人教历年中考数学易错题汇编-二次函数练习题及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线

y x m =+过顶点C 和点B . (1)求m 的值;

(2)求函数2

(0)y ax b a =+≠的解析式;

(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.

【答案】(1)﹣3;(2)y 13

=x 2

﹣3;(3)M 的坐标为(3632). 【解析】 【分析】

(1)把C (0,﹣3)代入直线y =x +m 中解答即可;

(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】

(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;

(2)将y =0代入y =x ﹣3得: x =3,

所以点B 的坐标为(3,0),

将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:

3

90b a b =-⎧⎨

+=⎩

, 解得:133

a b ⎧

=⎪⎨⎪=-⎩,

所以二次函数的解析式为:y 13

=

x 2

﹣3; (3)存在,分以下两种情况:

①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=

设DC 为y =kx ﹣33,0),可得:k 3=

联立两个方程可得:2

3313

3y x y x ⎧=-⎪

⎨=-⎪⎩

, 解得:1212033

36x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩

, 所以M 1(36);

②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3

设EC 为y =kx ﹣3,代入(30)可得:k 3

=

联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩

, 解得:12120332

x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).

综上所述M 的坐标为(3,63,﹣2). 【点睛】

此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.

2.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4

m .按照图中所示的直角坐标系,抛物线可以用y=1

6

-x 2

+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为

172

m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?

【答案】(1)抛物线的函数关系式为y=16

-x 2

+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】 【详解】

试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.

试题解析:(1)由题知点17(0,4),3,

2B C ⎛⎫

⎪⎝⎭

在抛物线上 所以4

171932

6c b c =⎧⎪

⎨=-⨯++⎪⎩,解得24b c =⎧⎨

=⎩,所以21246y x x =-++ 所以,当62b

x a

=-=时,10t y =≦ 答:2

1246

y x x =-

++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,22

63

y =

>,所以可以通过

(3)令8y =,即2

12486

x x -

++=,可得212240x x -+=,解得12623,623x x =+=- 1243x x -=

答:两排灯的水平距离最小是43 考点:二次函数的实际应用.

3.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表: 时间(天) 1 3 6 10 36 … 日销售量(件)

94

90

84

76

24

未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来研究 这种商品的有关问题.

(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;

(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?

(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求a 的取值范围.

【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a <4. 【解析】

分析:(1)通过观察表格中的数据日销售量与时间t 是均匀减少的,所以确定m 与t 是一次函数关系,利用待定系数法即可求出函数关系式;

(2)根据日销售量、每天的价格及时间t 可以列出销售利润W 关于t 的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少; (3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a 的取值范围 .

详解:(1)设数m=kt+b ,有

,解得

∴m=-2t+96,经检验,其他点的坐标均适合以上

析式故所求函数的解析式为m=-2t+96.

相关文档
最新文档