第六章结构力学(李廉锟第五版)
结构力学(李廉锟第五版)(课堂PPT)
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
李廉锟《结构力学》(第5版)(上册)笔记和课后习题(含考研真题)详解 第4章~第6章【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 4-1-1 (2)按铰趾位置 ①平拱 平拱是指两拱趾在同一水平线上的拱。 ②斜拱 斜拱是指不在同一水平线上的拱。 3.拱的特点 (1)优点 ①与梁相比,拱在竖向荷载作用下会产生水平反力。推力的存在与否是区别拱与梁的主 要标志。 ②由于推力的存在,拱的弯矩常比跨度、荷载相同的梁的弯矩小得多,使得拱截面上的 应力分布较为均匀。 ③主要承受压力,可利用抗拉性能较差而抗压较强的材料如砖、石、混凝土等来建造, 更能发挥材料的作用。 (2)缺点 拱支座要承受水平推力,因而要求比梁具有更坚固的地基或支承结构(墙、柱、墩、台 等)。 4.拱式结构 拱式结构是指在竖向荷载作用下会产生水平反力的结构,也称为推力结构。如三铰刚架、
b.当荷载及拱的跨度 l 不变时,推力 FH 将与拱高 f 成反比。
第一,f 愈大即拱愈陡时 FH 愈小;
第二,f 愈小即拱愈平坦时 FH 愈大;
第三,若
,则
,此时三个铰已在一直线上,属于瞬变体系。
2.内力的计算
(1)弯矩
①弯矩正负
通常规定弯矩以使拱内侧受拉者为正。
②计算公式
由图 4-1-5(b)所示的隔离体可求得截面 K 的弯矩为
图 4-1-2 6.拱的各部分名称 (1)拱轴线 拱轴线是指拱身各横截面形心的连线。 (2)拱趾 拱趾是指拱的两端支座的位置。 (3)拱的跨度 l 拱的跨度是指两拱趾间的水平距离。 (4)起拱线 起拱线是指两拱趾的连线称为起拱线。 (5)拱顶 拱顶是指拱轴上距起拱线最远的一点。 (6)拱高 f
3 / 152
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 4 章 静定拱
结构力学第五版 李廉锟 结构位移计算1图文
Δ11
第六章 结构位移的计算
(2)位移不是由做功的力引起的,而是由其他因
素引起的。
若在如图所示简支梁的基础上,又在梁上施加另外一
个静力荷载F2,梁就会达到新的平衡状态,F1的作用点沿 F1方向又产生了位移Δ12如图所示。
力F1(此时的F1不再是静力荷载,而是一个恒力)在
位移Δ12上做了功。由于位移Δ12不是F1引起的,而是由
例如图(a)所示的简支梁,在荷载作用下发生如
图中虚线所示的变形,梁的跨中截面的形心C移动
了一段距离 C C, 称为C点的线位移或挠度 ;支座截
面B转动了一个角度
,称为截面的角位移或转角。
B
(a)
第六章 结构位移的计算
又如图所示的刚架,在荷载作用下发生如图中虚线所
示的变形。刚架上的C点移动至C点,则称 CC 为点C的线位
移,用ΔC表示。
还可将该线位移分解
为沿水平方向和竖直方向的
两个分量,分别称为点C的
水平位移和竖向位移,分
别用ΔCx和ΔCy表示,几何关
系如图(b)所示,图中的 C
Cy
为截面C的转角,称为截面
C的角位移,上述线位移和
C x
角位移统称为绝对位移。
第六章 结构位移的计算
此外,在计算中还将涉及到另一种位移,即相对位移。 例如图所示的刚架,在荷载F作用下,发生如图中虚 线所示的变形。
A、B两点的水平位移分
别为ΔAH和ΔBH,它们之和 为(ΔAB )H =ΔAH+ΔBH,称 为A、B两点的水平相对
线位移。A、B两个截面
的转角分别为 和 ,它
们之和A 为B
,
称为AAB、B两A 个截B 面的相
对角位移。
李廉锟《结构力学》(第5版)(上册)配套模拟试题及详解【圣才出品】
李廉锟《结构力学》(第5版)(上册)配套模拟试题及详解一、单项选择题(本大题共5小题,每题3分,共15分;在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分)1.如图1所示的结构中,桁架杆件的零杆个数为()。
A.4B.5C.6D.7图1【答案】D【解析】此对称结构的荷载为反对称,因此DE杆轴力必为零。
再由零杆判别法则,可知DF、AF、FG、HI、EI、BI六杆也为零杆,总共此结构有7根零杆。
2.如图2所示结构,A支座发生沉降∆后,则()。
A.AB杆无内力,BD杆有内力B.AB杆有内力,BD杆无内力C.AB、BD杆均无内力产生D.AB、BD杆均有内力产生图2【答案】C【解析】AB为静定梁,支座移动不引起内力,因此铰B对AB杆的约束力为零,对BD 杆的约束力也为零。
BD杆上又无其他荷载,其内力也等于零。
3.如图3所示结构为对称抛物线三铰拱,铰C右侧截面的轴力(受压为正)为()。
图3A.64kN B .32kN C .24kN D .16kN 【答案】C【解析】由于该结构为对称抛物线拱,截面的轴力必是水平方向,其等于支座的水平反力F H 。
求得F VA =10kN ,F H =24kN ,因此,'24NC H F F kN ==。
4.如图4所示结构,各杆为矩形截面,在温度变化t 1>t 2时,其轴力为( )。
图4【答案】C【解析】因为当温度变化时,AB杆、DC杆可自由伸缩,故F NAB=F NCD=0。
由于BC 杆在B、C结点处有轴向约束,且,故其轴线伸长受阻,则必有F NBC<O,为压力。
5.如图5所示结构为对称刚架,利用对称性简化后的计算简图为()。
图5【答案】A【解析】刚架有两个对称轴AB、AD,此刚架纵横均为两跨,可以取四分之一结构BCD 计算,由于荷载对称,因此,B、D两处有弯矩,无转角和线位移,AB、AD杆无弯矩。
二、填空题(本大题共5小题,每题3分,共15分)1.如图6(a)所示体系的几何组成为______。
【经典】结构力学(李廉坤第五版) 上
§2-4 瞬变体系
分析图示体系: 三根链杆平行且等长 从异侧连出时。体系 为瞬变体系。
§2-5 机动分析示例
例2-1 试分析图所示多跨静定梁的几何构 造。
解:地基与AB段梁看作一个刚片(两刚片 规上则述)刚;片与BC段梁扩大成一个刚片(两刚 片上规述则大)刚;片与CD段梁又扩大成一个刚片(两 刚DE片段规梁则同)样;分析(两刚片
需的最少联系
图示体系数计目算,自而由布度置W不=0,
当会成为几何可变但;布置不当,上部有多余 联系,
下 体部 系缺 计少 算联 自系 由,度是W≤几0何,可
变 是的 体。 系几何不变的必要条 件。
§2-3 几何不变体系的基本组成规则
三刚片规则 三个刚片用不在同一直线上的三个单
铰两两相连,组成的体系是几何不变的,且 没有多余联系。如图。
§2-3 几何不变体系的基本组成规则
两刚片规则
两个刚片用一个铰和一根不通过此铰
的链杆相连,组成的体系是几何不变的,且
没有多余联系。如图。
图示体系
也是按三刚片规则
组成的。将链杆看
作一个刚片,组成
的体系是几何不变
§2-3 几何不变体系的基本组成规则
如图所示,刚
片I和刚片II可以绕O点 转动;O点成为刚片I和
点O作相对转动,但发生
微小转动后,三根杆就 不再交于同一点,运动 也就不再继续发生。体
§2-4 瞬变体系
分析图示体系: 三根链杆平行不等长时, 交于无穷远处的同一点, 两刚片可相对平动,发 生微小相对移动后,三 杆分不析再图全示平体行系。:体系为 瞬三变根体链系杆。平行且等长时, 两刚片的相对平动一直 持续下去。体系为可§1-4 支座和结点的类型
支座:连接结构与基础的装置。 (1)活动铰支座
结构力学(李廉锟第五版)_图文
§4-3 三铰拱的合理拱轴线
在均匀静水压力作用下,q=常数,因而
三铰拱在均匀静水压力作用下,其合理轴线的曲 率半径为一常数, 就是一段圆弧。
因此,拱坝的水平截面常是圆弧形,高压隧洞 常采用圆形截面。
拱桥实例介绍
5)刚架拱桥
1989江苏无锡100米下甸桥
变截面,四分点附近截面高度最大,分别向拱脚、跨中减小 。取消斜撑,拱上建筑采用23m预应力混凝土简支梁以过渡 。
§4-3 三铰拱的合理拱轴线
例4-3 设三铰拱上作用有沿拱轴均匀分布的竖向 荷载(如自重),试求其合理拱轴线。
解:当拱轴线改变时,荷载也随之改变。 令p(x)为沿拱轴线每单位长的自重,荷载沿水平
方向的集度为q(x) 由 有
§4-3 三铰拱的合理拱轴线
将
代入方程(4-5),得
由于规定y 向上为正, x 向右为正,q 向下为 正,故上式右边为正号。
§4-3 三铰拱的合理拱轴线
或
积分后,得 如p(x)=常数=p ,则
即 式中A为积分常数。
§4-3 三铰拱的合理拱轴线
由于当x =0时,
,故常数A等于零,即
再积分一次,得 由于当x=0时,y=0, 故
最后得 等截面拱在自重荷载作用下,合理轴线为一悬链线。
§4-3 三铰拱的合理拱轴线
在一般荷载作用下,为了寻求相应的合理轴线,可假 定拱处于无弯矩状态并写出相应的平衡微分方程。
§4-1 概 述
拱与其同跨度同荷载的简支梁相比其弯矩要小 得多,所以拱结构适用于大跨度的建筑物。它广泛 地应用房屋桥梁和水工建筑物中。由于推力的存在 它要求拱的支座必须设计得足够的牢固,这是采用 拱的结构形式时必须注意的。
§4-2 三铰拱的数值解 一、三铰拱的反力和内力计算。
结构力学第五版 李廉锟 第六章结构位移计算1
B B 令δA=1,且令δB表示位移 A和之间的比例系数: B A ,
由图中几何关系得: B c B A a c 将(1)式除以ΔA,得 FA FP a
第六章 结构位移的计算
例:求 A 端的支座反力
A B
P
C
b
P
X
直线
C
(c)
a
(a)
X
(b)
待分析平衡的力状态 虚设协调的位移状态 解:去掉A端约束并代以反力 X,构造相应的虚位移状态. 由外力虚功总和为零,即: X X P C 0
从以上示例看出,一个广义力可以是一个力或一
个力偶,其对应的广义位移是一个线位移或一个角位
移。故广义力可有不同的量纲,相应的广义位移也可
有不同的量纲。但在做功时广义力与广义位移的乘积
却恒具有相同的量纲,即功的量纲。其常用单位为牛
顿米(N· m)或千牛顿米(kN· m)。
第六章 结构位移的计算
既然功是力与位移的乘积,根据力与位移的关系可 将功分为两种情况: (1)位移是由做功的力引起的 例如图所示简支梁,在静力荷载 F1 的作用下,当 F1 由零缓慢逐渐的加到其最终值时,其作用点沿 F1方向产 生了位移Δ11,简支梁达到平衡状态,其变形如图虚线所 示,力F1在位移Δ11上做了功。 由于位移Δ11是由做功的力F1 引起的,我们把力在自 身引起的位移上所做的功称为实功。
第六章 结构位移的计算
1 )虚设位移求未知力
如图(a)所示杠杆,在B点作 用已知荷载FP,求杠杆平衡时 在A点需加的未知力FA。 把刚体取虚位移,如图(b) 所示,根据刚体虚功原理得: (1) 其中: A和 分别是沿 FA和FP方向的虚位移。 B
(a)
(NEW)李廉锟《结构力学》(第5版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
目 录第一部分 名校考研真题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第二部分 课后习题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第三部分 章节题库第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第四部分 模拟试题李廉锟《结构力学》(第5版)(下册)配套模拟试题及详解第一部分 名校考研真题第12章 结构动力学一、填空题1.设直杆的轴向变形不计,则图12-1所示体系的质量矩阵[M]=]______。
[西南交通大学2007研【答案】【解析】首先判断结构有两个动力自由度:最右端m1的竖向自由度和水平方向上的自由度。
竖向自由度对应的质点的质量为m1,水平自由度对应的质点的质量为2m1,故该结构的质量矩阵为。
2.如图12-2所示结构的动力自由度为______(不计杆件质量)。
[中南大学2003研]图12-2二、选择题1.如图12-3所示结构,不计阻尼与杆件质量,若要发生共振,θ应等于( )。
[天津大学2005研]A .B .3【答案】一个自由质点的动力自由度为两个(不考虑转动自由度),本题所示结构中有三个质点,第一层的两个质点只有一个水平自由度,第二层的质点有水平和竖向两个自由度,故一共有三个动力自由度。
【解析】C .D.图12-3【解析】当体系的自振频率与外部激励荷载的频率相同时,体系发生共振。
首先求该结构的自振频率,设m 处的位移为u (t ),质量m 处的惯性力向下为,质量3m 处的惯性力向下,弹性力向上为,向左端铰支座处取矩,列运动方程为:。
所以体系的自振频率为。
2.如图12-4所示体系(不计阻尼)的稳态最大动位移y max =4Pl 3/9EI ,则最大的动力弯矩为( )。
[浙江大学2007研]A .7Pl/3 B .4Pl/3C .Pl D .Pl/3B【答案】图12-4【解析】在质点m 处的静位移为:,则动力放大系数R d =;最大静力弯矩为Pl ,故最大动力弯矩为。
结构力学(李廉锟第五版)
(虚)位移状态
注 (1)属同一体系;
意 (2)均为可能状态。即位移应满足变形协调条件, 力状态应满足平衡条件。
: (3)位移状态与力状态完全无关;
中南大学
退出
返回
22:17
§6-2 变形体系的虚功原理
2.杆系结构虚功方程
结构力学
Wi FNd FSd Md
s
s
s
We Wi
以上结论与材料物理性质及具体结构无关,因 此,虚功原理虚功方程既适用于一切线性结构,也 适用于一切非线性结构。
结构力学
第六章 结构位移计算
§6-1 概 述 §6-2 变形体系的虚功原理 §6-3 位移计算的一般公式 单位荷载法 §6-4 静定结构在荷载作用下的位移计算 §6-5 图乘法 §6-6 静定结构温度变化时的位移计算
§6-7 静定结构支座移动时的位移计算
§6-8 线弹性结构的互等定理
中南大学
退出
返回
FK
1在
K 上做负功
中南大学
退出
返回
22:17
§6-3 位移计算的一般公式 单位荷载法 结构力学
几点说明:
(1) 所建立的虚功方程 ,实质上是几何方程。 (2) 虚设的力状态与实际位移状态无关,故可设单位广
义力 P=1
(3) 求解时关键一步是找出虚力状态的静力平衡关系。 特点: 是用静力平衡法来解几何问题。
退出
返回
22:17
§6-2 变形体系的虚功原理
结构力学
(2)刚体系的虚功原理
去掉约束而代以相应的反力,该反力便可看成外力。 则有:刚体系处于平衡的必要和充分条件是:
对于任何可能的虚位移,作
用于刚体系的所有外力所做虚
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第6章 结构位移计算【圣才出品】
第6章 结构位移计算6.1 复习笔记【知识框架】【重点难点归纳】一、结构位移的基本概念(见表6-1-1) ★★表6-1-1 结构位移的基本概念二、刚体的虚功原理 ★★★平衡方程是一种直接的受力分析方法,而虚功原理是一种间接手法。
虚功原理是(任意平衡力系)在(任意可能位移)上所做的总虚功为零。
根据虚设对象不同,刚体的虚功原理分两种应用形式(虚力原理、虚位移原理),具体见表6-1-2。
表6-1-2 刚体的虚功原理三、变形体系的虚功原理(见表6-1-3) ★★★表6-1-3 变形体系的虚功原理四、位移计算的一般公式单位荷载法 ★★★★★基于化整为零、积零为整的原则,结构位移的计算从局部变形入手,通过虚力原理中的单位荷载法推导其拉伸、剪切、弯曲变形公式,再对这些局部变形公式进行叠加,得到整体变形公式,最后通过虚功方程推导出位移计算公式,见表6-1-4。
表6-1-4 单位荷载法求变形体系的位移注:为虚设单位荷载在支座处引起的反力;、N、Error!S分别为单位荷载在截面引起的弯矩、轴力、剪力。
拟求位移Δ可以引申理解为广义位移,将结构位移广义化,可以求解两点之间的广义位移。
广义位移、广义单位荷载和外力虚功三者之间满足:W=1·Δ。
单广义位移分类及单位荷载施加方式见表6-1-5。
表6-1-5 单广义位移分类及单位荷载施加方式五、静定结构在荷载作用下的位移计算(见表6-1-6) ★★★★表6-1-6 静定结构在荷载作用下的位移计算注:G为材料的切变模量;A为杆件截面的面积;k为切应力沿截面分布不均匀而引用的改正系数(考试作为已知条件)。
六、图乘法(见表6-1-7) ★★★★★。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学
一、基本概念
1.外力的实功
实功: 力在其本身引起的位移上所作的功。
位移Δ是由外力F引起的,F 做的功可表示为:
W F 'dΔ' 0
F
F
A
l
F'
O 'd ' B F
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
设线弹性材料的弹性系数为,则
F
F ' kΔ'
F
A
l
F'
所以
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
内力虚功
若变形与内力彼此无关,则此微段上的内力功 是虚功,其为
dwi FNd FSd Md
对于整根杆的内力虚功,则可对整根杆积分求得:
Wi FNd FSd Md
s
s
s
d , d 和 d 的具体表达式要视引起这个变形的具体
中南大学
退出
返回
16:14
§6-1 概述
结构力学
(2) 超静定结构、动力和稳定计算的基础
超静定结构的内力不能仅由平衡条件确定,分析时必须 考虑变形条件,因而需要计算结构的位移。
(3)施工要求
在结构的施工过程中,常需预先知道结构变形后的位置, 以便采取一定的施工措施,使结构物符合设计图纸的要求。
中南大学
D'
A
B
C'
C
D
D'
CD
A
B
结构力学
截面C、D 的相对竖向 线位移为 :
CDV CV DV
截面C、D 的相对角位移为:
ΔCD C D
中南大学
退出
返回
16:14
§6-1 概述
结构力学
3.位移产生的原因
P
t
A
引起结构位移的原因
Ay
A A
荷载 温度改变
Ax
支座移动
制造还误有差什等么原
因会使结构产
生位移?
中南大学
退出
返回
16:14
§6-1 概述
结构力学
二、计算位移的目的
(1) 刚度要求
在工程上,吊车梁允许的挠度<1/600 跨度; 高层建筑的最大位移<1/1000 高度。
最大层间位移<1/800 层高。 铁路工程技术规范规定:
桥梁在竖向静活载下,钢板桥梁和钢桁梁 最大挠度<1/700 和1/900跨度
两者之间的关系:有形变必有位移;有位移不一 定有形变。
中南大学
退出
返回
16:14
§6-1 概述
结构力学
2. 位移的分类
P
A
A
Ay
A
位移
线位移 转角位移
Ax
A A点线位移
Ax A点水平位移
Ay A点竖向位移
A截面转角
中南大学
退出
返回
16:14
§6-1 概述
C'
CV C D
CDV
DV
退出
返回
16:14
§6-1 概述
结构力学
四、 计算方法
1.几何法
研究变形和位移的几何关系,用求解微分方程式 的办法求出某截面的位移(材料力学用过,但对复 杂的杆系不适用)。
〈 2. 功能法
虚功原理
应变能(卡氏定理)
本章只讨论应用虚功原理求解结构位移。
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
O 'd ' B F
W kΔ'dΔ' 1 kΔ2 1 FΔ F 2
0
2
2 2k
实功的数值就等于图上三角形OAB的面积。实 功是外力的非线形函数,计算外力实功不能应用 叠加原理。
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
2.外力的虚功
虚功:力在其它原因引起的位移上所作的功, 即做功的力系和相应的位移是彼此独立无关的。
退出
返回
16:14
§6-1 概述
结构力学
三、 本章位移计算的假定
(1) 线弹性 (Linear Elastic), (2) 小变形 (Small Deformation), (3)理想联结 (Ideal Constraint)。
叠加原理适用(principle of superposition)
中南大学
d
1 2
FS
dn
1 2
Md
d ds d kds
1
ds
所以
dw
1 2
FNds
1 2
FSds
1 2
Mκds
由胡克定律有:
FN , FS , 1 M
EA
GA EI
故
dw 1 FN2 ds 1 FS2 ds 1 M 2 ds
2 EA 2 GA 2 EI
实功数值上就等于微段的应变能。
中南大学
22
力F1在力F2引起的位移Δ12上作的功为虚功为
δW F1 Δ12
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
3.广义位移和广义力
广义位移 ——结构产生的各种位移,包括截面的 线位移、角位移、相对线位移、相对角位移或者是一 组位移等等都可泛称为广义位移。
广义力 ——与广义位移对应的就是广义力,可 以是一个集中力,集中力偶或一对大小相等方向相 反的力或力偶,也可以是一组力系。
F
F
A
t
l
δW FΔt F
t
O
B
t
虚功的数值是位移曲线所围的矩形面积。
虚功中的力与位移两者相互独立,计算外 力虚功可应用叠加原理。
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
例 F1力在其引起的位移Δ11 上作的功为实功为
F1
W
1 2
F1
Δ11
1
2
11
21
F1
1 11 12
F2 2 21
d s+d λ
ds
ds
该微段上相应的变形为
轴向变形 弯曲变形
d
ds
1 k d
ds
剪力变形 d
ds
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
内力实功
如果变形就是由此内力引起的,则此微段上内
力功应为实功,其为轴力、剪力和弯矩分别做的功
之和: 因为
1 dw 2 FN
d ds
16:14
§6-1 概述
结构力学
一、结构的位移 (Displacement of Structures)
1. 结构的位移是指结构上的某一截面在荷载或其它 因素作用下由某一位置移动到另一位置,这个移动 的量就称为该截面的位移(线位移和角位移)。
思考:变形与位移的差别?
变形:结构在外部因素作用下发生的形状的变化。
注意:广义位移与广义力的对应关系,能够 在某一组广义位移上做功的力系,才称为与这组广 义位移对应的广义力。
中南大学
退出
返回
16:14
§6-2 变形体系的虚功原理
结构力学
4.内力功
定义:从杆上截取一微段,作用在该微段上的内力 在该微段的变形上做的功定义为该内力做的功。
γ
FN
FN
dη
dθ
S
FS
ds
M
M
结构力学
第六章 结构位移计算
§6-1 概 述 §6-2 变形体系的虚功原理 §6-3 位移计算的一般公式 单位荷载法 §6-4 静定结构在荷载作用下的位移计算 §6-5 图乘法 §6-6 静定结构温度变化时的位移计算
§6-7 静定结构支座移动时的位移计算
§6-8 线弹性结构的互等定理
中南大学
退出
返回