记忆功放的预失真线性化方案

记忆功放的预失真线性化方案
记忆功放的预失真线性化方案

线性化微波功放现状及发展趋势1..

线性化微波功放现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 教师:徐瑞敏教授 姓名:XXX 学号:2014210202XX 报告日期:2014.10.26

线性化微波功放现状及发展趋势 一、引言 电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。 对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。 第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。 二、功率放大器的非线性特性 现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫使我们不得不给予功率放大器的线性化问题以足够重视。要研究线性化技术,首先必须了解功率放大器的非线性失真特性,以做到有的放矢。 理想情况下,功率放大器工作在线性状态,传输系数与输入信号的幅度和相位无关。但在实际情况中并非这么简单,由于晶体管的特性,在达到一定输入功率时,放大器将呈现出非线性。信号的输入输出不在是上面简单的函数关系。放大器随着输入信号的增大,从线性区进入非线性区,此时功放的增益不再是常数,而是一个与输入信号有关的变量,输入输出呈非线性,甚至在达到一定输入功率后,功放输出将不再增加。此外功率放大器输出端产生了与输入频率有关的新的频率分量,当信号输入时,除了基波分量,还会出现各阶互调分量和高次谐波分量。这种非线性特性,在通信系统中对相邻信道的干扰,降低系统的性能。对于

测量功放总谐波失真的步骤及方法

测量功放总谐波失真的步骤及方法 测量所需设备: ◆高精度数字电压表(FLUKE 179) ◆高精度音频信号发声器(杭州爱华AWA1650或者软件配合声卡方式均可)◆高精度全自动数字失真度测量仪(常州中策ZC4116或者具备此测量功能的其它品牌) ◆大功率数字稳压电源 ◆高精度大功率无感线性负载电阻 测量步骤方法: ◆将测量功放接入大功率稳压电源的输出端,并调节输出电压稳定在220V。如功放输入电压为特殊要求,需调节到所需电压,这是测量出准确参数的基础,必须严格执行,非常重要。(稳压电源功率大于功放双通道驱动4欧线性负载满载输出时,其电源消耗功率的30%以上)。 ◆将大功率无感线性负载电阻接入功放功率输出端。(根据所需测量参数选择标准4欧或者8欧线性负载,注意!连接线材直径与长度,尽可能选择直径大长度短的连接线材,而且尽可能降低连接位置的阻值。有助于提高测量数值的准确性!)。 ◆将音频信号发声器接入功放信号输入端。(需要将功放的电压增益调节到最大值,关闭功放所有输出保护设置,例如限制器、高低通、DSP处理等。否则将影响测量数值的准确性!)。 ◆将高精度全自动数字失真度测量仪的探测线并联接入线性负载两端。(开启测量仪,选择到全自动测量总谐波失真档位。连接位置接触牢固稳定即可)。 ◆高精度数字电压表的探测鳄鱼夹并联接入线性负载两端。(开启电压表,调节到全量程AC电压档位。连接位置接触牢固稳定即可)。 ◆通过信号发声器发送1KHz正弦波,缓慢提升输出电压,当电压表显示对应1W功率的电压数值状态下,观察总谐波读数,该读数即是1W状态下的总谐波失真。继续提升输出电压,观察总谐波读数在0.1%以内的最大输出电压读数,经过计算可以计算出总谐波失真0.1%以内的最大输出功率。(时刻需要观察功放的输入电压是否满足220V或者特殊要求,否则测量参数将会失去准确性,而且偏差性较大)。 注: 1、测量设备的品质决定测量数值的准确性。 2、测量必须采用双通道同时驱动线性负载,而且输出功率需同步。 3、如需快速测量双通道参数,需要两通道同时进行,测量设备需两套。 4、操作细节的规范一致是保证测量结果公平公正的基础。 5、全自动数字失真度测量仪辅助滤波选择在400Hz-30KHz范围内。

共源极放大器电路及原理

共源极放大器电路及原理 1)静态工作点的测试 上图为场效应管共源极放大器实验电路图。该电路采用的自给偏压的方式为放大器建立静态工作点,栅极通过R1接地,因R1中无电流流过,所以栅极与地等电位。即VG=0,可用万用表测出静态工作点IDQ和VDSQ值。 2)输入输出阻抗的测试 (1)输入阻抗的测量 上图是伏安法测试放大电路的连接图。其在输入回路中串接一取样电阻R,输入信号调整在放大电路用晶体管毫对地的交流电压VS与Vi,这样求得两端的电压为VR=VS-Vi,流过电阻R的电流实际就是放大电路的输入电流Ii。

根据输入电阻的定义得 2)输出阻抗的测量 放大器输出阻抗的大小,说明该放大器带负载的能力。用伏安法测试放大电路的输出阻抗的测试电路如下图所示。放大器输出阻抗的大小,说明该放大器带负载的能力。用伏安法测试放大电路的输出阻抗的测试电路如下图所示。 输入信号的频率仍选择在放大电路的中频段,输入信号的大小仍调整到确保输出信号不失真为条件,因此仍须用示波器监视输出信号的波形。 第一步在不接负载RL的情况下,用毫伏表测得输出电压V01。 第二步在接上负载RL的情况下,用毫伏表测得输出电压V02。则 3)高输入阻抗Zi的测试. 前面讲了一般放大器输入阻抗的测量方法,下面以场效应管源极跟随器为例,介绍高输入放大器的输入阻抗的测试方法。 类似于源极跟随器这样的高输入阻抗放大器的输入阻抗.往往可以等效成一个输入电阻Zi和一个输入电容Ci的并联形式,因此,必须分辨测出Ri和Ci的值才能确定输入阻抗Zi的值。 测量Ri,由于被测电路的输入阻抗很高,可以和毫伏表的输入阻抗相比拟,若将毫

放大器的非线性失真

放大器的非线性失真 非线性失真是模拟电路中影响电路性能的重要因素之一。本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术。 12.1 概述 非线性的定义 电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化。 放大器的非线性定义:当输入为正弦信号时,由于放大器(管子)的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器(管子)参数的非线性所引起的失真称为非线性失真。由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真。 非线性的度量方法 1 泰勒级数系数表示法: 用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似: )()()()(33221 +++=t x t x t x t y ααα (12.1) 对于小的x ,y (t)≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式(12.1)中的α1,α2等系数就可确定。 2 总谐波失真(THD )度量法: 即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”(THD )。 把x(t)=Acosωt 代入式(12.1)中,则有: +++ ++ =+++=)]3cos(cos 3[4 )]2cos(1[2 cos cos cos cos )(3 32 213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα (12.2) 由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方。例如考虑一个三阶非线性系统,其总谐波失真为: 2 3312 33222) 43()4()2(THD A A A A αααα++= (12.3) 3 采用输入/输出特性曲线与理想曲线(即直线)的最大偏差来度量非线性。 在所关心的电压范围[0 V i,max ]内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化。即在如图12.1所示。

音频功放失真及常见改善方法

音频功放失真及常见改善方法 无论是电失真还是声失真,按失真的性质来分,主要有频率失真和非线性失真两种。 引起信号各频率分量间幅度和相位的关系变化,仅出现波形失真,不增加新的频率成分,属于线性失真。 谐波失真(THD)、互调失真(IMD)等可产生新的频率成分,或各频率分量的调制产物,这些多余产物与原信号极不和谐,引起声音畸变,粗糙刺耳,这些失真属于非线性失真。 1.谐波失真谐波失真是由功放中的非线性元器件引起的一种失真。这种失真使音频信号产生许多新的谐波成分,叠加在原信号上,形成了波形失真的信号。将各谐波引起的失真叠加起来,就是总谐波失真度,其值常用输出信号中的所有谐波均方根值与基波电压有效值之比的百分数来表示。在这里,基波信号就是输入信号,所有谐波信号为由非线性失真引入的各次谐波信号。显然,该百分数越小,谐波失真越小,电路性能越好。 目前,Hi-Fi功放的谐波失真一般控制在0.05%以下,许多优质功放的谐波失真已小于0.01%,而专业级音频功放的谐波失真度一般控制在0.03%以下。事实上,当总谐波失真度小于0.1%时,人耳就很难分辨了。另需说明的是,对于一台指定的音频功放而言,例如,某音频功放的总谐波失真指标表示为THD<0.009%(1W)。初看起来,似乎总谐波失真很小,但它只是在输出功率为1W时的总谐波失真,这与在有关标准要求的测量条件下所得的总谐波失

真值是不同的。所以,在标明音频功放的总谐波失真指标时,一般都会注明测量条件。 众所周知,人的听觉系统是极其复杂的,有时谐波失真小的功放不如谐波失真大的耐听,这种现象的原因是多方面的。其中,与各次谐波成分对音质的影响程度不同有直接关系。尽管石机与胆机的稳态测试数据相同,但人们总觉得胆机的低音醇厚激荡、中音明亮圆润、高音纤细清澈,极为耐听; 石机则低频强劲有力,中高频通透明亮,但高频发毛,声音生硬,音色偏冷。经频谱分析发现,石机含有大量的奇次谐波,奇次谐波给人耳造成刺耳难听的感觉;胆机则含有丰富的偶次谐波,而人耳对偶次谐波不敏感。此外,人耳对偶次谐波失真分辨力较低,对高次谐波却非常敏感,这也是上述现象的重要原因之一。 降低谐波失真的办法主要有:1)施加适量的电压负反馈或电流负反馈;2)选用fT高、NF小、线性好的放大元器件;3)尽可能地提高各单元电路中对管的一致性;4)采用甲类放大方式,选用优秀的电路程式;5)提高电源的功率储备,改善电源的滤波性能。 2.互调失真两种或多种不同频率的信号通过放大器后或扬声器发声时互相调制而产生了和频与差频以及各次谐波组合产生了和频与差频信号,这些新增加的频率成分构成的非线性失真称为互调失真。 通常,将两个振幅按一定比例(多取4:1)的高低频信号,混合进入电路,新产生的非线性信号的均方根值与原较高频率信号的振幅之比的百分数来量度互调失真,即互调失真的大小,可用互调产物电平与额定信号电平的百分

利用数字预失真线性化宽带功率放大器

利用数字预失真线性化宽带功率放大器 2. Wiener系统 Wiener模型是Volterra模型一种有意义的简化,包括一个线性滤波器,后接无记忆非线性。可以采用查询表对非线性进行模型化,也可用FIR 滤波器线性对线性滤波器进行模型化。Werner系统在模型化大多数RF功率放大器方面的有效性有限。模型参数的估算相当复杂,这使其对实时自适应没有吸引力。 3.Hammerstein系统此外,Hammerstein模型也是Volterra模型的一种简化,包含一个无记忆非线性,后跟一个线性滤波器。这是一种简单的记忆模型,其模型参数的计算比Wiener模型要简单。这种模型对模型化所有不同类型RF功放的有效性有限。 4. Wiener-Hammerstein 将一个线性滤波器、一个无记忆线性与另一个线性滤波器级联起来就构成了Weiner-Hammerstein模型。这种模型比Weiner或Hammerstein模型更加一般,包括Volterra数列许多项,可以更好地进行非线性模型化。 5. 记忆多项式限制(1)中的Volterra数列,使除了中心对角线上的项以外,各个项都为0,即只有i1=i2=i3…时hn(i1,i2,i3…) != 0,得到如式子B所示的记忆多项式模型,其中M为记忆长度,K为非线性阶数。

已经证明这种模型(及其变种)对线性化宽带功放是有效的,硬件和软件计算要求也合适。 文献中也提出了上述模型的不同组合,每一种都有其优缺点。商业上可实施的前置补偿器要求能够擅长处理大量非线性行为,对不同应用可能需要不同模型。对于这些模型中的大多数而言,前置补偿器系数适合采用最小二乘法识别的间接学习架构。 本文第三部分将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在无线系统中,功放(PA)线性度和效率常是必须权衡的两个参数。工程师都在寻找一种有效而灵活的基于Volterra的自适应预失真技术,可用于实现宽带RF 功放的高线性度。本文将概述不同数字预失真技术,介绍一种创新性DPD线性化电路特有的自适应算法。 本文的第二部分介绍了线性化方案对于前置补偿器具有高度精确模型的需求。下面我们将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在GC5322前置补偿实施中,为易于实现,采用算术和模型简化方法的混合。通

谈谈音频功放失真及常见改善方法

谈谈音频功放失真及常见改善方法(yiya) 谈谈音频功放失真及常见改善方法 音频功放失真是指重放音频信号波形畸变的现象,通常分为电失真和声失真两大类。电失真就是信号电流在放大过程中产生了失真,而声失真是信号电流通过扬声器,扬声器未能如实地重现声音。 无论是电失真还是声失真,按失真的性质来分,主要有频率失真和非线性失真两种。其中,引起信号各频率分量间幅度和相位的关系变化,仅出现波形失真,不增加新的频率成分,属于线性失真。而谐波失真(THD)、互调失真(IMD)等可产生新的频率成分,或各频率分量的调制产物,这些多余产物与原信号极不和谐,引起声音畸变,粗糙刺耳,这些失真属于非线性失真。在这里,分别对谐波失真、互调失真、瞬态互调失真(TIM)、交流接口失真(IHM)等加以讨论。 1.谐波失真 谐波失真是由功放中的非线性元器件引起的一种失真。这种失真使音频信号产生许多新的谐波成分,叠加在原信号上,形成了波形失真的信号。将各谐波引起的失真叠加起来,就是总谐波失真度,其值常用输出信号中的所有谐波均方根值与基波电压有效值之比的百分数来表示。在这里,基波信号就是输入信号,所有谐波信号为由非线性失真引入的各次谐波信号。显然,该百分数越小,谐波失真越小 ,电路性能越好。目前,Hi-Fi功放的谐波失真一般控制在0.05%以下,许多优质功放的谐波失真已小于0.01%,而专业级音频功放的谐波失真度一般控制在0.03%以下。事实上,当总谐波失真度小于0.1%时,人耳就很难分辨了。另需说明的是,对于一台指定的音频功放而言,例如,某音频功放的总谐波失真指标表示为THD<0.009%(1W)。初看起来,似乎总谐波失真很小,但它只是在输出功率为1W时的总谐波失真,这与在有关标准要求的测量条件下所得的总谐波失真值是不同的。所以,在标明音频功放的总谐波失真指标时,一般都会注明测量条件。 众所周知,人的听觉系统是极其复杂的,有时谐波失真小的功放不如谐波失真大的耐听,这种现象的原因是多方面的。其中,与各次谐波成分对音质的影响程度不同有直接关系。尽管石机与胆机的稳态测试数据相同,但人们总觉得胆机的低音醇厚激荡、中音明亮圆润、高音纤细清澈,极为耐听;石机则低频强劲有力,中高频通透明亮,但高频发毛,声音生硬,音色偏冷。经频谱分析发现,石机含有大量的奇次谐波,奇次谐波给人耳造成刺耳难听的感觉;胆机则含有丰富的偶次谐波,而人耳对偶次谐波不敏感。此外,人耳对偶次谐波失真分辨力较低,对高次谐波却非常敏感,这也是上述现象的重要原因之一。 降低谐波失真的办法主要有: 1)施加适量的电压负反馈或电流负反馈;2)选用fT高、NF小、线性好的放大元器件;3)尽可能地提高各单元电路中对管的一致性;4)采用甲类放大方式,选用优秀的电路程式;5)提高电源的功率储备,改善电源的滤波性能。 2.互调失真 两种或多种不同频率的信号通过放大器后或扬声器发声时互相调制而产生了和频与差频以及各次谐波组合产生了和频与差频信号,这些新增加的频率成分构成的非线性失真称为互调失真。通常,将两个振幅按一定比例(多取4:1)的高低频信号,混合进入电路,新产生的非线性信号的均方根值与原较高频率信号的振幅之比的百分数来量度互调失真,即互调失真的大小,可用互调产物电平与额定信号电平的百分比来表示。此值越大,互调失真越大。显然,互调失真度的大小与输出功率有关。由于新产生的这些频率成分与原信号没有相似性,因而较小的互调失真也很容易被人耳觉察到,听起来感到又尖、又刺耳,且伴有“声染色”现象。也就是说,互调失真带来的影响,会使整个重放系统的声场缺乏层次感,清晰度下降。在Hi-Fi功放中,总希望互调失真

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

射频功放的立方预失真线性化技术

射频功放的立方预失真线性化技术 王伟旭,张玉兴 (电子科技大学,四川成都610054) 摘 要 预失真技术是射频功率放大器线性化技术中的一种,与其他线性化技术相比具有电路简单可靠、性能优良、成本低廉等优点。立方预失真技术是其中的一种,该技术易于设计调试,且性能优良。对射频功率放大器的非线性特性进行了深入的理论分析,剖析了非线性失真产生的根源。说明了预失真技术的工作原理和结构,重点讨论了立方预失真器的原理和结构,并且给出了理论和实际系统的仿真结果。 关键词 线性功率放大器;立方预失真器;预失真;三阶交调中图分类号 T N722 文献标识码 A Cubic Pre 2distortion Linearization T echnique for RF Pow er Amplifier W ANG Wei 2xu ,ZH ANG Y u 2xing (UESTC ,Chengdu Sichuan 610054,China ) Abstract Pre 2distortion is one of the linearization techniques for RF power am plifier.C om pared with other linearization techniques ,it provides sim ple and reliable circuit design ,g ood per formance and relative low cost.M oreover ,it is easy to design and test.This paper analyzes non 2linearization of RF power am plifier ,explains how the pre 2distorter w orks ,discusses the principle and structure of cubic pre 2distorter ,and presents the simulation results. K ey w ords linear power am plifier ;cubic pre 2distorter ;pre 2distortion ;I M D3 收稿日期:2005212217 0 引言 随着现代通信技术的发展,对功率放大器的线性度要求越来越高,对放大器的线性度改善的研究成为一个热点。主要的线性化方法有负反馈、前馈和预失真等。负反馈的主要缺点是降低放大器的增益,并且存在使放大器不稳定的风险;前馈技术虽然性能优良,但电路设计较复杂,成本高,在很多情况下使用受到限制;预失真技术在避免这些缺点的情况下,仍然可以达到较好的校正效果。其中立方预失真技术就是一种电路简单、调试方便而效果显著的方案。 1 基本原理 111 单音信号通过放大器的非线性分析 由于放大器采用的器件(如晶体管)存在非线性 特性,当工作在大信号状态下,其输出函数可以按泰勒级数展开。假设放大器的输入信号为: v =v 0cos (ωt ) (1) 输出信号按照泰勒级数展开为:v out =a 1v +a 2v 2 +a 3v 3 +a 4v 4 +…… (2) 将式(1)代入式(2),按照三角函数积化和差,由于正弦函数的奇次方项都含有基波分量,将所有的基波分量提出相加合并得: v out =(a 1+34a 3v 02+58a 5v 0 4 + 3564a 7v 0 6 …)v 0cos (ωt )+… (3) 如果只考虑基波的表达式,而不考虑放大器输出的高次谐波,显然,输出信号v out 的基波分量的系数就是放大器的增益。即 A =a 1+ 34a 3v 02+58a 5v 04+3564a 7v 0 6 (4) 由于a 3、a 5、a 7…为负数,则增益特性表现为所谓的 压缩特性。 112 双音信号通过放大器的非线性分析 假设输入信号为: v =v 1cos (ω1t )+v 2cos (ω2t ) (5) 式中,ω1和ω2相差很小。将式(5)代入式(2),整理 得: 电磁场与微波

预失真线性化技术原理分析

文章编号:1000-9930(2001)01-0068-03 预失真线性化技术原理分析 邬书跃1, 周少武1, 黄 丹1, 张尔杨2 (1.湘潭工学院信息与电气工程系,湖南湘潭411201;2.国防科技大学电子科学与工程学院,湖南长沙410073) 摘要:对两种基本型式的预失真线性化技术数字基带预失真和射频预失真的组成原理进行了详尽的分析.结果表 明,这两种技术具有线性度高、收敛速度快和便于实现等特点,因此可用于对移动发射机中的功率放大器进行线性化.图4,参8. 关 键 词:预失真;线性化;自适应;功率放大器中图分类号:TP391.9;TN929.5 文献标识码:A 数字网络系统发展的新趋势已经引起人们对数字移动通信系统的广泛关注.数字化系统丰富了从普通话音传输业务到数据传输业务的各种业务.在大多数数字移动无线电系统的最新研究中,人们认为像QPSK 和QAM 线性调制方法的引入理论上可以获得高的频谱效率,但它们容易给发射台的功率放大器带来非线性失真,而且由于存在RF 互调失真(通常可由放大器的AM-AM 和AM-PM 转换特性来描述)使得功放的频谱有扩展的趋势.因此线性调制方法需要有线性功率放大技术,否则移动台功率放大器会消除由于线性调制方法的应用而得到的频谱效率的任何优点.在现有移动通信系统中,对邻信道干扰的要求是非常严格的.通常要求已调信号在邻信道的辐射功率(带外发射功率)与所需功率之比应低于-60dB,即与带内信号功率相比,带外发射功率应小于-60dB~-70dB.线性放大器在某种程度上具有功率效率低的缺点,这使得它们不能满足上面所提到的邻信道干扰的严格要求.人们曾尝试对于较小邻信道干扰放宽这一严格要求,并尝试在不牺牲放大器功率效率的情况下保持高的频谱效率.然而即使在非常窄的频带系统(像30kHz 或10kHz 信道间隔系统)中,这一严格要求依然存在.在这种窄信道间隔系统中,发射机功率放大器为了实现高功率效率和低的带外发射则会遇到这一要求.为了克服这一问题,人们对用于基站和移动台的高功效非线性放大器的线性化技术进行了研究.迄今,已研究出了多种对移动发射机中功率放大器进行线性 化的技术,其中主要的技术[1] 有正向前馈(feed -forward )、负反馈(negative feedback )和预失真(predistortion)技术.正向前馈法已广泛使用,然而该方法存在一定的局限性.例如,在工作环境变化时(温度、时间、工作频率及电源电压值发生改变),电路的参数变化不可能严格地保持一致,从而造成放大线性的恶化,因此其稳定性不好.同时在末级大功率合成器处构成自适应环路具有一定的技术难度,所以一般在功率合成级不便采用自适应技术.此外,该方法效率低而且设备很复杂.负反馈技术需要特别处理时延和所需的带宽,这种技术使得放大器带宽很窄,不适合宽频带放大.因此预失真技术成为对功率放大器进行线性化的理想技术.通常这种技术可使放大器得到宽的频带和宽的动态范围.这种技术的实质就是预先使放大器的输入信号在幅度和相位方面产生预定的反失真去抵消放大器内的非线性失真.产生反失真的器件称做线性化器件.图1给出了预失真线性化电路框图 . 本文对两种预失真线性化技术的组成原理及实现方法作了较为详尽的论述,介绍了该技术的应用及发展前景,并指出了今后的研究方向. 收稿日期:2000-07-22 作者简介:邬书跃(1963-),男,湖南常德人,湘潭工学院副教授,博士生,主要从事数字移动通信和自适应功放等方面的研究. 第16卷第1期2001年 3月湘潭矿业学院学报J.XIANGTAN MIN.INST.Vol.16No.1Mar. 2001

线性功放知识简介

目录 1、术语、定义和缩略语 2、为什么宽带信号要采用线性功放技术(NCDMA、WCDMA) 3、功放线性功化技术分类(前馈和预失真) 4、预失真技术原理简介 5、前馈技术原理 6、800MHz 30W线性功放实现原理和调试方法 7、工艺结构及信号流向图 8、附录 一、术语、定义和缩略语 1、前馈技术:利用主环路和误差环路来改善功率放大器的非线性失真,即将主环路提取的交调失真信号,在误差环中反相并放大后和主功率放大器输出的信号进行交调失真抵消,从而改善功率放大器非线性失真的一种技术 2、主环:将功率放大器输出的信号(含交调失真信号)与输入的信号(不含交调失真信号)在载频抵消电路中进行载频抵消,其输出只含交调失真信号的一种闭环电路 3、误差环:将功率放大器输出的信号(含交调失真信号)与只含交调失真的信号在交调抵消电路中进行交调失真抵消,其输出只含较小失真信号的一种闭环电路。 4、载频抵消:依靠一个定向耦合电路,将耦合通路上的载频信号(含交调失真信号)与通道上同载频信号在定向耦合电路上进行模拟抵消载频信号的过程 5、交调抵消:依靠一个定向耦合电路,将主环输出的交调失真信号放大后耦合在主功率输出的通道上,在定向耦合电路上模拟抵消交调失真信号的过程 6、预失真技术:是依靠在功率放大器的输入通道中插入预失真部件,造成输入信号的预先岐变失真,由于预失真部件的失真特性与功率放大器的非线性失真特性正好相反,从而消除功率放大器输出信号中的非线性失真产物,实现功率放大器线性化改善目标的信号处理方案。预失真技术根据预失真器件的实现方法可以分为模拟预失真和数字预失真。利用模拟器件的非线性行为直接实现功率放大器输入信号预失真的方法称为模拟预失真,通过数字算法对基带信号进行处理实现预失真的方法称为数字预失真。 C D M A码分多址(C o d e D i v i s i o n M u l i t i p l e A c c e s s) L M D S本地点对多点分布系统(L o c a l M u l i t i p o i n t D i s t r i b u t i o n S y s t e m) W L A N无线局域网(W i r e l e s s L o c a l A r e a N e t w o r k) A C P R邻信道泄漏功率抑制比(A d j a c e n t C h a n n e l L e a k a g e P o w e r R a t i o) D S P数字信号处理器(D a t a S i g n a l P r o c e s s o r) F P G A现场可编程门阵列(F i e l d P r o g r a m G a t e A r r a y) L P A线性功率放大器(L i n e r P o w e r A m p l i f i e r) V S W R电压驻波比(V o l t a g e S t a n d i n g W a v e R a t i o) R F射频(R a d i o F r e q u e n c y) I F中频(I n t e r m e d i a t e F r e q u e n c y)

技术分享:音频功放失真及常见改善方法

音频功放失真是指重放音频信号波形畸变的现象,通常分为电失真和声失真两大类。电失真就是信号电流在放大过程中产生了失真,而声失真是信号电流通过扬声器,扬声器未能如实地重现声音。 无论是电失真还是声失真,按失真的性质来分,主要有频率失真和非线性失真两种。其中,引起信号各频率分量间幅度和相位的关系变化,仅出现波形失真,不增加新的频率成分,属于线性失真。而谐波失真(THD)、互调失真(IMD)等可产生新的频率成分,或各频率分量的调制产物,这些多余产物与原信号极不和谐,引起声音畸变,粗糙刺耳,这些失真属于非线性失真。在这里,我们分别对谐波失真、互调失真、瞬态互调失真(TIM)、交流接口失真(IHM)等加以讨论。 技术分享:音频功放失真及常见改善方法 点击此处查看全部新闻图片 1.谐波失真 谐波失真是由功放中的非线性元器件引起的一种失真。这种失真使音频信号产生许多新的谐波成分,叠加在原信号上,形成了波形失真的信号。将各谐波引起的失真叠加起来,就是总谐波失真度,其值常用输出信号中的所有谐波均方根值与基波电压有效值之比的百分数来表示。在这里,基波信号就是输入信号,所有谐波信号为由非线性失真引入的各次谐波信号。显然,该百分数越小,谐波失真越小,电路性能越好。目前,Hi-Fi功放的谐波失真一般控制在0.05%以下,许多优质功放的谐波失真已小于0.01%,而专业级音频功放的谐波失真度一般控制在0.03%以下。事实上,当总谐波失真度小于0.1%时,人耳就很难分辨了。另需说明的是,对于一台指定的音频功放而言,例如,某音频功放的总

谐波失真指标表示为THD<0.009%(1W)。初看起来,似乎总谐波失真很小,但它只是在输出功率为1W时的总谐波失真,这与在有关标准要求的测量条件下所得的总谐波失真值是不同的。所以,在标明音频功放的总谐波失真指标时,一般都会注明测量条件。 众所周知,人的听觉系统是极其复杂的,有时谐波失真小的功放不如谐波失真大的耐听,这种现象的原因是多方面的。其中,与各次谐波成分对音质的影响程度不同有直接关系。尽管石机与胆机的稳态测试数据相同,但人们总觉得胆机的低音醇厚激荡、中音明亮圆润、高音纤细清澈,极为耐听;石机则低频强劲有力,中高频通透明亮,但高频发毛,声音生硬,音色偏冷。经频谱分析发现,石机含有大量的奇次谐波,奇次谐波给人耳造成刺耳难听的感觉;胆机则含有丰富的偶次谐波,而人耳对偶次谐波不敏感。此外,人耳对偶次谐波失真分辨力较低,对高次谐波却非常敏感,这也是上述现象的重要原因之一。 降低谐波失真的办法主要有: 1)施加适量的电压负反馈或电流负反馈;2)选用fT高、NF小、线性好的放大元器件;3)尽可能地提高各单元电路中对管的一致性;4)采用甲类放大方式,选用优秀的电路程式;5)提高电源的功率储备,改善电源的滤波性能。 2.互调失真 两种或多种不同频率的信号通过放大器后或扬声器发声时互相调制而产生了和频与差频以及各次谐波组合产生了和频与差频信号,这些新增加的频率成分构成的非线性失真称为互调失真。通常,将两个振幅按一定比例(多取4:1)的高低频信号,混合进入电路,新产生的非线性信号的均方根值与原较高频率信号的振幅之比的百分数来量度互调失真,即互调失真的大小,可用互调产物电平与额定信号电平的百分比来表示。此值越大,互调失真越大。显然,互调失真度的大小与输出功率有关。由于新产生的这些频率成分与原信号没有相似性,因而较小的互调失真也很容易被人耳觉察到,听起来感到又尖、又刺耳,且伴有“声染色”现象。也就是说,互调失真带来的影响,会使整个重放系统的声场缺乏层次感,清晰度下降。在Hi-Fi功放中,总希望互调失真度越小越好,要做到这一点是非常困难的,因而高保真功放要求该值小于0.1%即可。当然,石机与胆机相比,前者的互调失真要大一些,这也是为什么石机的音色不及胆机甜美的一个原因。 减小互调失真的方法,常见的有: 1)采用电子分频方式,限制放大电路或扬声器的工作带宽;2)在音频功放的输入端增设高通滤波器,消除次低频信号;3)选用线性好的管子或电路结构。 3.瞬态失真

扬声器的自滤波特性与D类功放失真的改善(精)

第15卷第4期 2004年12月广西工学院学报 Vol115No14 JOURNALOFGUANGXIUNIVERSITYOFTECHNOLOGY Dec12004 文章编号100426410(2004)0420062203 扬声器的自滤波特性与D类功放失真的改善 刘长学 (盐城工学院电气工程系,江苏盐城224003) 摘要:应用动圈式扬声器的电-力-声类比等效线路对动圈式扬声器的频率特性进行了初步的研究,提出了利用扬声器的自滤波性能改善因D类功放移相网络引起信号相位失真的方法。同时,采用比较、反馈的方法对音频信号的谐波加以抑制,使得数字功放的总体失真指数下降。 关键词:扬声器;低通滤波;失真 中图分类号:TN72211文献标识码:A 1概述 ,、超低音的功率放大电路中已广泛使用。以往数“失真度”这一参数上与传统的模拟功率放大器(尤其是A类)差距甚大[1]。,越来越多的专用芯片被开发出来,直接或间接地应用到音频功率放大领域中来,各项技术指标大大改善,使得数字功率放大器成了新一代功率放大器的主流产品而倍受关注。一般来说,无论哪一类功率放大器,其输出必须是模拟信号,而对数字功放而言,其H桥输出的是PWM信号,因此先要将调制在载波上的模拟音频信号取出来,才能驱动扬声器发声。这个工作是通过一个LC低通滤波器完成的。但LC低通网络是一个移相网络,当复合音频信号通过这个网络时,各个频率信号的相移不同,这就导致音频信号产生相位失

真。另外,调制过程中也会产生信号的非线性失真。减小失真成了进一步提高数字功放性能的重要课题。 2扬声器单元的自滤波特性 目前,音响设备中使用的扬声器单元,绝大多数是动圈式扬声器。不管是高音单元、中音单元还是低音单元,它们具有类似的结构、相同的电声换能原理以及对信号源所呈现的性质。其中扬声器单元本身所具有的自滤波性质更是三者所共有的。下面以低音单元为例阐明其这种特性 。 由于低音的波长远大于扬声器振动系统的尺寸,所以它的特性可用一个集中线路来模拟,这个方法称为收稿日期:2004205226 作者简介:刘长学(19642),男,江苏建湖人,盐城工学院电气工程系讲师。 第4期刘长学:扬声器的自滤波特性与D类功放失真的改善63类比法。低音扬声器的类比等效线路如图1[2]。其中Rg是功率放大器的内阻,L为音圈钳定时的电感,Re是音圈钳定时的电阻,B为音圈处磁路空气隙中的磁感应强度,l为音圈导线长度,fc为音圈所受的力,vC为音圈震动的速度,MMD 为震动系统的质量,CMS为支撑系统的等效力顺,YMS为支撑系统的力导,ZMR为扬声器的震动膜一面的辐射阻抗。 如果将力学端的阻抗反映到电学回路,则等效线路如图2所示[2]

放大器失真

15 放大器失真 问:我看了你们的放大器产品说明,对失真技术指标我有些弄不懂。有 的放大 器是用二次和三次谐波失真,另外一些用总谐波失真(THD)或总谐波失真加噪声(THD+N),还 有的用两个单一频率互调失真(IMD)和三阶互调失真,能否请你解释一下? 答:因为放大器是应用范围很广的常用器件,所以为了满足应用需要不断 研制出一 些新的放大器,因而自然会涉及到一些专用指标。正如你所指出的那样,失真可以用各种方 法来定义,对于特殊的应用,技术指标与用户对失真的定义有关。尽管有一些指标主要与规 定的频率范围和应用场合有关,但还是有一些失真指标是相当通用的。  实际上存在着一些标准化的基本定义,所以让我们首先讨论一下。谐波失真是这样度量 的:在规定的电路中,用一个频谱上是很纯的正弦波加到放大器上,然后观察输出 的频谱。在输出端观察到的失真大小通常与下面几个参数有关:待测放大器在小信号和大 信号条件下的非线性、输入信号的幅值和频率、放大器输出端施加的负载、放大器的电源电 压 、印制线路板的布局、接地和电源去耦等。因此你可以看出,任何关于失真的技术指标如果 没有确切规定的测试条件是完全没有意义的。 谐波失真的测量可以根据频谱分析仪的输出频谱,观察二次、三次、四次…等谐波相对 基波信号的幅值来完成。谐波失真通常表示成一个比率,其单位为%,ppm,dB 或dBC。例 如010015%的失真相当于15 ppm 或-9615 dBC。单位 dBC仅仅表示谐波电平比“载波 ”频率(即基波)低多少 dB。    谐波失真可以用每一个分量来分别表示(通常仅仅用二次和三次谐波)。或者把它们所有 分量组合成一个方和根(rss),从而给出总谐波失真(THD)为:  THD=V22+V23+V24+…V2nVS   这里,VS=信号幅值(有效值V)  V2=二次谐波幅值(有效值V)  Vn=n次谐波幅值(有效值V)  在THD中所含的谐波数目可能是不同的,但通常用前五次谐波就足够了。你可以看出,在 rss算法中,倘若较高阶谐波是最大谐波的1/3至1/5,则可忽略该高阶项对THD的影响( 01102+01032=010109≈0110)。  总谐波失真加噪声(THD+N)表达式与THD类似,仅在rss式中再加上噪声V noise 项,其 中V noise 表示在测量频带范围内的噪声电压有效值。  THD+N = V22+V23+V24+…V2n+V2 noise VS  假如在测量频带范围内V nosie 是THD或最坏的谐波的几分之一,显然应该THD+N ≈THD。假如你只知道THD是毫无用处的,你应当利用放大器的电压噪声和电流噪声指标能够 相当精确地计算出THD+N(还要把与源电阻和反馈网络有关的热噪声计算进去)。但是假如噪 声电平有效值比谐波电平有效值明显地高许多,仅给出THD+N指标你还是不能计算出THD 的。  在音频应用中为了灵敏地测量噪声和失真常常使用某些专用设备。为此首先使用一个 带阻滤波器以滤掉基波信号,这样就可测量整个规定带宽范围内其它所有频率成分(包括谐 波和噪声)的总有效值,它与基波的比值就是THD+N的技术指标。    问:在各种频率范围和应用过程中如何看失真指标?  答:最好的方法在频谱的低频端开始直到我们所关心的频段,以便比较容易理 解下面的方法。音频放大器是开始讨论这个问题的最好实例。这里最好选用音频带宽内(20 Hz~20 kHz) 低 噪声和低失真的典型器件(如OP2275)。在音频应用中,通常用专用设备(如Audio Precisio n System One)测量THD+N。在给定的输入频率(如1 kHz)条件下测量输出信号的幅度。然后 按 上面所说的方法用带阻滤波器滤掉基波信号,测量剩余的频率成分(包括谐波和噪声)的有效 值 。在可测量最高次谐波的带宽内(通常为100 kHz)测量谐波和噪声。在整个频率范围内对于 各种条件进行扫描测量,这里给出测得的OP2275的THD+N曲线作为频率的函数,见图1511 。 信号电平是3 V有效值,放大器被接成单位增益跟随器。应注意到THD+N的值为010008%, 相当于8 ppm或-102 dBC。OP2275

各类功放原理图及原理介绍

D类功放的原理 在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为清新透明,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命 的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相 通之处,进一步显示出D类功放的发展优势。 D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100% ,B类功放的效率为78.5% ,A类功放的效率才50%或25% (按负载方式而定)。 D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关 键的一步就是对音频信号的调制。 图1是D类功放的基本结构,可分为三个部分: 图1 D类功放基本结构

相关文档
最新文档