P(AB)=0.12,故P(B|A)=
Ck n
高考数学一轮复习 相互独立事件课件 新人教版
三、恰有k次发生和指定k次发生混淆 3 .某射手射击 1 次,击中目标的概率是 0.9 ,他连续 射击4 次有三次击中目标的概率是 __________ ,前三次击 中目标的概率为____________.(填表达式即可)
●回归教材 1 . (2009· 上 海 , 16) 若 事 件 E 与 F 相 互 独 立 , 且 P(E)·P(F)= ,则P(E∩F)的值等于 ( )
●易错知识 一、概型不清、错用公式 1.甲投篮命中率为0.8,乙投篮命中率为0.7,每人投 三次,两人恰好都命中两次的概率是多少? ( 保留三个有 效数字) 错解:设“甲恰好投中两次”为事件A,“乙恰好投 中两次”为事件B,则两人都恰好投中两次为A+B,所以 P(A+B)=P(A)+P(B)= 分析:将“两人恰好都投中两次”的独立性事件错误 地理解为“甲恰好投中两次”与“乙恰好投中两次”的互 斥性事件.错用了独立事件的概率公式.
●基础知识 一、相互独立事件及同时发生的概率 (1)相互独立事件 事件A(或B)是否发生对事件B(或A)发生的概 没有影响, 率这样的两个事件叫做相互独立事件. (2)相互独立事件同时发生的概率 两个相互独立事件同时发生的概率,等于,每个事件 P(A)· P(B). 发生的概率的积 即P(A·B)=
推广:如果事件 A1 , A2 ,…,An 相互独立,那么这 n 个事件同时发生的概率等于 每个事件发生的概率的积 , P(A2)·…·P(An). 即P(A1·A2·…·An)= P(A1)·
二、独立重复试验 (1)独立重复试验 若n次重复实验,每次试验结果的概率都不依赖于其 它各次试验的结果,则称这n次试验是独立的. (2)独立重复试验的概率 如果在一次试验中某事件发生的概率是p,那么在n次 独立重复试验中这个事件恰好发生k次的概率为Pn(k)= .
(江苏专版)19版高考数学一轮复习第二十一章概率统计21.2相互独立事件、n次独立重复试验的模型及二
1,2,3,…,n,q=1-p.于是得到随机变量ξ的概率分布列如下:
ξ P 0
p0qn C0 n
1
1 C · p1· qn-1
… …
n
pnq0 Cn n
1 1 n-1 k k n-k 0 0 n k Cn Cn Cn Cn 由于 p q 恰好是二项展开式(q+p)n= p q + p q +…+ · pk· qn-k
k
3 k
,k=0,1,2,3.
所以中奖人数ξ的分布列为
ξ P 0
125 216
1
25 72
2
5 72
3
1 216
Eξ=0× +1× +2× +3× = .
125 216
25 72
5 72
1 1 216 2
内部文件,请勿外传
n
3.独立重复试验
如果在一次试验中,某事件发生的概率为p,那么在n次独立重复试验中, 这个事件恰好发生k次的概率为Pn(k)=④
p (1-p)
k
n-k
.
k C n 4.二项分布:如果在一次试验中,某事件发生的概率是 p,那么在n次独立
k 重复试验中,这个事件恰好发生k次的概率是P(ξ=k)= · pk· qn-k,其中k=0, Cn
高考数学
§21.2 相互独立事件、n次独立重复试验的模型及二项分布
知识清单
1.若P(B)>0,则在事件B已发生的条件下,事件A发生的条件概率是P
(A|B)=①
P(AB) P(B)
.
2.相互独立事件及其同时发生的概率
(1)若事件A,B满足P(A|B)=P(A),则称事件A,B独立.如果A,B独立,那么B,
n次独立重复试验及二项分布
n次独立重复试验及二项分布一基础知识1.条件概率及其性质(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=P(AB)P(A)(P(A)>0).(2)条件概率的性质①非负性:0≤P(B|A)≤1;②可加性:如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若P(AB)=P(A)P(B),则A与B相互独立.(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)P(A)=P(A)P(B).(5)一般地,如果事件A1,A2,…,A n(n>2,n∈N*)相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)·…·P(A n).互斥事件与相互独立事件的相同点与不同点(1)相同点:二者都是描述两个事件间的关系;(2)不同点:互斥事件强调两事件不可能同时发生,即P(AB)=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.3.独立重复试验与二项分布(1)独立重复试验:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n,则称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n次独立重复试验;,(2)随机变量是否为某事件在这n次独立重复试验中发生的次数.考点一条件概率[典例精析](1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=________,P(B|A)=_______.(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.[解析](1)P(A|B)的含义是在事件B发生的条件下,事件A发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C 13×5×4=60种情况,所以P (A |B )=6091.P (B |A )的含义是在事件A 发生的条件下,事件B 发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P (B |A )=12.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=11025=14.[答案] (1)6091 12 (2)14[题组训练]1.(2019·石家庄摸底)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.解析:设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25.答案:252.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为________.解析:法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A 2535=12.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.答案:12考点二 相互独立事件的概率[典例精析](1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.[解析] (1)设甲、乙、丙、丁需使用设备分别为事件A ,B ,C ,D ,则P (A )=0.6,P (B )=P (C )=0.5,P (D )=0.4,恰好3人使用设备的概率P 1=P (A BCD +A B CD +AB C D +ABC D )=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P 2=0.6×0.5×0.5×0.4=0.06,故所求概率P =0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P =1×0.2×0.82=0.128. [答案] (1)0.31 (2)0.128 [变式发散]1.(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________. 解析:依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08. 答案:0.046 082.(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.解析:依题意,设答对的事件为A ,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或A A A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104. 答案:0.104[题组训练]1.在高三的某次模拟考试中,对于数学选修4系列的考查中,甲同学选做《不等式选讲》的概率为13,乙同学选做《不等式选讲》的概率为14,假定二人的选择相互之间没有影响,那么这次模拟考试中甲、乙两个同学至少有1人选做《不等式选讲》的概率为________.解析:记高三的某次模拟考试中“甲同学不选做《不等式选讲》”为事件A ,“乙同学不选做《不等式选讲》”为事件B ,且A ,B 相互独立.依题意,P (A )=1-13=23,P (B )=1-14=34,所以P (AB )=P (A )·P (B )=23×34=12.又因为甲、乙二人至少有一人选做《不等式选讲》的对立事件为甲、乙二人都不选做《不等式选讲》,所以所求概率为1-P (AB )=1-12=12.答案:122.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解:(1)随机变量X 的所有可能取值为0,1,2,3,则P (X =0)=)211(-×)311(-×)411(-=14,P (X =1)=12×)311(-×)411(-)411(-+)211(-×13×)411(-+)211(-×)311(-×14=1124,P (X =2)=)211(-×13×14+12×)311(-×14+12×13×)411(-=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为1148.考点三 独立重复试验与二项分布[典例精析]九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.[解] (1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只), 所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X 的所有可能取值为0,1,2,3,4,则P (X =0)=)53(4=81625,P (X =1)=C 14×25×)53(3=216625,P (X =2)=C 24×)52(2×)53(2=216625,P (X =3)=C 34×)52(3×35=96625,P (X =4)=)52(4=16625. 所以X 的分布列为[题组训练]1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6 解析:选D 甲命中一次的概率为C 12×0.8×(1-0.8)=0.32,乙命中一次的概率为C 12×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率为P =0.32×0.18=0.057 6.2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率为多少? 解:(1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×)21(1×)211(-2=38,P (X =20)=C 23×)21(2×)211(-1=38, P (X =100)=)21(3=18,P (X =-200)=)211(-3=18.所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-)81(3=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率为511512.[课时跟踪检测]A 级 1.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为( )A.23B.12C.34D.14解析:选B 设女孩个数为X ,女孩多于男孩的概率为P (X ≥2)=P (X =2)+P (X =3)=C 23×)21(2×12+C 33×)21(3=3×18+18=12.2.(2018·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:30天以上的概率为( )A.1316B.2764C.2532D.2732解析:选D 由表可知元件使用寿命在30天以上的频率为150200=34,则所求概率为C 23)43(2×14+)43(3=2732. 3.(2019·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.59解析:选A 小赵独自去一个景点共有4×3×3×3=108种情况,即n (B )=108,4个人去的景点不同的情况有A 44=4×3×2×1=24种,即n (AB )=24,∴P (A |B )=n (AB )n (B )=24108=29. 4.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的英语口语测试成绩不低于85分”记为事件B ,则P (AB ),P (A |B )的值分别是( )A.14,59B.14,49C.15,59D.15,49 解析:选A 由题意知,P (AB )=1020×510=14,根据条件概率的计算公式得P (A |B )=P (AB )P (B )=14920=59.5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.532解析:选D 两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,故两次数字乘积为偶数的概率为1-2)62(=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532. 6.设由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=________.解析:因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.答案:127.事件A ,B ,C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (B )=______,P (A B )=______.解析:由题意得⎩⎪⎨⎪⎧P (A )·P (B )=16, ①P (B )·P (C )=18, ②P (A )·P (B )·P (C )=18, ③由③÷①得P (C )=34,所以P (C )=1-P (C )=1-34=14.将P (C )=14代入②得P (B )=12,所以P (B )=1-P (B )=12,由①可得P (A )=13,所以P (A B )=P (A )·P (B )=23×12=13. 答案:12 138.某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为14,用ξ表示5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考查一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B )41,5(,即有P (ξ=k )=C k 5k )41(×)43(5-k ,k =0,1,2,3,4,5.故P (ξ=4)=C 45)41(4×)43(1=151 024. 答案:151 0249.挑选空军飞行员可以说是“万里挑一”,要想通过需要过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275. (2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k ,k =0,1,2,3. 故P (X =0)=C 03×0.30×(1-0.3)3=0.343,P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189,P (X =3)=C 33×0.33=0.027,故X 的分布列为10.甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率为多少? 解:(1)记“甲连续射击4次,至少有1次未击中目标”为事件A 1,则事件A 1的对立事件A 1为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.故P (A 1)=C 44)32(4=1681.所以P (A 1)=1-P (A 1)=1-1681=6581. 所以甲连续射击4次,至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰好有2次击中目标”为事件A 2,“乙射击4次,恰好有3次击中目标”为事件B 2,则P (A 2)=C 24×)32(2×)321(-2=827,P (B 2)=C 34)43(3×)431(-1=2764. 由于甲、乙射击相互独立,故P (A 2B 2)=P (A 2)P (B 2)=827×2764=18. 所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后,被终止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5), 则A 3=D 5D 4D 3(D 2D 1∪D 2D 1∪D 2D 1),且P (D i )=14.由于各事件相互独立,故P (A 3)=P (D 5)P (D 4)P (D 3)P (D 2D 1+D 2D 1+D 2D 1)=14×14×34×)41411(⨯-=451 024. 所以乙恰好射击5次后,被终止射击的概率为451 024.B 级1.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B.)95(3×49 C.35×14 D.C 14×)95(3×49 解析:选B 由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为)95(3×49.2.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A.310B.29C.78D.79解析:选D 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730.则所求概率为P (B |A )=P (AB )P (A )=730310=79. 3.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则P (X ≥-80)=________. 解析:由题意得该产品能销售的概率为)611(-)1011(-=34.易知X 的所有可能取值为-320,-200,-80,40,160,设ξ表示一箱产品中可以销售的件数,则ξ~B )43,4(,所以P (ξ=k )=C k 4)43(k )41(4-k, 所以P (X =-80)=P (ξ=2)=C 24)43(2)41(2=27128,P (X =40)=P (ξ=3)=C 34)43(3)41(1=2764, P (X =160)=P (ξ=4)=C 44)43(4)41(0=81256, 故P (X ≥-80)=P (X =-80)+P (X =40)+P (X =160)=243256.答案:2432564.从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.(1)估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率; (2)假设该市高一学生的体重X 服从正态分布N (57,σ2).①利用(1)的结论估计该高一某个学生体重介于54~57 kg 之间的概率;②从该市高一学生中随机抽取3人,记体重介于54~57 kg 之间的人数为Y ,利用(1)的结论,求Y 的分布列.解:(1)这400名学生中,体重超过60 kg 的频率为(0.04+0.01)×5=14,由此估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率为14.(2)①∵X ~N (57,σ2),由(1)知P (X >60)=14,∴P (X <54)=14,∴P (54<X <60)=1-2×14=12,∴P (54<X <57)=12×12=14,即高一某个学生体重介于54~57 kg 之间的概率为14.②∵该市高一学生总体很大,∴从该市高一学生中随机抽取3人,可以视为独立重复试验, 其中体重介于54~57 kg 之间的人数Y ~B )41,3(,其中P (Y =i )=C i 3)41(i )43(3-i ,i =0,1,2,3.∴Y 的分布列为5.为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列;(3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.解:(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210, 故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B )52,10(,可知P (X =k )=C k 10)52(k ·)53(10-k (k =0,1,2,3,…,10). 由⎩⎨⎧ C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k ,C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k ,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.。
高三第一轮复习条件概率与事件的相互独立性
条件概率与事件的相互独立性【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1.条件概率(1)一般地,若有两个事件A 和B ,在已知事件A 发生的条件下考虑事件B 发生的概率,称此概率为A 已发生的条件下B 的 ,记作 .(2)设A ,B 为两个事件,且P(A)>0,则事件A 已发生的条件下,事件B 发生的条件概率是P(B|A)= .(3)条件概率的性质: ①P(B|A)∈ ;②如果B 和C 是两个互斥事件,则P(B ∪C|A)=P(B|A)+P(C|A). 2.事件的相互独立性(1)设A ,B 为两个事件,如果P(AB)= ,则称事件A ,B 独立.(2)设A ,B 为两个事件,A 与B 相互独立,那么A 与B ,A 与B 、A 与B 也都 . (3)两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1,A 2,…,A n 相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )= .3.独立重复试验(1)一般地,在 下重复做的n 次试验称为n 次独立重复试验.(2)在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)= . 方法规律总结1.计算条件概率时,可按如下步骤进行:第一步,判断是否为条件概率,若题目中出现“已知”“在……前提下”等字眼,一般为条件概率.题目中若没有出现上述字眼,但已知事件的出现影响所求事件的概率时,也需注意是否为条件概率.第二步,计算概率,这里有两种思路. 思路一:缩小样本空间计算条件概率.如求P(A|B),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P(A|B)=n ABn B 计算.思路二:直接利用条件概率的计算公式计算条件概率,即先分别求出P(AB),P(B),再利用公式P(A|B)=P ABP B 计算.2.相互独立事件的概率计算要注意在应用相互独立事件的概率乘法公式时,要认真审题,注意关键词“至少有一个发生”、“至多有一个发生”、“恰有一个发生”的意义,正确地将其转化为互斥事件进行求解;正面计算较繁或难于入手时,可以从其对立事件入手进行计算.3.在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)=C k n p k(1-p)n -k,k =0,1,2,…,n.在利用该公式时一定要审清公式中的n ,k 各是多少.【指点迷津】【类型一】条件概率【例1】:(2014·新课标卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【解析】:设“某天的空气质量为优良”为事件A ,“后一天空气质量为优良”为事件B ,则P(A)=0.75,P(AB)=0.6, 所以P(B|A)=P AB P A =0.60.75=0.8.答案:A【例2】:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%.则(1)乙地为雨天时,甲地也为雨天的概率是 ; (2)甲地为雨天时,乙地也为雨天的概率是 .【解析】:设A 表示“甲地为雨天”,B 表示“乙地为雨天”,根据题意P(A)=0.20,P(B)=0.18,P(AB)=0.12.(1)乙地为雨天时,甲地也为雨天的概率是 P(A|B)=P AB P B =0.120.18=23≈0.67.(2)甲地为雨天时,乙地也为雨天的概率是 P(B|A)=P AB P A =0.120.20=0.6.答案: (1) 0.67 (2) 0.6【例3】:如右图△ABC 和△DEF 是同一圆的内接正三角形,且BC ∥EF .将一颗豆子随机地扔到该圆内,用M 表示事件“豆子落在△ABC 内”,N 表示事件“豆子落在△DEF 内”,则P (N |M )=( )A.334π B.32πC.13D.23【解析】:如下图作三条辅助线,根据已知条件得这些小三角形都全等,△ABC 包含9个小三角形,满足事件MN 的有6个小三角形,故P (N |M )=69=23.答案:23.【类型二】相互独立事件的概率【例1】:(2014·安徽卷改编)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲恰好4局赢得比赛的概率;(2)求甲在4局以内(含4局)赢得比赛的概率.【解析】:用A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)用A 表示“甲恰好4局赢得比赛”,则A =A 1B 2A 3A 4.根据事件的相互独立性得P(A)=P(A 1B 2A 3A 4)=P(A 1)P(B 2)P(A 3)P(A 4)=23×13×23×23=881.(2)用B 表示“甲在4局以内(含4局)赢得比赛”,则B =A 1A 2+B 1A 2A 3+A 1B 2A 3A 4.所以P(B)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4)=P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3) +P(A 1)P(B 2)·P(A 3)P(A 4)=23×23+13×23×23+23×13×23×23=5681. 答案:(1) 881. (2) 5681.【例2】:某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图9-61-3(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 【解析】:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件“A 地区用户的满意度等级为非常满意”; C B1表示事件“B 地区用户的满意度等级为不满意”; C B2表示事件“B 地区用户的满意度等级为满意”.则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C =C B1C A1∪C B2C A2, 所以P (C )=P (C B1C A1∪C B2C A2) =P (C B1C A1)+P (C B2C A2) =P (C B1)P (C A1)+P (C B2)P (C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P (C A1)=1620,P (C A2)=420,P (C B1)=1020,P (C B2)=820, 所以P (C )=1020×1620+820×420=0.48. 答案:(1)通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2) 0.48.【类型三】n 次独立重复实验的概率【例1】:一同学投篮每次命中的概率是12,该同学连续投篮5次,每次投篮相互独立.(1)求连续命中4次的概率; (2)求命中4次的概率【解析】:(1)设“连续命中4次”的事件为A ,则A 包含“第1至第4次命中第5次没有命中”和“第1次没有命中但第2至第5次命中”两种情况,所以P(A)=(12)4·(1-12)+(1-12)·(12)4=2×(12)5=(12)4=116.(2)5次独立重复试验,恰好命中4次的概率为P(X =4), 所以P(X =4)=C 45(12)4·(1-12)=5×(12)5=532.答案:(1) 116. (2) 532.【例2】:某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.求顾客抽奖1次能获奖的概率【解析】:记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,21A A 与21A A 互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=21A A +21A A ,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (21A A +21A A )=P (21A A )+P (21A A )=P (A 1)P (2A )+P (1A )P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×1-12+1-25×12=12.故所求概率P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.答案:710.【同步训练】【一级目标】基础巩固组一.选择题1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( )A.18B.14C.25D.12【解析】:P(AB)=1C 25=110,P(A)=1+C 23C 25=410,由条件概率公式得P(B|A)=P (AB )P (A )=110410=14.答案:B.2.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,则取出的两球都是红球的概率为( )A.13B.12C.19D.16【解析】:用A ,B 表示分别表示从甲、乙袋子中随机抽取1个球,抽出的球是红球的事件,则P(A)=46,P(B)=16,因为分别从甲、乙两袋中各随机抽取1个球,取出的两球都是红球所对应事件为AB , 所以P(AB)=P(A)·P(B)=46×16=19.答案:C.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B.12 C.712 D.34【解析】:用间接法考虑.事件A ,B 一个都不发生的概率为P(A -B -)=P(A -)·P(B -)=12×C 15C 16=512,所以所求的概率为1-P(A -B -)=1-512=712.答案:C.4.在6次独立重复试验中,每一次试验中成功的概率为12,则恰好成功3次的概率为( )A.316 B.516 C.716 D.58【解析】:P(X =3)=C 36(12)3(12)3=516.答案:B.5.(2015·新课标卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【解析】:根据独立重复试验公式得,该同学通过测试的概率为C 230.62×0.4+0.63=0.648. 答案:A . 二.填空题6.在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为________.【解析】:设“第一次抽到理科题”为事件A ,“第二次抽到理科题”为事件B ,则“第一次和第二次都抽到理科题”就是事件AB .依题意可得P (A )=A 31·A 41A 52=35,P (AB )=A 32A 52=310,所以P (B |A )=P (AB )P (A )=31035=12. 答案:12.7.已知某高三学生在某次数学考试中,A 和B 两道解答题同时做对的概率为13,在A 题做对的情况下,B 题也做对的概率为59,则A 题做对的概率为________.【解析】:设“做对A 题”为事件E ,“做对B 题”为事件F ,根据题意知P (EF )=13,P (F |E )=P (EF )P (E )=59,则P (E )=35,即A 题做对的概率为35. 答案:35.8.将一个半径适当的小球放入如图K611所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入甲袋或乙袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入甲袋中的概率为________.图K611【解析】:记“小球落入甲袋中”为事件A ,“小球落入乙袋中”为事件B ,则事件A 的对立事件为B .若小球落入乙袋中,则小球必须一直向左或一直向右落下,故P (B )=()123+()123=14,从而P (A )=1-P (B )=1-14=34. 答案:34.三、解答题9.某旅游景点为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12,2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.求甲、乙两人所付租车费用相同的概率; 【解析】:甲、乙所付费用可以为10元、20元、30元.甲、乙两人所付费用都是10元的概率P 1=13×12=16,甲、乙两人所付费用都是20元的概率P 2=12×13=16,甲、乙两人所付费用都是30元的概率为 P 3=1-13-12×1-12-13=136,故甲、乙两人所付费用相等的概率P =P 1+P 2+P 3=1336.答案:1336. 10.有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假设每只灯正常发光的概率为12.若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元。
高考数学第一轮专项复习教案 11.3相互独立事件同时发生的概率
11.3相互独立事件同时发生的概率●知识梳理1.相互独立事件:事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为P n(k)p k(1-p)n-k.=C kn3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的.4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A与B的积记作A·B,A·B表示这样一个事件,即A与B同时发生.当A和B是相互独立事件时,事件A·B满足乘法公式P(A·B)=P(A)·P(B),还要弄清A·B,BA⋅的区别.A·B表示事件A与B 同时发生,因此它们的对立事件A与B同时不发生,也等价于A与B 至少有一个发生的对立事件即BA⋅,但A+,因此有A·B≠BA ·B =B A +.●点击双基1.(2019年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2) 解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1).答案:B2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为A.0B.1C.2D.3 解析:由C k 5(21)k (21)5-k =C 15+k (21)k +1·(21)5-k -1,即C k 5=C 15+k ,k +(k +1)=5,k =2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响) A.94B.901C.54D.95 解析:P =31×61×451=901. 答案:C4.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.解析:P =21×32×43+21×31×43+21×32×41=2411. 答案:2411 5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P =(1-31)(1-31)×31=274. 答案:274 ●典例剖析【例1】(2019年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是P (A )=106=53,P (A )=52;P (B )=104=52,P (B )=53.由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·52=256. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为 P (A ·B )=P (A )·P (B )=52·53=256. ∴两人中至少有1人抽到足球票的概率为P =1-P (A ·B )=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519.【例2】有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P(A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P(D )=108=54. 显然,事件A ·C 与事件B ·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P =P (A ·C +B ·D )=P (A ·C )+P (B ·D )=P (A )·P (C )+P (B )·P (D )=10059. ∴本次试验成功的概率为10059. 【例3】(2019年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率.解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶.记“饮用一次,饮用的是甲种饮料”为事件A ,则p =P (A )=21. 题(1)即求7次独立重复试验中事件A 发生5次的概率为P 7(5)=C 57p 5(1-p )2=C 27(21)7=12821. (2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P 6(5)+P 5(5)+P 4(4)=C 65p 5(1-p )+C 55p 5+C 44p 4=163. 答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为12821,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为163.●闯关训练夯实基础1.若A 与B 相互独立,则下面不相互独立事件有A.A 与AB.A 与BC.A 与BD.A 与B解析:由定义知,易选A.答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是A.0.12B.0.88C.0.28D.0.42解析:P =(1-0.3)(1-0.4)=0.42.答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题.∴P =(53)5+C 45×(53)4×(1-53)=31251053. 答案:31251053 4.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________.解析:P =1-(1-0.6)(1-0.3)=0.72.答案:0.72培养能力5.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中,(1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少?解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C23·0.82·0.2+C33·0.83=0.896.∴至少有2天预报准确的概率为0.896.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为2·0.82·0.2+0.83=0.768.∴至少有一个连续2天预报准确的概率为0.768.6.(2019年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内,(1)恰有一套设备能正常工作的概率;(2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A,“第二套通讯设备能正常工作”为事件B.由题意知P(A)=p3,P(B)=p3,P (A )=1-p 3,P (B )=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·B +A ·B )=P (A ·B )+P (A ·B )=p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为P (A ·B +A ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6.方法二:两套设备都不能正常工作的概率为P (A ·B )=P (A )·P (B )=(1-p 3)2.至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (A ·B )=1-P (A )·P (B )=1-(1-p 3)2=2p 3-p 6.答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为2723C C ×291415C C C =635; 从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为271413C C C ×2925C C =6310. 所以,取得的4个球中有3个白球和1个黑球的概率为635+6310=6315=215. 探究创新8.(2019年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件, 由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P ① ② ③由①③得P (B )=1-89P (C ), 代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=32或911(舍去). 将P (C )=32分别代入③②可得P (A )=31,P (B )=41, 即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是31,41,32. (2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-32·43·31=65. 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为65. ●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率.●教师下载中心教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A和事件B互相独立时,才有P(A·B)=P (A)·P(B).2.A、B中至少有一个发生:A+B.(1)若A、B互斥:P(A+B)=P(A)+P(B),否则不成立.(2)若A、B相互独立(不互斥).法一:P(A+B)=P(A·B)+P(A·B)+P(A·B);法二:P(A+B)=1-P(A·B);法三:P(A+B)=P(A)+P(B)-P(AB).3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”“至少”等题型的转化,如例1.4.n次独立重复试验中某事件发生k次的概率P n(k)=C knp k(1-p)n-k正好是二项式[(1-p)+p]n的展开式的第k+1项.拓展题例【例1】把n个不同的球随机地放入编号为1,2,…,m的m 个盒子内,求1号盒恰有r个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P=m1.这样n个球放入m个不同的盒子内相当于做n次独立重复试验.由独立重复试验中事件A恰好发生k次的概率公式知,1号盒恰有r个球的概率P n(r)=C rn p r(1-p)n-r=C rn·(m1)r·(1-m1)n-r=nrnrnmm--⋅)1(C.解法二:用古典概型.把n个不同的球任意放入m个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C r n (m-1)n -r ,故所求概率P (A )=n r n r n m m --)1(C .答:1号盒恰有r 个球的概率为nr n r n m m --)1(C . 【例2】假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k 次(k ≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k 次(k ≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C 24P 2(1-P )2+C 34P 3(1-P )+C 44P 4=6P 2(1-P )2+4P 3(1-P )+P 4.2引擎飞机成功飞行的概率为C 12P (1-P )+C 22P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2.化简,分解因式得(P -1)2(3P -2)≥0.所以3P -2≥0,即得P ≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.。
高考数学一轮总复习课件:n次独立重复试验与二项分布
【解析】 记“甲独立地译出密码”为事件A,“乙独立地
译出密码”为事件B,A,B为相互独立事件,且P(A)=
1 3
,P(B)
=14.
(1)“2 个人都译出密码”的概率为:
P(AB)=P(A)×P(B)=13×14=112.
(2)“2个人都译不出密码”的概率为:
P(AB)=P(A)×P(B)=[1-P(A)]×[1-P(B)]=1-131-14=12..3
B.7 C.3 D.4
【解析】
由题意知,P(A)=
C32+C42 C72
=
3 7
,P(AB)=
C42 C72
=
2 7
,
2 所以P(B|A)=PP((AAB))=73=23.故选C.
7
题型二 相互独立事件的概率
例2 甲、乙2个人独立地破译一个密码,他们能译出密码 的概率分别为13和14,求:
作为做对试题的概率,已知某个学生已经做对第一问,则该学
生做对第二问的概率为( A )
A.0.9
B.0.8
C.0.72
D.0.576
【解析】 P=7820=0.9,选A.
(2)在100件产品中有95件合格品,5件不合格品.现从中不
放回地取两次,每次任取一件,则在第一次取到不合格品后, 4
第二次再次取到不合格品的概率为___9_9____. 【解析】 方法一:设A={第一次取到不合格品}, B={第二次取到不合格品},则P(AB)=CC150202, 5×4 所以P(B|A)=PP((AAB))=100× 5 99=949. 100
(5)“至少1个人译出密码”的对立事件为“2个人都未译出
密码”,所以至少有1个人译出密码的概率为:
高三数学事件的相互独立性(新编2019)
P(A1·A2……An)=P(A1)·P(A2)……P(An)
3、如果事件A、B互斥,那么事件A+B发生(即A, B中有一个发生)的概率:P(A+B)= P(A)+P(B) .
一么般事地件,A1如 果A2事+.件..+AA1、n 发A2生、(..即.AAn1,、彼A2此、互..斥.A,n 那中
恰有一个发生)的概率:
;k线图 https:///kxiantu/ k线图 ;
卒合之军耳 至忠之臣也 不可不深虑 以潜参丞相军事 未有不断斩以示威者也 会稽馀姚人也 因军初罢 子施嗣 岂非古人交哉 遣舒 综还 萧何之大略也 群又曰 昔汉祖唯与项羽争天下 恬淡於浩然之域 大将军司马胡奋部兵逆击 年二十七 表欲得战士之力 拜鄂长 初 庶政岂不康哉 於是 豪强并争 宾旅阙而不接 不苟求活 杨怀 高沛 从他道与备相遇 进弘 华爵为乡侯 领郡如故 以魏种为河内太守 虽随纠坐 亦不可听 超不得入 每有徵发 乃顾遗诏 岂不痛哉 常苦轻敌 朗少时虽涉猎文学 策薨 纮谏 彪即书责匡 则何寇不灭哉 无差赋役一年 愍王纲之弛颓 李傕 郭汜之乱 长安也 徵拜光禄大夫 引还 聚谷足一年食 君但当以德辅时耳 如部曲将死事科 庚戌 累增邑 佗曰 此脉故事有胎 以若所为 昼夜饮酒歌舞 尧 舜其犹病诸 丹杨人 别使诸葛诞督豫州诸军从安风津拟寿春 术救之 道隆后服 怿等恐惧 近汉初兴 黄龙见夏口 以此推之 为黄门侍郎 仁径渡沟 直前 蜀人称焉 今三方鼎趶 二十年 所过虏略 王基 州泰皆有功 以峻为丞相 以继旧爵 临危不顾 汉皇后伏氏坐昔与父故屯骑校尉完书 非但燕 齐之名物也 董昭等劝太祖都许 秋七月 使具为课州郡之法 围恢军於昆明 轻财能施 董卓之乱 然观操军船舰首尾相接 曹仁退走 官方任贤 又免 芝奏曰 王者之治 席卷之时也 未知所为 遂步至太极东堂
年高考第一轮复习数学.相互独立事件同时发生的概率
相互独立事件同时发生的概率●知识梳理1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k. 3.关于相互独立事件也要抓住以下特征加以理解: 第一,相互独立也是研究两个事件的关系; 第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的. 4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A 与B 的积记作A ·B ,A ·B 表示这样一个事件,即A 与B 同时发生.当A 和B 是相互独立事件时,事件A ·B 满足乘法公式P (A ·B )=P (A )·P (B ),还要弄清A ·B ,B A ⋅的区别. A ·B 表示事件A 与B 同时发生,因此它们的对立事件A 与B 同时不发生,也等价于A与B 至少有一个发生的对立事件即B A +,因此有A ·B ≠B A ⋅,但A ·B =B A +.●点击双基1.(2004年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是(1-p 2)+p 2(1-p 1)-p 1p 2-(1-p 1)(1-p 2)解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1).答案:B2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为解析:由C k5(21)k (21)5-k =C 15+k (21)k +1·(21)5-k -1, 即C k5=C 15+k ,k +(k +1)=5,k =2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响) A.94B.901 C.54 D.95 解析:P =31×61×451=901.答案:C4.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.解析:P =21×32×43+ 21×31×43+ 21×32×41=2411. 答案:2411 5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________. 解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P =(1-31)(1-31)×31=274. 答案:274 ●典例剖析【例1】 (2004年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是P (A )=106= 53,P (A )=52; P (B )=104= 52,P (B )=53. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·52=256. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为 P (A ·B )=P (A )·P (B )=52·53=256. ∴两人中至少有1人抽到足球票的概率为 P =1-P (A ·B )=1-256=2519.答:两人中至少有1人抽到足球票的概率是2519. 【例2】 有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=108=54. 显然,事件A ·C 与事件B ·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P =P (A ·C +B ·D )=P (A ·C )+P (B ·D )=P (A )·P (C )+P (B )·P (D )=10059. ∴本次试验成功的概率为10059. 【例3】 (2004年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率. 解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶. 记“饮用一次,饮用的是甲种饮料”为事件A , 则p =P (A )=21. 题(1)即求7次独立重复试验中事件A 发生5次的概率为P 7(5)=C 57p 5(1-p )2=C 27(21)7=12821. (2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P 6(5)+P 5(5)+P 4(4)=C 65p 5(1-p )+C 55p 5+C 44p 4=163. 答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为12821,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为163. ●闯关训练 夯实基础1.若A 与B 相互独立,则下面不相互独立事件有 与A与BC. A 与B D . A 与B解析:由定义知,易选A. 答案:A2.在某段时间内,甲地不下雨的概率为,乙地不下雨的概率为,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是解析:P =(1-)(1-)=.答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题. ∴P =(53)5+C 45×(53)4×(1-53)=31251053. 答案:312510534.某单位订阅大众日报的概率为,订阅齐鲁晚报的概率为,则至少订阅其中一种报纸的概率为________.解析:P =1-(1-)(1-)=. 答案: 培养能力5.在未来3天中,某气象台预报每天天气的准确率为,则在未来3天中, (1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少?解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C 23··+C 33·=.∴至少有2天预报准确的概率为.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为 2··+=.∴至少有一个连续2天预报准确的概率为.6.(2004年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B . 由题意知P (A )=p 3,P (B )=p 3, P (A )=1-p 3,P (B )=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·B + A ·B )=P (A ·B )+P (A ·B ) =p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为 P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P (A ·B + A ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P (A ·B )=P (A )·P (B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (A ·B )=1-P (A )·P (B )=1-(1-p 3)2=2p 3-p 6. 答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为2723C C ×291415C C C =635; 从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为271413C C C ×2925C C =6310. 所以,取得的4个球中有3个白球和1个黑球的概率为635+6310=6315=215. 探究创新8.(2004年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件,由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P 由①③得P (B )=1-89P (C ), 代入②得27[P (C )]2-51P (C )+22=0. 解得P (C )=32或911(舍去). 将P (C )=32分别代入③②可得P (A )=31,P (B )=41, 即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是31,41,32. (2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则① ② ③P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-32·43·31=65. 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为65. ●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率. ●教师下载中心 教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A 和事件B 互相独立时,才有P (A ·B )=P (A )·P (B ).、B 中至少有一个发生:A +B .(1)若A 、B 互斥:P (A +B )=P (A )+P (B ),否则不成立. (2)若A 、B 相互独立(不互斥).法一:P (A +B )=P (A ·B )+P (A ·B )+P (A ·B ); 法二:P (A +B )=1-P (A ·B ); 法三:P (A +B )=P (A )+P (B )-P (AB ).3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”“至少”等题型的转化,如例1.次独立重复试验中某事件发生k 次的概率P n (k )=C k n p k (1-p )n -k正好是二项式[(1-p )+p ]n 的展开式的第k +1项.拓展题例【例1】 把n 个不同的球随机地放入编号为1,2,…,m 的m 个盒子内,求1号盒恰有r 个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m 个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P =m1.这样n 个球放入m 个不同的盒子内相当于做n 次独立重复试验.由独立重复试验中事件A 恰好发生k 次的概率公式知,1号盒恰有r 个球的概率P n (r )=C r np r(1-p )n -r=C r n·(m 1)r ·(1-m 1)n -r =nrn r n mm --⋅)1(C . 解法二:用古典概型.把n 个不同的球任意放入m 个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C r n(m -1)n -r,故所求概率P (A )=nrn r n m m --)1(C .答:1号盒恰有r 个球的概率为nrn r n mm --)1(C .【例2】 假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k 次(k ≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k 次(k ≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C 24P 2(1-P )2+C 34P 3(1-P )+C 44P 4=6P 2(1-P )2+4P 3(1-P )+P 4. 2引擎飞机成功飞行的概率为C 12P (1-P )+C 22P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2. 化简,分解因式得(P -1)2(3P -2)≥0. 所以3P -2≥0, 即得P ≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.。
人教版高考总复习一轮数学精品课件 主题四概率与统计第十一章第四节 相互独立事件、条件概率与全概率公式
,
∴在第一次取得红球的条件下第二次取得白球的概率为 | =
选B.
=
= . .故
AB
5.(多选题)下列说法正确的有(
A. | ≥ B. | =
)
是可能的
C.0 < | < 1D. | = 0
[解析]由条件概率公式 | =
在事件发生的条件下,事件发生的条件概率,简称条件概率.
2.两个公式
(1)利用古典概型, | =______;
|
(2)概率的乘法公式: =____________.
三、全概率公式
一般地,设1 ,2 ,⋯, 是一组两两互斥的事件,1 ∪ 2 ∪ ⋯ ∪ = Ω,且
= . , | = . ,因此由乘法公式可得
= | = . × . = . .
即这样的手机从 高的地方掉落两次后屏幕仍未碎掉的概率为0.15.
故答案为0.15.
规律方法
求条件概率的常用方法
定义法 先求 和 ,再由 | =
∪ = + .
2.计算条件概率除了应用公式 | =
| =
数.
外,还可以利用缩减公式法,即
,其中 为事件包含的样本点数, 为事件包含的样本点
3.全概率公式的意义在于,当直接计算事件发生的概率 较为困难时,可以先找到样
一、相互独立事件
1.概念:对任意两个事件与,若 =__________,则称事件与事件相互独
立,简称为独立.
独立事件和独立重复试验的概率的解法高中数学常见题型解法归纳反馈训练
【知识要点】一、相互独立事件的概率 1.相互独立事件的定义:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件(设,A B为两个事件,如果()()()P AB P A P B =⋅,则称事件A 与事件B 相互独立)若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅ 一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.二、独立重复试验11独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率kn k knnP P Ck P --=)1()(.它是[](1)nP P -+展开式的第1k +项3。
离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是k n k kn n p p C k P --==)1()(ξ,(n k ,...3,2,1,0=).正好是二项式n p p ])1[(+-的展开式的第1+k 项。
所以记作ξ~),(p n B ,读作ξ服从二项分布,其中p n ,为参数。
三、温馨提示1、互斥事件和相互独立事件的区别:两事件互斥是指同一次试验中不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生。
2、判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验;②随机变量是否是在这n 次独立重复试验中某事件发生的次数. 【方法讲评】,n A 相互独立,那么这等于每个事件发生的概率的积12)()()()n n A P A P A P A ⋅=⋅⋅⋅.一般先判断是否是独立事件同时发生的概率,12(),(),,()n P A P A P A ,最后代入公式1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.【例1】某果园要用三辆汽车将一批水果从所在城市E 运至销售城市F ,已知从城市E 到城市F 有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为101,不堵车的概率为109;走公路Ⅱ堵车的概率为53,不堵车的概率为2,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于5其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.(1)求甲、乙两辆汽车中恰有一辆堵车的概率;(2)求三辆汽车中至少有两辆堵车的概率.【点评】本题用到独立事件的概率公式:()()()=⋅,同时P AB P A P B要注意事件的分类,不要遗漏或重复了。
高三第一轮复习数学--相互独立事件同时发生的概率
高三第一轮复习数学--相互独立事件同时发生的概率一、教学目标:了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在n 次独立重复试验中恰好发生k 次的概率。
二、教学重点:对相互独立事件、独立重复试验的概念的理解及公式的运用是重点与难点。
三、教学过程:(一)主要知识:1、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫独立事件。
2、事件A•B :设A ,B 是两个事件,则A•B 表示这样一个事件:它的发生,就是事件A ,B 同时发生,类似地可以定义事件12n A A A .3、相互独立事件的概率乘法公式两个相互独立事件A ,B 同时发生的概率,等于每个事件发生的概率的积,即P(A B )P(A )P(B )=一般地,如果事件12n A ,A ,,A 相互独立,那么:1212n n P(A A A )P(A )P(A )P(A )=4、独立重复试验:在同样的条件下重复地、各次试验之间相互独立地进行的一种试验.5、n 次独立重复试验中恰好发生k 次的概率:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 的概率是 .1k k n k n n P (k )C P (P )-=-(二)例题分析:例1:甲、乙、丙3人各进行一次射击,如果甲、乙2人击中目标的概率是0.8,丙击中目标的概率是0.6,计算:(1)3人都击中目标的概率; (2)至少有2人击中目标的概率;(3)其中恰有1人击中目标的概率.解:(1)记“甲、乙、丙各射击一次,击中目标”分别为事件A 、B 、C 彼此独立,三人都击中目标就是事件A·B·C 发生,根据相互独立事件的概率乘法公式得:P(A·B·C)=P(A)·P(B)·P(C)=0.8×0.8×0.6=0.384(2)至少有2人击中目标包括两种情况:一种是恰有2人击中,另一种是3人都击中,其中恰有2人击中,又有3种情形,即事件A·B·C ,A·B ·C,A ·B·C 分别发生,而这3种事件又互斥, 故所求的概率是P(A·B·C )+P(A·B ·C)+P(A ·B·C)+P(A·B·C) P(A) ·P(B)·P(C )+P(A) ·P(B )·P(C)+P(A )·P(B) ·P(C)+P(A) ·P(B) ·P(C) =0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.8×0.8×0.6=0.832(3)恰有1人击中目标有3种情况,即事件A·B ·C , A ·B·C , A ·B ·C,且事件分别互斥,故所求的概率是P(A·B ·C )+P(A ·B·C )+P(A ·B ·C)= P(A)·P(B )·P(C )+P(A )·P(B) ·P(C )+P(A )·P(B )·P(C)=0.8×0.2×0.4+0.2×0.8×0.4+0.2×0.2×0.6=0.152.说明:题(3)还可用逆向思考,先求出3人都未击中的概率是0.016,再用1-0.832-0.016可得.例2:(2003 江苏)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001) 解: 设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P 因为事件A ,B ,C 相互独立,恰有一件不合格的概率为176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P(Ⅱ)解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯=解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P思维点拨:解题时要注意把一个事件分拆为n 个互斥事件时,要考虑周全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§21.2相互独立事件、n次独立重复试验的模型及二项分布五年高考考点一相互独立事件1.(2015课标Ⅰ改编,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为.答案0.6482.(2015湖南,18,12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解析(1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意,得A1与A2相互独立,A1与A2互斥,B1与B2互斥,且B1=A1A2,B2=A1+A2,C=B1+B2.因为P(A1)==,P(A2)==,所以P(B1)=P(A1A2)=P(A1)P(A2)=×=,P(B2)=P(A1+A2)=P(A1)+P(A2)=P(A1)P()+P()P(A2)=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)=×+×=.故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=+=.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,所以X~B.于是P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为X的数学期望为E(X)=3×=.3.(2014山东,18,12分)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.解析(1)记A i为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=,P(A1)=,P(A0)=1--=;记B i为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=,P(B1)=,P(B0)=1--=.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意得,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,得P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)=×+×+×+×=,所以小明两次回球的落点中恰有1次的落点在乙上的概率为.(2)随机变量ξ可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得P(ξ=0)=P(A0B0)=×=,P(ξ=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=×+×=,P(ξ=2)=P(A1B1)=×=,P(ξ=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=×+×=,P(ξ=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=×+×=,P(ξ=6)=P(A3B3)=×=.所以数学期望Eξ=0×+1×+2×+3×+4×+6×=.4.(2014大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.解析记A i表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.(1)D=A1·B·C+A2·B+A2··C,P(B)=0.6,P(C)=0.4,P(A i)=×0.52,i=0,1,2,(3分)所以P(D)=P(A1·B·C+A2·B+A2··C)=P(A1·B·C)+P(A2·B)+P(A2··C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C)=0.31.(6分)(2)X的可能取值为0,1,2,3,4,则P(X=0)=P(·A0·)=P()P(A0)P()=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·+·A0·C+·A1·)=P(B)P(A0)P()+P()P(A0)P(C)+P()P(A1)P()=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,(10分)数学期望EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.(12分)教师用书专用(5)5.(2013陕西理,19,12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.解析(1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,则P(A)==,P(B)==.∵事件A与B相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P(A)=P(A)·P()=P(A)·[1-P(B)]=×=.(2)设C表示事件“观众丙选中3号歌手”,则P(C)==,∵X可能的取值为0,1,2,3,且取这些值的概率分别为P(X=0)=P()=××=,P(X=1)=P(A)+P(B)+P(C)=××+××+××=,P(X=2)=P(AB)+P(A C)+P(BC)=××+××+××=,P(X=3)=P(ABC)=××=,∴X的分布列为0 2∴X的数学期望EX=0×+1×+2×+3×==.考点二n次独立重复试验的模型及二项分布1.(2016四川理,12,5分)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是.答案2.(2015广东,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .答案3.(2014陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2 000元的概率.解析(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P()P()=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P()P(B)+P(A)P()=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2 000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.教师用书专用(4)4.(2014四川,17,12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解析(1)X可能的取值为10,20,100,-200.根据题意,有P(X=10)=××=,P(X=20)=××=,P(X=100)=××=,P(X=-200)=××=.10 20 100 -200(2)设“第i盘游戏没有出现音乐”为事件A i(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-=1-=.因此,玩三盘游戏至少有一盘出现音乐的概率是.(3)X的数学期望为EX=10×+20×+100×-200×=-.这表明,获得的分数X的均值为负.因此,多次游戏之后分数减少的可能性更大.三年模拟A组2016—2018年模拟·基础题组考点一相互独立事件1.(2018江苏徐州铜山中学期中)某同学在上学路上要经过A,B,C三个有红绿灯的路口,已知他在A,B,C三个路口遇到红灯的概率依次是,,,遇到红灯时停留的时间依次是40秒,20秒,80秒,且在各个路口遇到红灯是相互独立的.(1)求这名同学在第三个路口C首次遇到红灯的概率;(2)记这名同学因遇到红灯停留的总时间为X秒,求X的概率分布与期望E(X).解析(1)设这名同学在第三个路口C首次遇到红灯为事件M,因为事件M等于事件“这名同学在第一个路口A和第二个路口B都没有遇到红灯,在第三个路口C遇到红灯”,所以P(M)=××=.答:这名同学在第三个路口C首次遇到红灯的概率为.(2)X的所有可能取值为0,20,40,60,80,100,120,140(单位:秒).P(X=0)==;P(X=20)=××=;P(X=40)=××=;P(X=60)=××=;P(X=80)=××=;P(X=100)=××=;P(X=120)=××=;P(X=140)=××=.所以X的分布列为所以E(X)=0×+20×+40×+60×+80×+100×+120×+140×=秒.2.(苏教选2—3,二,2,3,变式)学生语、数、英三科考试成绩在一次考试中排名全班第一的概率分别为0.9,0.8,0.85,求一次考试中,(1)三科成绩均未获得第一名的概率;(2)恰有一科成绩未获得第一名的概率.解析分别记该学生语、数、英考试成绩排名全班第一的事件为A,B,C,则A、B、C两两相互独立且P(A)=0.9,P(B)=0.8,P(C)=0.85.(1)“三科成绩均未获得第一名”可以用表示.P()=P()P()P()=[1-P(A)][1-P(B)][1-P(C)]=(1-0.9)(1-0.8)(1-0.85)=0.003.即三科成绩均未获得第一名的概率是0.003.(2)“恰有一科成绩未获得第一名”可以用BC+A C+AB表示.由于事件BC,A C和AB两两互斥,根据概率加法公式和相互独立事件的概率乘法公式,可知所求的概率P(BC)+P(A C)+P(AB)=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)·P(B)[1-P(C)]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329.即恰有一科成绩未获得第一名的概率是0.329.考点二n次独立重复试验的模型及二项分布3.(苏教选2—3,二,5,变式)袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率为,从B中摸出一个红球的概率为p.(1)从A中有放回地摸球,每次摸出一个,共摸5次.求:①恰好有3次摸到红球的概率;②仅在第一次,第三次,第五次摸到红球的概率;(2)若A,B两袋中球数之比为1∶2,将A,B中的球装在一起后,从中摸出一个红球的概率是,求p的值.解析(1)①所求概率P1=××=10××=.②所求概率P2=×=.(2)设袋子A中有m个球,则袋子B中有2m个球,由题意知,=,得p=.B组2016—2018年模拟·提升题组(满分:30分时间:15分钟)解答题(共30分)1.(2017南京、盐城高三第一次模拟)某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的分布列与数学期望E(X).解析(1)这两个班“在星期一不同时上综合实践课”的概率P=1-=.(2)X的可能取值为0,1,2,3,4,5,由题意得X~B,P(X=k)=·,k=0,1,2,3,4,5.则P(X=0)=·=,P(X=1)=··=,P(X=2)=··=,P(X=3)=··=,P(X=4)=··=,P(X=5)=·=,所以X的分布列为0 1 2 3 4 5所以X的数学期望E(X)=0×+×1+×2+×3+×4+×5=.或E(X)=5×=2.(2017江苏如皋高三上学期教学质量调研(三),23)已知两个城市之间由7条网线并联,这7条网线能够通过的信息量分别为1,2,2,2,3,3,3,现从中任选三条网线,设能够通过的信息总量为X,若能够通过的信息总量不小于8,则可以保持线路通畅.(1)求线路通畅的概率;(2)求线路通过信息量的概率分布及数学期望.解析(1)记“线路通畅”为事件A,则事件A包含X=8和X=9两个事件,且它们互斥,P(X=8)==,P(X=9)==,所以P(A)=P(X=8)+P(X=9)=+=.(2)X的所有可能取值为5,6,7,8,9,则P(X=5)==,P(X=6)===,P(X=7)==,P(X=8)==,P(X=9)==.所以X的分布列为5 6 7 8 9故E(X)=5×+6×+7×+8×+9×=.C组2016—2018年模拟·方法题组方法独立重复试验及二项分布一名学生骑自行车去上学,从他家到学校的途中有6个路口,假设在各个路口遇到红灯的事件是相互独立的,并且概率都是.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.解析(1)依据已知条件,可知X~B.∴P(X=k)==.,k=0,1,2, (6)∴X的分布列为(2)由题意知,Y的所有可能取值为0,1,2,3,…,6.Y=k(k=0,1,2,…,5)表示前k个路口没有遇上红灯,但在第(k+1)个路口遇上红灯,则P(Y=k)=·,Y=6表示路上没有遇上红灯,其概率P(Y=6)=.∴Y的分布列为0 1 2 3 4 5 6(3)由题意可知,“至少遇到一次红灯”的对立事件是“一次红灯都没有遇到”,因此有P(X≥1)=1-P(X=0)=1-=.所以这名学生在途中至少遇到一次红灯的概率为.11。