高一数学全集和补集
高一数学必修1-子集、全集、补集-课件
高一数学集合子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A” .(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,Q R.A B可以用图1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x ∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1,2.2.真子集(1)定义:如果A B ,并且A≠B,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C.③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ” “ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.解题提示: 根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合中. 2.写出集合A ={p ,q ,r ,s }的所有子集.解题提示: 根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉. 解:集合A 的子集分为5类,即评 点(1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m个,真子集有(2m-1)个,非空真子集有(2m-2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.解题提示: 从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集.求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A.(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A.4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .解题提示: 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m.若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-2.要点二 补集、全集[重点]评点 评点 评点1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2中的阴影部分来表示.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U. (2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A.该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .另外,原题若是无限集,在实数范围内求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题例2 不等式组⎩⎨⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<xx ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1). C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A.解题提示: 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,122122结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍. 6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}. (1)判断A 、B 的关系; (2)求C U B 、C U C ,并判断其关系.解题提示: 根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A.若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B.若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A.解题提示: 要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论. 解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B. 解题提示: 紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 A Ba5x(2)ABa5x(1)(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系. 解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P. 解法二:对任意的x 0∈M ,有x 0=a 2 0+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P.而1<1+ a 2 0+1=(a 0∈N *),∴1 M ,从而M P.10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合 B.解题提示: 求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用Venn 图来表示所给集合,将A 及C U A 填入即可得U解:借助Veen 图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用Veen 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a < x <a + 4 },若A B ,求实数a 的取值范围.解题提示: 注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.解题提示: 集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符方法一 数形结合思想 A 1-4a +aBA4a +aB5AA51-评点 方法二 分类讨论思想U A1 3,,5 7 9,,2468评点。
高一数学知识点归纳
高一数学知识点归纳高一数学集合知识点归纳在我们平凡的学生生涯里,大家最熟悉的就是知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
掌握知识点是我们提高成绩的关键!以下是店铺帮大家整理的高一数学知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。
一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈a都有x∈b,则a b(或a b);2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 )3)交集:a∩b={x| x∈a且x∈b}4)并集:a∪b={x| x∈a或x∈b}5)补集:cua={x| x a但x∈u}注意:①? a,若a≠?,则? a ;②若,,则 ;③若且,则a=b(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关子集的几个等价关系①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;④a∩cub = 空集cua b;⑤cua∪b=i a b。
5.交、并集运算的性质①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高一数学第一章《集合的基本运算--全集与补集》知识点归纳、例题解析及课时作业
3.2全集与补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?答案老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理(1)定义:在研究某些集合时,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,全集含有我们所要研究的这些集合的全部元素.(2)记法:全集通常记作U.知识点二补集思考实数集中,除掉大于1的数,剩下哪些数?答案剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2} D.{x|0≤x≤2}答案 C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=v,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的V enn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.答案 {x |0≤x ≤1或x >2}解析 A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0}, 由图可得A *B =∁(A ∪B )(A ∩B )={x |0≤x ≤1或x >2}.命题角度2 补集性质在解题中的应用 例3 关于x 的方程:x 2+ax +1=0,① x 2+2x -a =0,② x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围. 解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a < 2.解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根, 即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题;(2)求解反面问题对应的参数的取值范围;(3)求反面问题对应的参数的取值集合的补集. 跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 解 假设集合A 中含有2个元素, 即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则集合A 中含有2个元素时, 实数a 的取值范围是{a |a <98且a ≠0}.在全集U =R 中,集合{a |a <98且a ≠0}的补集是{a |a ≥98或a =0},所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}.类型三 集合的综合运算例4 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于()A .{3}B .{4}C .{3,4}D .∅ 答案 A解析 ∵∁U (A ∪B )={4}, ∴A ∪B ={1,2,3},又∵B ={1,2},∴∁U B ={3,4}, A 中必有3,可以有1,2,一定没有4. ∴A ∩(∁U B )={3}.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________. 答案 {a |a ≥2}解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思与感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练4 (1)已知集合U ={x ∈N |1≤x ≤9},A ∩B ={2,6},(∁U A )∩(∁U B )={1,3,7}, A ∩(∁U B )={4,9},则B 等于( ) A .{1,2,3,6,7} B .{2,5,6,8} C .{2,4,6,9} D .{2,4,5,6,8,9}答案 B解析 根据题意可以求得U ={1,2,3,4,5,6,7,8,9},画出Venn 图(如图所示),可得B ={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}答案 C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}答案 D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案 C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U NC.∁U(∁U∅) D.∁U Q答案 A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}答案 B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.课时作业一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},选C.2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}答案 D解析如图,阴影部分为(∁U B)∩A,∴A={3,9}.3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.图中的阴影部分表示的集合是( )A .A ∩(∁UB ) B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )答案 B解析 阴影部分表示集合B 与集合A 的补集的交集. 因此阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( ) A .∁U N ⊆∁U M B .M ⊆∁U N C .∁U M ⊆∁U N D .∁U N ⊆M 答案 C解析 由M ∩N =N 知N ⊆M .∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5} 答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}. 二、填空题7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________.答案 {x |0<x <1} {x |0<x <1}解析A∪B={x|x≤0或x≥1},∁U(A∪B)={x|0<x<1}.∁U A={x|x>0},∁U B={x|x<1},∴(∁A)∩(∁U B)={x|0<x<1}.U8.若全集U={(x,y)|x∈R,y∈R},A={(x,y)|x>0,y>0},则点(-1,1)________∁U A.(填“∈”或“∉”)答案∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.9.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案{a|a≤1}解析∁U A={x|x≤1},∵(∁U A)∪B=R,∴B⊇{x|x>1},∴a≤1.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x |0<x <1或2<x <3}⊆B . 借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.12.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值.解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A . 当m =0时,B =∅⊆A ; 当m ≠0时,B ={-1m}.∴-1m =-1或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.13.设全集为R ,A ={x |3<x <7},B ={x |4<x <10}. (1)求∁R (A ∪B )及(∁R A )∩B ;(2)若C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围. 解 (1)∵A ∪B ={x |3<x <10}, ∴∁R (A ∪B )={x |x ≤3或x ≥10}. 又∵∁R A ={x |x ≤3或x ≥7}, ∴(∁R A )∩B ={x |7≤x <10}. (2)∵A ∩C =A ,∴A ⊆C .∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3⇒⎩⎨⎧a ≥3,a ≤7⇒3≤a ≤7.∴a 的取值范围为{a |3≤a ≤7}. 四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩(∁I C )D .(A ∩∁I B )∩C 答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M ={(x ,y )|y -3x -2=1},P ={(x ,y )|y ≠x +1},求∁U (M ∪P ).解 集合M 表示的是直线y =x +1上除去点(2,3)的所有点,集合P 表示的是不在直线y =x +1上的所有点,显然M ∪P 表示的是平面内除去点(2,3)的所有点,故∁U (M ∪P )={(2,3)}.。
全集、补集学案(人教a版高一数学必修1).doc
3.全集、补集【本课重点】补集的概念。
【预习导引】1、已知S={高一(2)班同学}, A={高一(2)班参加校运动会的同学},则CsA=.2、已知全集U=(|-l<x<9},0 CuA=(x|-l<x<a},贝U a 的取值范围是.3、已知U={0,l,2},CuA={2},则A的真子集共有个.4、已知S={二角形},B={锐角二角形},则CsB=;已知全集U=乙则CuN=,Cu © =.【典例综讲】1.(1)设全集U={小于10的自然数}, A={小于10的正偶数},B={小于10的质数},求CuA, CuB, Cu(CuA).(2)若集合A=(x|-l<x<2),当全集U分别取下列集合时,求CuA(1)U=R;(2)U=(x|x<3};(3)U=(x|-2<x<2);1、已知全集U={2,3,a2+2a-3), A={|a+7|,2}, CuA={5},求实数a 的值.2、已知集合A=(x|x<5}, B={x|l<xWa}, C R A C R B,求实数a的取值范围.3、(备选题)已知全集U={x|x<6且xeN*}, A={x|x2-5x+p=0 ,xe R),求实数p的值及相应的CuA.【随堂反馈】1、设全集U ={1,2/2-2}, A={l,x},则CuA=.设集合M={0,l,2,3}, CsM=(-l,-3,4,5},, C S B={1,-1,2),则B=.【课*则】1、下列各结论中,不正确的是( )(D) 4 (A) 0C CyM (B) CuUF (C) Cu(CuM)=M (D) <2抻邮2、已知全集17=2,集合 M={x|x=2k,ke Z ),P={x| x=2k+l,ke Z ),则有下列关系式:①M Q P ;②CuM=CuP;③CuM=P ;④CuP=M 。
其中正确的有(A) 1 个 (B) 2 个 (C) 3 个3、 已知全集 U={X |-K X <3),M={X |-1<X <3),P={X |X 2-2X -3=0},S={X |-K X <3),则有() (A) QjM=P (B) CuP=S (C) S cCuM (D) MoP4、 已知全集 U=(x| X 2-3X +2=0),A={X | x 2-px+2=0, C V A=^>,则实数 p 的值为5、 已知全集U={x|x 是至少有一组对边平行的四边形}, A=(x|x 是平行四边形},则CuA=6、已知全集U={ 1 ,3,X 3+3X 2+2X },A={ 1 ,|2X - 11},是否存在实数x,使CuA={0},若存在,求出x 的值;若不存 在,请说明理由. 7、已知全集11=11,集合A={x|x>3或xW-2},集合B= (x|2m-1 <x<m+1},且BjCuA,求m 的取值范围.(选做题)定义 A-B={x|xeA 且 x£B},若 M={1,2,3,4,5},P={2,4,6,8},求 P-M, P-(P-M).【本谦重点】交集、并集的概念与性质【预习导引】5、 已知集合A={x|x 是等腰三角形}, B={x|x 是直角三角形}, C={x|x 是锐角三角形},贝 U A n B ,B n c=L6、 已知A={x|x<5,xe N), B={x|l<x<9, xe N),则A QB 的非空了集共有 个,的真了集个数为7、 {锐角三角形} U {钝角三角形}= ; {平行四边形} U {矩形}=:8、 已知全集 U={0,l,2,3,4},M={0,l,2,3},P={2,3,4},则(C D M) U(CuP)=C u (M c P) = ___________________5、在图中将APB, AUB 用阴影表示出来 【三■讨】【蜘1练讲】1、⑴设A={x|-2〈x〈3}, B={x|xW 1 或x〉2},求Al~lB, AUB(2)设A= {(x, y) |x+y=2}, B= {(x, y) | x-y=4},求AHB2,(1)设全集U=R, A={ x|-5<x<5}, B={ x|0<x<7}.试求AUB, AHB, (QjA) U(C D B), (CuA) A (CuB), C LI (AAB), C v (AUB),山此,你能获得什么结论?(2)设全集U=(x|x<10, xeN},AnB={2},(CuA)nB= {4,6,8},(CuA) A(CuB)={0,1,9}, 求集合A,B.3、已知集合A={x|x2+4x=0}.B={x|x2+2(a+l)x+a2-l=0, xe R), (1)若AAB=B,求实数a 的取值范围.(2) 若Au B = B求实数a的值。
高一数学全集和补集(201912)
反馈
设U a,b,c, d,e, f ,A a,c, d,B b, d,e ,
求:
(1) CU A;CU B (2)(CU A)(CU B);(CU A)(CU B)
(3)CU (A B);CU (A B)
(4)(CU A) B
动动脑
(1)若S={2,3,4},A={4,3}则CSA=———
思考:若A=S或A= 又怎样呢? U
(2)若U=Z那么CUN= —————
A CUA
若U=R那么CU(CUQ)=——
(3)A (CU A) _____,A (CU A) ______
思考: 若A B,则A (CU B) ____
范例
例1若 I 1,2,3,4,5,6,7,8,A 3,4,5,B 1,,3,6
集合的运算 之
全集和补集
By zwie
导航
世间万物都是对立统一的,在一定 范围内事物有正就有反,就像数学 中,有正数必有负数,有有理数必 有无理数一样,那么,在集合内部 是否也存在这样的“对立统一”呢? 若有,又需要什么样的条件呢?
考察下列集合A,B,C之间的关系
1、A 1,2,3,4,5,B 1,2,3,C 4,5
2、A 1,2,3,4,5,6,7,B 1,2,3,C 4,5,6,7
(1)象上面的A集合,含,通常记作U。 (2)对于全集U的一个子集A,由全集U中所有 不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集 ,,简称为集合A的补集
补集的表示
CU A x / x U且x A
U A
CUA
; / 少儿美术加盟
;
此即梦牵魂绕的旧影?女子的腰,冬天里, 福建肉松, 凡事盼望。读这神秘的寂静和仁慈的月光…不
高一数学全集与补集知识点
高一数学全集与补集知识点在高一数学中,全集与补集是重要的概念。
全集指的是特定问题所涉及的全部元素的集合,而补集则是全集中不属于某个子集合的元素的集合。
接下来,我们将详细介绍高一数学中的全集和补集的相关知识点。
1. 全集(Universal Set)全集是指一个问题所涉及的全部元素的集合,通常用大写字母U表示。
全集可以是有穷集合,也可以是无穷集合。
在解决问题时,我们需要明确全集,以确保所有的元素都能被考虑到。
2. 子集(Subset)子集是指全集中的一部分元素构成的集合。
如果集合A的所有元素都是集合B的元素,那么集合A是集合B的子集,用A⊆B 表示。
特别地,由于任何集合的元素都是它本身的子集,所以对于任意集合A而言,A⊆A恒成立。
3. 补集(Complement)补集是指在全集中不属于某个集合的元素构成的集合。
假设全集为U,集合A是U的子集,那么A在U中的补集,也称为相对补集,用A'表示。
可以将补集理解为“除了集合A中的元素,全集中的其他元素”。
4. 补集的性质- A∪A' = U,即集合A与其补集的并集等于全集U。
由于补集包含了全集中不属于A的元素,所以并集结果就是全集。
- A∩A' = φ,即集合A与其补集的交集等于空集φ。
由于补集包含了全集中不属于A的元素,所以交集结果为空集。
- (A')' = A,即A的补集的补集等于A本身。
即补集两次取反即可恢复为原集合。
- A⊆B当且仅当B'⊆A',即集合A是集合B的子集,当且仅当集合B的补集是集合A的补集。
这个性质可以通过对两个集合同时取补集来证明。
5. 补集的运算规律- De Morgan律是指关于补集的两个重要运算规律:- (A∪B)' = A'∩B',即集合A和B的并集的补集等于集合A的补集和集合B的补集的交集。
- (A∩B)' = A'∪B',即集合A和B的交集的补集等于集合A的补集和集合B的补集的并集。
1.1.2子集、全集、补集
1.1.2子集、全集、补集教学目标:1.了解集合之间包含关系的意义.2.理解子集、真子集的概念3.了解全集的意义,理解补集的概念.教学重点:子集,真子集,全集的概念教学难点:补集的概念教学过程:一、问题情境观察下列各组集合,A 与B 之间具有怎样的关系?如何用语言来表述这种关系?(1){1,1}A =-,{1,0,1,2}A =-;(2),A N B R ==;(3){}A x x =是北京人,{}A x x =是中国人(4)本班所有姓王的同学组成的集合A 与本班所有同学组成的集合B 间的关系.三、建构数学1.上述每组中的集合A,B 具有的关系可以用子集的概念来表述.如果集合A 中的任意一个元素都是集合B 中的元素(若a A ∈,则a B ∈),那么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇,读作“集合A 包含于集合B ”或“集合B 包含集合A ”.B A ⊆还可以用Venn 图表示.2.由定义易知A A ⊆,即:任何一个集合是它本身的子集.不含有任何元素的集合称为空集(empty set ),记作:∅对于∅,我们规定:A ∅⊆.即空集是任何集合的子集.3.如果B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =.4.如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ).记作:A B (或B A )读作:A 真包含于B (或B 真包含A ).规定:空集是任何非空集合的真子集.四、数学应用1.例题例题1写出集合{,}a b 的所有子集.例题2下列合组的三个集合中,哪两个集合之间具有包含关系?(1){2,1,1,2}S =--,{1,1}A =-,{2,2}B =-;(2),{|0,}S R A x x x R ==≤∈,{|0,}B x x x R =>∈;(3){|}S x x =为地球人,{|}A x x =中国人,{|}A x x =外国人;问题思考:例题2中每一组的三个集合,它们之间还有一种什么关系?设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集(complementary set ), 记作:S A ð(读作A 在S 中的补集),即{,}.S A x x S x A =∈∉且ð 补集的Venn 图表示:如果集合S, 全集通常记作U.例题3不等式组210360x x ->⎧⎨-≤⎩的解集为A,U=R,试求A 及U A ð,并把它们分别表示在数轴上. 2.练习第9页1—2--3--4五、回顾小结这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴表示数集. 六、课外作业第10页2.3.4.提高作业:(1)已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围.(2)设集合{},{},{}A B C ===四边形平行四边形矩形,}{正方形=D ,试用Venn 图表示它们之间的关系.七、教学反思注意学生的自主探索,多让学生犯错误,不要怕学生犯错.。
高一数学补集和全集知识点
高一数学补集和全集知识点在高一的数学学习中,数集是一个重要的概念。
而在数集的基础上,我们还需要了解数集的补集和全集的相关知识。
本文将为大家介绍高一数学中关于补集和全集的重要知识点。
一、数集的基本概念在数学中,数集指的是具有相同特性的数的集合。
常见的数集包括自然数集、整数集、有理数集和实数集等。
我们可以用大括号来表示一个数集,例如自然数集可以表示为N={1, 2, 3, ...}。
二、补集的概念补集是指一个数集中不属于另一个数集的元素所组成的集合。
在数学中,我们一般用A'来表示集合A的补集。
例如,若A={1, 2, 3, 4, 5},而全集为U={1, 2, 3, 4, 5, 6, 7, 8, 9, 10},那么A'={6, 7, 8, 9, 10},其中的元素6、7、8、9、10为A的补集。
三、全集的概念全集是指一个讨论范围内的包含所有可能元素的集合。
在数学中,我们一般用符号U来表示全集。
全集可以根据不同的情境进行确定,例如在讨论自然数时,全集可以为U={1, 2, 3, ...};在讨论直角三角形时,全集可以为U={所有直角三角形}。
全集的确定对于后续的补集运算非常重要。
四、补集和全集的运算性质1. 若A为全集U,则A'为空集∅;反之亦成立。
2. 若A为全集U,则A∪A'=U;反之亦成立。
3. 若A为全集U,则A∩A' = ∅;反之亦成立。
五、补集和全集的应用补集和全集在数学中有着广泛的应用,特别是在集合论和概率论中。
在集合论中,我们可以通过补集来求解集合的关系和性质。
在概率论中,我们可以利用补集来求解事件的概率。
举个例子来说明补集和全集的应用。
假设一个班级有50名学生,其中20名学生喜欢足球,30名学生喜欢篮球。
我们可以将喜欢足球的学生的集合表示为A,喜欢篮球的学生的集合表示为B。
全集可以表示为U,即U={所有学生}。
根据题目,我们需要求解即既不喜欢足球也不喜欢篮球的学生的人数。
高一数学集合、子集、全集、补集人教版知识精讲
高一数学集合、子集、全集、补集人教版【本讲教育信息】一. 教学内容:集合、子集、全集、补集二. 重点、难点:1. 重点:(1)集合的概念,用描述法表示集合。
(2)子集、补集的定义。
2. 难点:(1)用描述法表示集合时,对代表元素内涵的理解。
(2)元素与子集,属于与包含之间的区别。
【典型例题】[例1] 用适当的符号填空:(1)2Q (2)21*N (3)3.14Q (4)(1-,1)}|{2x y y = (5)}6|{≥x x }4|{>x x(6)φ}{φ解:(1)∉ (2)∉ (3)∈ (4)∉ (5)⊆ (6)∈或⊆或≠⊂[例2] 由直线12-=x y 上的点的坐标组成的集合可表示为?解:}12|),{(-=x y y x需注意的几种错误的表示方法}12|{-=x y y ,}12|{-=x y x ,}12{-=x y[例3] 设},36|{*N x xx A ∈Z ∈-=用列举法写出集合A 。
解:∵6|)3(x -∴13±=-x ,2±,3±,6±∴=x 2,4,1,5,0,6,3-,9 又 ∵*N x ∈ ∴=x 2,4,1,5,6,9 ∴ A={1,2,4,5,6,9}[例4] 设a ,b 是整数,集合}63)(|),{(2y b a x y x E ≤+-=点(2,1)∈E ,但点(1,0)∉E ,E ∉)2,3(,求a 、b 的值。
解:∵E ∈)1,2(∴63)2(2≤+-b a ①∵E ∉)0,1(,E ∉)2,3(∴03)1(2>+-b a ②123)3(2>+-b a ③由①、②得22)1()2(6a a -->-- 展开整理032>+a ∴23->a 类似由①、③得21-<a ∴2123-<<-a 又 ∵a 、b 为整数 ∴1-=a把1-=a 代入①、②得334-≤<-b ∴1-=b综上所述1-=a ,1-=b [例5] 数集},1,0{2x x -中实数x 的取值X 围是什么?解:∵ 集合中的元素是互异的 ∴⎪⎩⎪⎨⎧≠-≠-1022x x x x 解得:⎪⎩⎪⎨⎧+≠-≠≠≠25125110x x x x 且且 ∴x 的取值X 围是}251,1,0|{±≠≠≠x x x x [例6] 写出},,{c b a 的所有子集。
高一数学全集与补集
A {a 1, 2}, ð U A {7},
求实数a的值.
课堂练习
教材P14练习T2~5.
课堂小结
作业布置 教材P15 A组T4,5. 教材P20 A组T2,3,4.
; / 护照移民
后,您来妹妹这里壹趟吧。”“妹妹有啥啊事情吗?现在说不行吗?为啥啊壹定要等到晚膳后?”“嗯,现在已经要入冬咯,晚上天黑得早, 妹妹壹各人心里总是觉得不踏实,有姐姐陪着说会儿话,妹妹也就不怕天黑咯。”“呵,瞧你说的,怎么现在又怕起天黑来咯?另外,爷不是 常过来吗?姐姐要是再过来,打搅咯你们……”“姐姐,您说的这是啥啊话啊!爷也不常来,昨天刚来过,今天肯定不会再来咯,妹妹这才请 姐姐过来陪陪妹妹的。”“噢,这样呀,没问题,反正我也没有啥啊事情。”两各人说定之后,韵音就回咯自己的院子。由于两各人只是格格, 因此没有自己的厨房,膳食全是由园子里的大厨房统壹负责。晚膳后,韵音如约来到咯惜月的院子。两各人壹边做绣活,壹边聊着闲天。才做 咯没壹会儿,就听见院子里壹阵响动,韵音壹惊:“谁来咯?”“不知道呢,春梅,你去看看。”还不等话音落下,只见爷已经进咯屋子,韵 音壹见是爷,吓得赶快从炕上下来。惜月早早地从另壹侧手脚麻利地下咯炕,两人齐齐地给爷请咯安。爷的出现,把韵音吓咯壹大跳!而韵音 的出现,也将爷惊得不轻!不是已经让秦顺儿过来传过话,他要来这里吗?怎么韵音还会出现在这里?趁爷愣神儿的功夫,惜月和韵音两各人 赶快服侍爷坐下,又迅速端上茶来。等这些都忙完,韵音无所事事、别别扭扭地站在壹侧,不知道该说些啥啊或是做些啥啊才好。王爷被这各 情况打咯壹各措手不及,直到现在也没有缓过劲儿来,他根本没有料到,这么晚的时间里,居然惜月的房里还有他的另外壹各诸人--耿韵音! 深更半夜地同时面对两各诸人,王爷极为尴尬,壹惯气势威严的脸面上闪现出极不自然的表情。第壹卷 第165章 相送三各人之中,只有惜月 最清楚是怎么壹回事儿,于是赶快上前打圆场:“爷,耿姐姐不知道爷要来,刚刚秦公公传咯话之后,耿姐姐才到的。平时,惜月和耿姐姐最 要好,相互之间走动从来也不用事先约定。另外,惜月也不知道爷这么快就到咯,以为要很晚呢,所以……”“噢,你今天身子好些 吗?”“谢谢爷惦记着,惜月的身子早就好咯,您不用担心记挂着。”“那就好。嗯,你们继续聊着吧,爷先走咯。”韵音壹见自己坏咯爷和 惜月妹妹的好事,后悔不已,赶快急急地表白:“不用,爷,您不用走。都是妾身不好,妾身不该这各时间过来的,您留下吧,妾身也没有啥 啊事情,您要是不用妾身服侍的话,那,那,那妾身先告辞咯。”“爷还有别的事情。”说完他就唤咯秦顺儿进来。眼着着爷执意要走,惜月、 韵音、秦顺儿、春梅、碧荷五各人全都急急慌慌地去送爷。五各人送到院门口,惜月先开咯口:“爷,谢谢您还总惦记着惜月,惜月
高一数学必修教学课件第一章全集与补集
首先解出集合$A$和$B$的元素,然后 比较两个集合的元素,根据元素之间 的关系判断集合的关系。
利用集合运算解决实际问题
例题3
某校高一年级有500名学生,其中参加数学竞赛的有200名, 参加物理竞赛的有150名,同时参加数学和物理竞赛的有80 名,求没有参加任何竞赛的学生人数。
解析
设总学生人数为全集$U$,数学竞赛学生人数为集合$A$, 物理竞赛学生人数为集合$B$,根据题目条件列出集合的表 达式,然后利用集合的运算求成果
分组讨论
将学生分成若干小组,每组选取 一个与全集、补集相关的主题进 行讨论,如“全集与补集在生活 中的应用”、“全集与补集的数 学意义”等。
成果展示
每个小组选派一名代表,向全班 展示他们小组的讨论成果,包括 主题阐述、案例分析、问题解决 等。
互动交流
鼓励其他小组的同学对展示的内 容进行提问和评论,促进课堂互 动和交流,加深学生对全集与补 集的理解和应用能力。
02
集合运算法则
交集运算法则
交集定义:两个集合A和B的交集是由所有既属于A又属于B的元素组成的集合。 交集符号:A∩B。
交集运算性质:满足交换律、结合律和分配律。
并集运算法则
并集定义:两个集合A和B的并集是由所有属于A或属于B的元素组成的集 合。
并集符号:A∪B。
并集运算性质:满足交换律、结合律和分配律。
06
总结回顾与课堂互动环节
总结回顾本次课程重点内容
集合的基本概念
回顾了集合的定义、元素与集合的关系、集合的表示方法等基本 概念。
集合的运算
重点讲解了集合的交、并、补运算,通过实例和练习题加深了学生 对集合运算的理解和掌握。
全集与补集
高一数学集合之间的关系与运算知识精讲
高一数学集合之间的关系与运算【本讲主要内容】集合之间的关系与运算子集、全集、补集、交集、并集等概念,集合的运算性质。
【知识掌握】 【知识点精析】1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A注:B A ⊆有两种可能: (1)A 是B 的一部分;(2)A 与B 是同一集合。
(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。
(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。
记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。
注:空集是任何集合的子集。
Φ⊆A空集是任何非空集合的真子集。
Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集。
A A ⊆ 易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。
如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。
如Φ⊆{0}。
不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。
3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。
集合的运算(全集、补集)-沪教版必修1教案
集合的运算(全集、补集)-沪教版必修1教案篇一:高中数学《子集、全集、补集》教案(1)子集、全集、补集教学目标:理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系.教学重点:子集的概念,真子集的概念.教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算.课型:新授课教学手段:讲、议结合法教学过程:一、创设情境在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集二、活动尝试12.用列举法表示下列集合:①{x|x3?2x2?x?2?0} {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}11111{1,,,,{x|x?,n?N*且n?5}n3.用描述法表示集合:23454.用列举法表示:“与2相差3的所有整数所组成的集合”{x?Z||x?2|?3}={-1,5}5.问题:观察下列两组集合,说出集合A与集合B的关系(共性)(1)A={-1,1},B={-1,0,1,2}(2)A=N,B=R(3)A={xx为北京人},B= {xx为中国人}(4)A=?,B={0}(集合A中的任何一个元素都是集合B的元素)三、师生探究通过观察上述集合间具有如下特殊性(1)集合A的元素-1,1同时是集合B的元素.(2)集合A中所有元素,都是集合B的元素.(3)集合A中所有元素都是集合B的元素.(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素. 由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.四、数学理论1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A.记作A?B(或B?A),这时我们也说集合A是集合B的子集.请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.2.真子集:对于两个集合A与B,如果A?B,并且A?B,我们就说集合A是集合B的真子集,记作:A或B读作A真包含于B或B真包含这应理解为:若A?B,且存在b∈B,但b?A,称A是B的真子集. 3.当集合A不包含于集合B,或集合B 不包含集合A时,则记作AB(或BA).如:A={2,4},B={3,5,7},则AB.4.说明(1?A(2若A≠Φ,则Φ(3A?A(4)易混符号①“?”与“?”:元素与集合之间是属于关系;1?N,?1?N,N?R,Φ?R,{1}?{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ如Φ?Φ={0},Φ∈{0}五、巩固运用例1(1)写出N,Z,Q,R(2)判断下列写法是否正确①Φ?A ②Φ③A?A ④A 解(1):N?Z?Q?R(2)①正确;②错误,因为A可能是空集;③正确;④错误;思考1:A?B与B?A能否同时成立?结论:如果A?B,同时B?A,那么A=B.如:{a,b,c,d}与{b,c,d,a}相等;{2,3,4}与{3,4,2}相等;{2,3}与{3,2}相等. 问:A={x|x=2m+1,m∈Z},B={x|x=2n-1,n∈Z}.(A=B)稍微复杂的式子特别是用描述法给出的要认真分辨.思考2:若AB,BC,则AC?真子集关系也具有传递性若AB,BC,则AC.例2写出{a、b}的所有子集,并指出其中哪些是它的真子集.分析:寻求子集、真子集主要依据是定义.解:依定义:{a,b}的所有子集是?、{a}、{b}、{a,b},其中真子集有?、{a}、{b}. 变式:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(2?16)(2)集合4?a1,a2?,an?的所有子集的个数是多少?(2n)注:如果一个集合的元素有n个,那么这个集合的子集有2n个,真子集有2n -1个.六、回顾反思1.概念:子集、集合相等、真子集2.性质:(1?A(2(A≠Φ)(3A?A(4)含n个元素的集合的子集数为2;非空子集数为2?1;真子集数为2?1;非空真子集数为2?nnnn七、课外练习1.下列各题中,指出关系式A?B、A?B、AB、AB、A=B中哪些成立:(1)A={1,3,5,7},B={3,5,7}.解:因B中每一个元素都是A的元素,而A中每一个元素不一定都是B的元素,故A?B及AB成立.(2)A={1,2,4,8},B={x|x是8的约数}.解:因x是8的约数,则x:1,2,4,8那么集合A的元素都是集合B的元素,集合B的元素也都是集合A的元素,故A=B. 式子A?B、A?B、A=B成立.2.判断下列式子是否正确,并说明理由.(1)2?{x|x≤10}解:不正确.因数2不是集合,也就不会是{x|x≤10}的子集.(2)2∈{x|x≤10}解:正确.因数2是集合{x|x≤10}中数.故可用“∈”.(3){2}{x|x≤10}解:正确.因{2}是{x|x≤10}的真子集.(4) ?∈{x|x≤10}解:不正确.因为?是集合,不是集合{x|x≤10}的元素.(5) ?{x|x≤10}解:不正确.因为?是任何非空集合的真子集.(6) ?{x|x≤10}解:正确.因为?是任何非空集合的真子集.(7){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中4,6不是{2,3,5,7,11}的元素.(8){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中不含{2,3,5,7,11}中的2,3,11.3.设集合A={四边形},B={平行四边形},C={矩形} D={正方形},试用Venn 图表示它们之间的关系。
高一数学《子集、全集、补集 》教案模板
高一数学《子集、全集、补集》教案模板一、教学目标1.了解集合、子集、全集、真子集、空集、补集等概念,并能够应用到实际问题中;2.掌握求解集合的并、交、差、对称差等操作及其运算规律;3.能够用Venn图表示集合关系,读懂文本或图示中的集合关系,并能够进行简单的逻辑推理。
二、教学重点1.子集、全集、真子集、空集等集合概念的区分与应用;2.集合并、交、差、对称差的概念及运算规律。
三、教学难点1.子集、真子集的抽象概念的理解与应用;2.布尔代数与集合运算的关系的理解。
四、教学程序1.集合概念引入(5分钟)–通过生活中的例子引入集合的概念,并解释集合的形式化定义;–引入子集、全集、真子集和空集等概念。
2.集合的运算及其规律(20分钟)–引导学生理解集合的运算,如集合的并、交、差、对称差,并详细解释每种运算;–利用生活实例和平面图形进行集合运算练习;–讨论每种集合运算的交换律、结合律、分配律等运算规律。
3.集合概念实例演示与分组活动(25分钟)–引导学生参与实例分析,通过文本或图示分析集合关系,并进行简单的逻辑推理;–利用分组活动引导学生自主运用所学知识,进行集合的分类识别,并进行交、并、补集等运算。
4.Venn图表示集合关系(20分钟)–引导学生了解Venn图的原理及其应用;–利用Venn图分析实际问题,探究Venn图的意义,并讨论如何利用Venn图进行简单逻辑推理;–利用Venn图的组合表示运用集合关系的复合逻辑推理。
5.练习巩固(20分钟)–针对所学知识设计综合练习题目;–让学生独立完成作业,并评估学生的掌握情况。
五、教学反思1.本课以集合、子集、全集、补集等概念为主线,通过讲解运算法则、举例分析、Venn图实践等方式让学生从多个角度理解和应用知识,有利于培养学生的逻辑思考能力和综合运用能力。
2.本课采用分组活动和Venn图演示等形式,将抽象的数学概念和实际问题进行关联,提高了学生的学习兴趣和参与度。
高一数学子集、全集、补集课件
例1
(1)写出集合{a,b}的所有子集; (2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集; (4)写出∅的所有子集.
请归纳出规律来!
总结:元素个数与集合子集个数的关系:
集合
集合元素的个数 集合子集个数
∅
0
1
{a}
1
2
{a,b}
2
4
{a,b,c}
3
8
{a,b,c,d}
4
16
全集通常用U表示
2、补集的一些简单性质:
(1) CU U
(2) CU U
(3) CU ( CU A) A
3、例题:
1、已知全集U - 1,0,1,2,3,
集合M=x | x为不大于3 的自然数,则CU M=
2、已知A 0,2,4,6,CS A=- 1,- 3,1,3, CSB - 1,0,2,用列举法写出集合B.
注:图示法表示集合间的包含关系
A⊆B的图形语言:
用平面上封闭的 曲线的内部表示 集合这个图形叫 文氏图(韦恩图)
A B
2:集合相等
一般地,对于两个集合A与B,如果集合A的任何 一个元素都是集合B的元素,同时集合B的任何一 个元素都是集合A的元素,就说集合A等于集合B
记作:A=B
数学语言素
2n
真子集个数,非空真子集个数呢?
例2、集合A中有m个元素,若A中增加一个元素, 则它子集的个数将增加 个
例3、同时满足:(1)M 1,2,3,4,5;(2)a M,则
6 - a M 的非空集合M有( )
A.16个 B.15个
C.7 个
D.6个
例4:写出不等式x-3>2的解集并进行化简。 解:不等式x-3>2的解集是 {x|x-3>2}={x|x>5}
高一数学集合的基本运算
一、全集与补集
在不同范围研究同一个问题,可能有 不同的结果。
如方程(x-2)(x2-3)=0的解集
在有理数范围内只有一个解,即 A={x∈Q|(x-2)(x2-3)=0}={2}, 在实数范围内有三个解 2, 即 :B={x∈R|(x2)(x2-3)=0}={2, 3, 3 }。
例4.学校先举办了一次田径运动 会,某班有8名同学参赛,又举办了一 次球类运动会,这个班有12名学生参 赛,两次运动会都参赛的有3人,两次 运动会中,这个班共有多少名同学参 赛?
探索:
对有限集A,B,C你能发现card(A∪B∪C), card(A), card(B), card(C), card(A∩B), card(A∩C), card(C∩B), card(A∩B∩C)之 间的关系吗?
二、集合中元素的个数
用card来表示有限集A中的元素个数. 如:A={a,b,c} 则card(A)=3
问题:
学校小卖部进了两次货,第一次进的货是 圆珠笔,钢笔,橡皮,笔记本,方便面,汽水共6 种,第二次进的货是圆珠笔,铅笔,火腿肠,方 便面共4种,两次一共进了几种货物?
公式:
card(A∪B)=card(A)+card(B)-card(A∩B)
利用Venn图: card(A∪B∪C)=card(A)+ card(B)+ card(C) - card(A∩B)- card(A∩C)- card(C∩B)+ card(A∩B∩C)
B
A
A∩B A∩B∩C A∩C C B∩C
作业布置
1.教材P12 9,10 B组 4 2 补.某班有学生55人,其中音乐爱好 者34人,体育爱好者43人,还有4人既 不爱好体育也不爱好音乐,班级中既爱 好体育又爱好音乐的有多少人?
高一数学《全集和补集》课件.
高一数学《全集和补集》课件.一、教学内容本节课我们将学习高中数学必修二第四章《集合与集合的运算》中的第一节数学概念——《全集和补集》。
具体内容包括:理解全集和补集的定义,掌握集合的补集运算法则,并能运用其解决实际问题。
二、教学目标1. 理解并掌握全集和补集的定义及其在集合运算中的应用。
2. 能够运用集合的补集运算法则进行简单的集合运算。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:全集和补集的定义,集合的补集运算法则。
难点:如何将实际问题转化为集合问题,运用补集运算法则进行求解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、铅笔。
五、教学过程1. 实践情景引入利用多媒体课件展示一个实际问题:某班级有40名学生,参加数学竞赛的有18人,参加物理竞赛的有15人,既参加数学竞赛又参加物理竞赛的有5人。
请问只参加数学竞赛和只参加物理竞赛的学生各有多少人?2. 例题讲解通过分析实际问题,引导学生将其转化为集合问题,并引入全集和补集的概念。
进而讲解集合的补集运算法则。
(1)定义:设A是集合U的一个子集,称集合U中所有不属于A的元素组成的集合为A的补集,记作A'。
(2)运算法则:若A、B是集合U的两个子集,则有(A∪B)'=A'∩B',(A∩B)'=A'∪B'。
3. 随堂练习(1)求集合A={1,2,3,4,5}的补集。
(2)已知集合A={x|x<3},B={x|x≥2},求A∩B和(A∩B)'。
4. 解答引入的实际问题,验证集合补集运算法则的正确性。
六、板书设计1. 全集和补集的定义。
2. 集合的补集运算法则。
3. 引导学生将实际问题转化为集合问题,并求解。
七、作业设计1. 作业题目:(1)求集合A={x|x=2k, k≤5}的补集。
(2)已知集合A={x|x<4},B={x|x≥3},求(A∪B)'和A'∩B'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全集和补集
By zwie
导航
世间万物都是对立统一的,在一定 范围内事物有正就有反,就像数学 中,有正数必有负数,有有理数必 有无理数一样,那么,在集合内部 是否也存在这样的“对立统一”呢? 若有,又需要什么样的条件呢?
考察下列集合A,B,C之间的关系
1、A 1,2,3,4,5,B 1,2,3,C 4,5
思考:若A=S或A= 又怎样呢? U
(2)若U=Z那么CUN= —————
A CUA
若U=R那么CU(CUQ)=——
(3)A (CU A) _____,A (CU A) ______
思考: 若A B,则A (CU B) ____
范例
例1若 I 1,2,3,4,5,6,7,8,A 3,4,5,B 1,,3,6
那么集合 2,7,8是( )
A. A B
B. A B
C. (CI A)(CI B)
D.(CI A)(CI B)
变式:作业本B P3 第2题
2.设 A B 3(, CU A) B 4,6,8, A (CU B) 1,5
反馈
设U a,b,c, d,e, f ,A a,c, d,B b, d,e ,
求:
(1) CU A;CU B (2)(CU A)(CU B);(CU A)(CU B)
(3)CU (A B);CU (A B)
(4)(CU A) B
动动脑
(1)若S={2,3,4},A={4,3}则CSA=———
补集的表示
CU A x / x U且x A
U A
CUA
;单创:/roll/2019-10-14/doc-iicezuev2144522.shtml
Байду номын сангаас
;
;
于是,带她去看,说明病史后,老中医什么都没说,只是揭开自己的白大褂,她看见,他只有一条腿。 (17)他说,人活着,不是靠双腿,靠的是一颗完整的心,我只有一条腿,活得好好的,你还比我多半条腿呢,怕什么? (18)从那以后,她常常去老中医那里,不是看病,而是疗心。 (19)再后来,父母给她装了假肢,搬了家,学了钢琴,当了钢琴老师,成了现在的自己。 (20)说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事。 (21)是啊,如果不是偶然看见,在我心里,在我眼里,她依旧是那个只会撒娇、娇弱漂亮的公主,而此 刻,我似乎看见,那些她曾经受过的伤害和遭遇,凝聚成一股钢铁般的力量,让她坚强。 (22)再后来,她睡了。 (23)我走在走廊的尽头,心绪难平。 (24)我看见天边有一颗星星,异常耀眼,它像天空的眼睛,注视着大地,带给深沉无助的黑夜,一方光亮,也给黑夜里迷路的人们, 一抹希望。 (25)慢慢地,我看见天边泛着鱼肚白,黎明来了。 (26)那一刻,内心的迷茫,似乎慢慢退却,一点点被一束光照亮,所有难以启齿的磨难和曾经以为的绝望,慢慢变成了希冀。 (27)是的,繁华尽头有悲凉,尘埃深处是繁花。 (2017年5月9日) 16.第10段“乔没有睡 ……而我,尴尬至极,不知道说什么好,竟呆呆地站在那里好几秒”一句中,“尴尬”一词有什么含义和作用?(3分) 17.第20段“说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事”,这句话中的“淡淡地笑”对描写乔有什么作用?(3分) 18.联系全 文谈谈你对第24段加线句子的理解。(4分) 19.结合全文谈谈文章最后一个自然段有什么作用?(4分) 20.结合文章中心,联系自己生活实际,谈谈你的感悟。(80字以内)(4分) 代谢: 五、散文阅读 16.(3分) “尴尬”的本义是神情态度不自然。(1分)在这里是指我无意中发现了 乔的隐私(右膝盖之下是空的或者是发现了假肢),感觉自己对乔的自尊造成伤害后内心的不自然,(1分);表现了我对乔的歉意以及不知道该怎么办的心理。(1分) 17.(3分) “淡淡地笑”运用了神态描写(1分),写出了乔面对生活的困境和磨难的轻松平静心理(1分),同时表现了 乔的坚强性格、积极乐观的生活态度。(1分) 18. (4分) 运用比喻修辞(1分),把乔比作天边的一颗星星,她给像我一样身处困境中的人带来光亮、希望。(2分)表达了我对乔的感激、赞美之情。(1分) 19.(4分) 照应文章标题(1分);总结全文(1分);升华主题,鼓励人们在困境 中不要迷茫绝望,要以积极乐观的心态,努力战胜自我,相信风雨过后一定会有彩虹。(2分) 20.(4分) 感悟:结合文章中心,表达自己的观点(面对困境、挫折应有的态度)(2分);联系恰当的生活实际并简析(2分)。 本题为开放性试题,言之有理即可。 (2017浙江宁波)6. 蜕 变 蔡澔淇 她用胖嘟嘟的小手紧握着婴儿床的栏杆坐着,舌尖不住地舔着刚长出的两颗门牙,灵澈的眼珠子骨碌地转动,四处张望。初夏晌午的阳光穿过葡萄棚,在她身上洒满了点点金圈。一片葡萄叶摇曳着飘下,落在她的脚跟前。 她挪动一下圆滚滚的胖腿,好奇地望着那片落叶。一个黑点 在树叶边缘晃动,过了一会成了一条肥厚的黑线,滑过树叶表面,不声不息地直朝她游动。带毛的黑线爬上了她白嫩的脚踝,小腿肚,膝盖……她觉得一阵刺痒,那肥厚的黑线直往上爬,越来越近,毛茸茸的身躯越来越大。转眼间一团黑毛已附在她肩上,黑团中有两粒小眼直盯着她。“达达 ﹣﹣,达﹣﹣达﹣﹣”她惊慌地尖叫,小手死命地挥舞,重心一个不稳,躺卧下来。那黑团又开始移动,逐渐逼近,逐渐庞大…… ? “你还好吧?”交往快两年,未曾牵过手的他紧紧搂住她的双肩,焦急的望着她。 她虚弱地点点头,深吸了口气:“我从小就对毛虫敏感,见了毛虫不是作呕 就是昏倒。刚才昏过去多久了?” “大概一两分钟,把我吓坏了,”他将她扶正,轻声补上,“奇怪,这么晚了,怎么会有毛虫出现?” 她紧依着他,相偎坐着。见到毛虫引起的疙瘩已消尽了,代之的是满脸燥热。她瞥了他揽着她肩膀的手一眼,偷偷抱怨:这么晚出现,再半小时宿舍就要 关门了。 “妈咪﹣﹣妈咪﹣﹣”最断人肠的呼喊将她手中的蚂蚁上树炒出锅外。她慌忙跑过去,小女儿蜷缩在婴儿床的一角,满脸诧异的哭叫着。一条毛虫肆无忌惮地在婴儿床的栏杆上爬行,她一阵昏花,用了四十年的心脏几欲罢工。小女儿挣扎着想爬起来,令人心碎的哭泣成了啜搐。她咬 咬牙,解下围裙往栏杆用力一挥,毛茸肥圆的毛虫滚落于地。她抬起脚,闭起眼重重一踏,觉得脚下一阵瘫软。 ? “不要怕,”她强抑住胸腹的翻腾,轻抚着女儿泪水纵横的苍白面颊,“不要怕,毛虫并不可怕。” 她坐在摇椅内小憩,枯皱的手握着身旁婴儿床的栏杆。初夏晌午的阳光穿过 葡萄棚,在她身上洒满点点金圈。 “奶奶,”是小孙女清稚的童音,“那是什么?” ?她朝小孙女圆胖小手指的方向望过去,一条肥厚的黑线正由阳光下往阴影处滑动。日光下鲜明的黑线掀开了她人生的相簿,一组组幻灯片在眼前跳动。她深吸口气,咧开干瘪的嘴,露出仅剩两颗门牙朝小孙 女笑笑。 “那是蝴蝶的幼虫。”她说。 【注释】①蚂蚁上树:四川名菜 (选自《台湾极短篇小说集》) ? 故事?场景的组合 (1)阅读小说先关注故事。请根据故事内容,各用一个词填空。 小小的毛毛虫、伴随着“她”走过童年、青年、中年,直至老年; 小小的婴儿床,承载了“她”、 “女儿”、“孙女”的童年。 故事以毛毛虫为线索,始于初遇时的 ,历经再见时的恐惧,终于凝望时的。 ? 语言?意义的蕴含 (2)画线句中,“她”两次说“不要怕”,仅仅是在安慰女儿吗?清写出你的看法和理由。 ◆称呼?人物的标识 (3)小说中没有出现主人公的名字,都是用“她 ”来代替。请说说作者的意图。 ? 标题?主旨的暗示 (4)结合选文,谈谈你对小说标题“蜕变”的理解。 【考点】9E:小说阅读综合. 【分析】这篇小说以“毛毛虫”为线索,写了她人生的四个阶段,第一阶段(开头到“逐渐逼近,逐渐庞大”),写她童年时对毛毛虫的畏惧;第二阶段 (“你还好吧”到“再半小时宿舍就要 关门了”),写她青年时对毛毛虫的畏惧,以及男友对她的关爱;第三阶段(“妈咪﹣﹣妈咪”到“毛虫并不可怕”),写她中年时,看到女儿对毛毛虫的畏惧,勇敢上前扑打;第四阶段(“她坐在摇椅内小憩”到结尾),写她老年时,小孙女指着毛毛 虫问她那是什么,她淡定地说,那是蝴蝶的幼虫. 【解答】(1)本题考查内容的理解.这篇小说以“毛毛虫”为线索,写了她人生的四个阶段,但文中出现的她又不仅仅指她一人,文章写她成长的四个阶段中,那小小的婴儿床边哭叫的有“她”,有她的“女儿”,还有她的“孙女”. (2 )本题考查句子情感的理解. 这里写“她”两次说“不要怕”,是“她”的中年阶段,此时的“她”已为人母,看见自己的孩子受到惊吓,自然会去安慰.但结合前文对“她”的描述,可以知道“她”天生怕毛毛虫,特别是青年时,她见到毛毛虫“不是作呕就是昏倒”,所以这里的“不要怕 ”还应是对“她”自己的安慰,安慰自己不要怕,要保护好女儿. (3)本题考查写作人称在文中的作用分析.解答此题要读懂小说内容,结合小说的主旨分析作者的意图. 初读本文,一定会觉得内容很乱,情节无法连贯,但仔细一分析,发现“她”在文中分别指代她、她的女儿和孙女,作 者是想让情节看似连贯却又错乱,引起读者的深思,最终恍然大悟.这样更能突出全文的主旨,耐人寻味. (4)本题考查标题含义的理解.解答此题要结合内容与主旨分析标题的表义与深层含义. 从文中反复出现的黑色毛毛虫来年地,“蜕变”指黑色的毛毛虫蜕变成美丽的蝴蝶;从文中“ 她”的成长过程,又可以看出,暗指她经历岁月的风霜,由幼弱、胆小的少女变为沉稳、大胆的具有母性的女人. 代谢: (1)女儿 孙女 (2)不仅仅是在安慰女儿,也是在安慰自己.前文写了她在童年与青年时对毛毛虫的畏惧,特别是青年时,她见到毛毛虫“不是作呕就是昏倒”,现在 为人母了,看见女儿受到惊吓,出于母性,是安慰女儿不要怕,出于自己的本性,也是在安慰自己不要怕. (3)她在文中分别指代她、她的女儿和孙女,作者用同一人称代词指代不同的人,意在让情节看似连贯却又错乱,引起读者的深思,最终恍然大悟.这样更能突出全文的主旨,耐人寻 味. (4)“蜕变”表义指黑色的毛毛虫蜕变成美丽的蝴蝶,暗指她经历岁月的风霜,由幼弱、胆小的少女变为沉稳、大胆的具有母性的女人. (2017江苏扬州)12. 后生可畏 刘斌立 (1)我第一次去鉴睿律师楼,就注意到了前台旁边多了一张不怎么和谐的小桌子。一个大男孩模样的小伙 子,睡眼惺忪地在那捧着厚厚的《刑法》,有一页没一页的翻着。 (2)我问律师楼的合伙人李信,他一脸嬉笑地回答:“这孩子他爸是我们律师楼的大客户,也是老朋友了。他想让他儿子考律师,非得要我们把这孩子安排在这打杂,一边让他看书备考。其实我们啥事也 没给他安排,让他自 己在那天天待着呢。” (3)“哦,这孩子看着还挺老实的。”我随口应和道。 (4)“老实!您可别小瞧这小子,听他爸说,他一心要当摇滚乐手,跟着一个不靠谱的摇 滚乐队干了两年的鼓手。”老李边说边摇着头。 (5)后来我再去律师楼的时候,都会下意识地看看这个叫常远的“摇滚 ”男孩,他也是经常应景似得挺朋克,一会夹克上带钉,一会头发颜色又变了。 (6)那年律考后没几天,我去律师楼办事,发现常远那桌子没了,人也没了踪影。问道老 李,没想到老李苦笑着说:“那小子跑了,据说和一个摇滚乐队跑到青海茫崖矿区那边,在矿区的一个小镇上的酒吧里演 出呢。他爹差点没气背过去,已经发誓不管他了。” (7)我又惊讶又好笑,随着老李附和道“现在的年轻人啊”。 (8)一年以后一天,我突然接到鉴睿律师楼李信律师的微信。“还记得那个玩摇滚乐的男孩吗?他又回来了!这次主动来求我,要继续准备考律师,还在我这打杂看书。