数论班100题手册
数论期末试题及答案
数论期末试题及答案1. 选择题(每题5分,共20题)1)1+2+3+…+99+100的和是多少?A. 4950B. 5000C. 5050D. 5100答案:C. 50502)4的7次方是多少?A. 128B. 256C. 512D. 1024答案:B. 2563)100的倍数能被1和几整除?A. 9B. 10C. 11答案:B. 104)如果a和b都是偶数,那么a-b一定是偶数吗?A. 是B. 否答案:A. 是5)若n是整数,则(3n+1)(3n+2)一定是3的倍数吗?A. 是B. 否答案:B. 否6)小明和小红共有7枚硬币,小明有4枚硬币,小红有几枚?A. 2B. 3C. 4D. 5答案:B. 37)2乘以一个整数,结果是130。
这个整数是多少?A. 60C. 70D. 75答案:B. 658)如果x是奇数,那么x(x+1)一定是偶数吗?A. 是B. 否答案:A. 是9)a和b都是正整数,且满足a/b = 4/9,那么a与b的最大公约数是多少?A. 9B. 4C. 1D. 13答案:C. 110)如果m是正整数,那么m和2m/3的最小公倍数是多少?A. mB. 2mD. 4m答案:B. 2m11)已知1+2+3+...+n=55,那么n是多少?A. 7B. 8C. 9D. 10答案:C. 912)巧克力块状的,宽度是2 cm,厚度是6 mm,长度是10 mm。
这块巧克力的体积是多少立方厘米?A. 1.2B. 1.2×10⁻³C. 1.2×10⁻⁵D. 1.2×10⁻⁹答案:A. 1.213)a和b都是正整数,且满足1/a + 1/b = 1/12,那么a和b的值分别是多少?A. a=4, b=9B. a=3, b=8C. a=5, b=10D. a=6, b=7答案:A. a=4, b=914)若m是偶数,且n是奇数,那么m²+n²是偶数吗?A. 是B. 否答案:A. 是15)如果将一个偶数的两倍再加上6,结果一定是偶数吗?A. 是B. 否答案:A. 是16)abcde ×4 = edcba,其中每个字母代表一个0-9的数字,找出a、b、c、d、e各代表的数字。
数论复习专题(教师版含答案)
数论复习专题(教师版含答案)
导言
本文档是数论复专题的教师版,包含答案。
数论是数学的一个分支,研究整数及其性质。
该文档旨在帮助教师进行数论复,并提供了题目的答案,以便教师进行评估和指导。
目录
1. 数的性质
2. 计数和排列组合
3. 素数与因子分解
4. 同余关系
5. 质数定理
1. 数的性质
1.1 奇数与偶数
题目:判断以下数是奇数还是偶数:17, 24, 31, 42
答案:17是奇数,24和42是偶数,31是奇数。
1.2 整除性质
题目:判断以下数是否能被3整除:18, 25, 36, 42
答案:18和36能被3整除,25和42不能被3整除。
...
5. 质数定理
题目:根据质数定理计算以下数的近似质数个数:
5, 10, 20, 50
答案:根据质数定理,小于等于n的质数个数约为n/ln(n)。
因此,近似质数个数分别为:
5: 2
10: 4
20: 8
50: 15
结论
本文档提供了数论复习专题的教师版,包含题目和答案,可用于教师进行复习和评估学生的掌握程度。
教师可以根据需要逐个章节进行讲解和练习,以提高学生对数论的理解和应用能力。
100个数论经典例题
100个数论经典例题数论经典例题是学习数论的重要方式,它们体现了数论的基本概念和重要定理。
下面列举了100个数论经典例题及其相关参考内容,帮助读者更好地理解和掌握数论的基础知识。
1. 证明:对任意正整数n,有$n^2\equiv 0\pmod{2}$。
解答:正整数的平方一定是偶数,因为偶数乘以偶数还是偶数。
2. 证明:对任意正整数n,有$n^3\equiv n\pmod{3}$。
解答:利用模运算的性质,$n\equiv 0, 1, 2 \pmod{3}$,分别代入得到$n^3\equiv 0, 1, 8 \equiv 0, 1 \pmod{3}$。
3. 证明:对任意正整数n,有$n^2\equiv 0$ 或 $1 \pmod{4}$。
解答:正整数的平方一定是偶数,因此$\pmod{4}$下只有两个可能性,即0或1。
4. 证明:对任意正整数n,有$n^m\equiv n \pmod{m}$。
解答:利用数论基本定理得到$n^m\equiv n\pmod{m}$。
5. 证明:对任意正整数n,如果$n^2$是完全平方数,则n也是完全平方数。
解答:设$n^2 = k^2$,则$(n+k)(n-k) = 0$,即$n+k = 0$或$n-k = 0$,因此n是完全平方数。
6. 证明:对任意正整数n,如果$n^2$是立方数,则n也是立方数。
解答:设$n^2 = k^3$,则$(n^{\frac{2}{3}})^3 = k^3$,因此n是立方数。
7. 证明:对任意正整数n,如果$n^2$是素数,则n是素数。
解答:反证法,假设n不是素数,则n可以表示为两个正整数的乘积,因此$n^2$也可以表示为两个正整数的乘积,与$n^2$是素数矛盾。
8. 证明:存在无穷多个素数。
解答:利用反证法和欧几里得定理可以证明存在无穷多个素数。
9. 证明:存在无穷多个不能表示为两个素数之和的正整数。
解答:利用哥德巴赫猜想的推广版本可以证明。
数论练习题及解答
数论练习题及解答数论是数学的一个重要分支,研究整数之间的性质和关系。
以下是几道数论练习题及其解答,旨在帮助读者加深对数论知识的理解。
题目一:证明:如果一个整数的平方是奇数,那么该整数必定是奇数。
解答:假设存在一个整数n,满足n²是奇数,但是n本身是偶数。
那么n可以表示成n=2k(k为整数)。
根据已知条件,n²是奇数,代入n=2k得到(2k)²=4k²是奇数。
但是显然,4k²为4的倍数,而奇数不可能是4的倍数,因此得出矛盾。
所以假设错误,原命题得证。
题目二:证明:任意一个素数至少可以表示成4k+1和4k-1两种形式的乘积。
解答:假设存在一个素数p,既不属于4k+1的形式,也不属于4k-1的形式。
那么p可以表示成p=4k、4k+2或4k+3(k为整数)。
1. 若p=4k,显然p为4的倍数,不可能为素数,与题目假设矛盾;2. 若p=4k+2,可以将p分解为p=2(2k+1),其中2k+1也为整数,即p为2的倍数,不可能为素数,与题目假设矛盾;3. 若p=4k+3,可以将p分解为p=3(4k+1),其中4k+1也为整数,即p为3的倍数,不可能为素数,与题目假设矛盾。
综上所述,当p既不属于4k+1的形式,也不属于4k-1的形式时,假设错误,原命题得证。
题目三:找出下列数中的最大公约数:4620和770。
解答:利用辗转相除法求解最大公约数。
首先,用较大的数除以较小的数,计算它们的余数:4620 ÷ 770 = 6 (300)接下来,用余数除以第一步的余数,再计算新的余数:770 ÷ 300 = 2 (170)再次用余数除以第二步的余数,继续计算新的余数:300 ÷ 170 = 1 (130)继续进行相同的除法运算:170 ÷ 130 = 1 (40)130 ÷ 40 = 3 (10)40 ÷ 10 = 4最后,除数为10,余数为0,所以10即为4620和770的最大公约数。
100个数论经典例题
100个数论经典例题1. 证明:无理数的十进展开不可能是一个重复的数字序列。
2. 证明:一个正整数为完全平方数的充分必要条件是它的每个质因子的指数都是偶数。
3. 证明:有理数的不循环小数展开是独一无二的。
4. 如果两个整数m和n的最大公约数是1,那么m/n的分数形式是既简单又唯一的。
5. 证明:对于任意自然数n,n²+n+41都是一个质数。
6. 证明:对于任意自然数n,3n²+3n+7都是一个质数。
7. 求1²+2²+3²+...+n²的值,并给出证明。
8. 求1³+2³+3³+...+n³的值,并给出证明。
9. 证明:无穷多个素数是等差数列的形式。
10. 设p是一个素数,证明:x²≡-1(mod p)的解的个数为0或2。
11. 给定一个正整数n,求所有满足φ(x)=n的正整数x,其中φ(x)表示小于x且与x互质的正整数的个数(欧拉函数)。
12. 证明:若p是任意一个素数,则对于任意自然数n,(n+p)!≡n!pⁿ(mod p²)。
13. 证明:若p是任意一个素数,则对于任意自然数n,n!≡-1(mod p)当且仅当p=2或p≡1(mod 4)。
14. 对于任意一个素数p和整数a,证明:x²≡a(mod p)有解的充分必要条件是a^(p-1)/2≡±1(mod p)。
15. 证明:对于任意自然数n,存在无限多个三元组(x,y,z)使得x⁴+y⁴=z³。
16. 证明:对于任意正整数k,存在无限多个素数p,使得p≡1(mod k)。
17. 求2²+4²+6²+...+50²的值,并给出证明。
18. 求1+2+3+...+99+100的值,并给出证明。
19. 给定正整数a、b、n,求aⁿ+bⁿ的最大公因数,并给出证明。
高联数论100题答案
第一题:证明角平分已知PE 、PF 是⊙O 的切线,A 、B 是一组对径点,PB 交⊙O 于另一点C ,直线AF 、BE 交于D 点。
求证:PCE PCD ∠=∠。
第二题:证明四点共圆如图,AB 是⊙O 的直径,C ,D 是圆上异于A 、B ,且在AB 同侧的两点,分别过C 、D 作⊙的O切线,它们交于点E ,线段AD 与BC 的交点为F , 线段AB 与EF 的交点为M ,求证:E 、C 、M 、D 四点共圆。
第三题:证明角的倍数关系如图,PE 、PF 是以AB 为直径圆的切线E 、F 是切点,PB 交圆于C 点,AF 、BE 交于D 点,ABAB 是直径。
求证:ACD DPE ∠=∠2。
第四题:证明线与圆相切已知:ABC ∆中,︒=∠90A ,AD 切⊙ABC ,AD 交BC 延长线于D ,E 是A 关于BC 的对称点,BE AY ⊥于Y ,X 是AY 中点,延长BX 交⊙ABC 于J ,求证:BD 切AJD ∆外接圆。
ABDB第五题:证明垂直已知四边形ABCD 内接于以BD 为直径的圆,设'A 为A 关于BD 为对称点,'B 是B 关于AC 对称点,直线AC 交'DB 于Q ,直线DB 交'CA 于P 。
求证:AC PQ ⊥。
第六题:证明线段相等已知:BC 、BD 是⊙O 切线,C 、D 是切点,BJA 是割线,A 、J 在圆上,J 离B 较近,AO DE ⊥于E ,交AB 于F ,AC 交DE 于G ,求证:FG DF =。
第七题:证明线段为比例中项已知ABC ∆中,BC AC =,M 是AB 的中点,FG 经过点M ,且CFG ∆与ABC ∆有相同的内心。
求证:GM FM AM ⨯=2。
PDA第八题:证明垂直已知:ABC ∆为非直角三角形,AD 平分BAC ∠,D 在BC 上,AC DF ⊥于F ,AB DE ⊥于E ,CE 交BF 于P 。
求证:BC AP ⊥。
数论专题全集
数论专题第一讲数的整除一、基础知识与方法对策1、整除的相关概念如果整数a除以非零整数b得到整数商c而没有余数,那么就说数a能被数b整除。
或者说数b整除数a。
记为:b︱a 由于a÷b=c可以改写成b×c=a,所以b、c叫做a的因数(又称约数),a叫做b、c的倍数。
2、整除的性质1.如果自然数a和b都能被自然数c整除,那么,它们的和(a+b)或差(a-b)也能被c整除。
例如:60能被5整除,40能被5整除,它们的和60+40=100及差60-40=20也能被5整除。
2.几个自然数相乘,如果其中一个因数能被某一个自然数整除,那么,它们的积也能被这个数整除。
例如:26能被13整除,26×29×38的积也能被13整除。
3.如果一个自然数能被互质的两个数中的每一个数整除,那么,这个数就能被这两个互质数的积整除。
例如:3和4是互质数,24分别能被3和4整除,那么,24就能被3与4的积12整除。
3、整除的特征①、2的倍数的特征:个位上是0、2、4、6、8的数一定是2的倍数。
②、5的倍数的特征:个位上是0、或5的数一定是5的倍数。
③、3的倍数的特征:一个数各个数位上的数字的和如果是3的倍数,那么这个数一定是3的倍数。
④、9的倍数的特征:一个数各个数位上的数字的和如果是9的倍数,那么这个数一定是9的倍数。
⑤、4的倍数的特征:一个数的末两位上的数是4的倍数,那么这个数一定是4的倍数。
⑥8的倍数的特征:一个数的末三位上的数是8的倍数,那么这个数一定是8的倍数。
⑦11的倍数的特征:一个数从个位统计算起,奇数位上的数字的和与偶数位上数字的和相减(大减小)所得的差,如果是11的倍数,那么这个数就是11的倍数。
⑧7、11、13的倍数特征:一个数从个位算起,数三位,然后把这个数分成前后两个部分,这两个部分对应的两个数相减(大减小),如果得到的差是7、11、13的倍数,那么这个数就是7、11、13的倍数。
北师大版七年级数学下册-基础数论题100题训练
北师大版七年级数学下册-基础数论题100题训练介绍这份文档旨在为七年级学生提供基础数论题的训练资源,内容涵盖100道题目。
通过解答这些题目,学生可以巩固并提高数论方面的基础知识与能力。
题目分类题目按照不同的数论概念进行分类,包括但不限于以下几个方面:1. 素数与合数2. 质因数分解3. 最大公约数与最小公倍数4. 奇偶性5. 互质关系练方法学生可以按照以下方法进行练:1. 阅读题目:仔细阅读每道题目,理解题目所要求的问题。
2. 思考解题思路:根据题目的要求,思考可能的解题思路和方法。
3. 解答题目:根据自己的思考,写下解答过程和最终答案。
4. 检查答案:对比自己的解答和标准答案,检查是否存在错误或遗漏。
5. 深入研究:对于解答错误或不熟悉的题目,可以进一步研究相关知识并掌握解题方法。
提示和建议在进行练时,建议学生注意以下几点:1. 注重理解:在解答问题之前,确保对题目要求的理解准确。
2. 反思思考过程:解答完题目后,对解题过程进行反思,思考是否有更高效或更简洁的解法。
3. 多做类似题目:除了这100道题目外,建议学生做更多类似题目,以提高解题能力。
4. 寻求帮助:如果在解答过程中遇到困难,可以向老师或同学求助,共同解决问题。
其他资源除了这份题目练文档外,学生还可以考虑使用以下资源进行数论知识的研究和提高:1. 数论教材:学生可以参考北师大版七年级数学下册,深入研究数论相关知识。
2. 网上视频教程:可以通过搜索相关数论教学视频,进一步理解知识点和解题方法。
3. 题集:除了这份练文档外,还可以寻找其他数论题目练资源,如题集等。
结束语通过完成这份基础数论题目的训练,相信学生们可以巩固并提高数论方面的知识与能力,为解决更复杂的数论问题打下坚实的基础。
希望学生们能够持续努力,并享受数论学习的过程!。
100个著名初等数论问题
100个著名初等数学问题/xyp 2003-10-26 数学园地第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7. 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Problem of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Binomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy's Mean Theorem求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.第13题牛顿指数级数Newton's Exponential Series将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tangent Series已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Problem在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamental Theorem of Algebra每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-doubling Problem画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes' Determination of the Number Pi设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of the Chord-Tangent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Problem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conjugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Parallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Four Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four Points.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten's Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Problem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelope从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-pointed Hypocycloid确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribing a Quadrilateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbola确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabola确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (Theorem of Homologous Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上. 反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Double Element Construction由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagram Theorem求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Division of Space by Planesn个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Problem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscribing a Tetrahedron确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamental Theorem of Axonometry正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stereographic Projection试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Loxodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Position of a Ship at Sea利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Problem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prolem借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Problem for Torricelli试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向Tacking Under a Headwind帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightness of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Problem在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Problem在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner's Sphere Problem在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面.。
小学数论试题及答案
小学数论试题及答案一、选择题1. 下列数字中,属于负整数的是:A. 5B. -2C. 0D. 3答案:B2. 若a × b = 0,下列选项中不可能成立的是:A. a = 0,b ≠ 0B. a ≠ 0,b = 0C. a ≠ 0,b ≠ 0D. a = 0,b = 0答案:C3. 某数除以3的余数为2,它能被下列哪个数整除?A. 4B. 6C. 8D. 10答案:B4. 两个数分别是300和270,它们的最大公约数是:A. 15B. 30C. 45D. 60答案:B5. 一个奇数和一个偶数的和一定是:A. 奇数B. 偶数C. 既奇数又偶数D. 无法确定答案:B二、填空题1. 一个偶数除以2的商是15,余数是______。
答案:02. a × 6 = 54,那么a的值是______。
答案:93. 900 ÷ ______ = 300。
答案:34. 两个数的最小公倍数是24,其中一个数是8,另一个数是______。
答案:125. 如果一个数能被2整除,同时也能被6整除,那么它一定能被______整除。
答案:3三、解答题1. 一个两位数,十位数和个位数的和是12,十位数比个位数大3,个位数比百位数小4,这个两位数是多少?答案:68解析:设这个两位数为10a + b,其中a为十位数,b为个位数。
根据题目中的条件,我们可以列出如下方程:a +b = 12a =b + 3b = a - 4将第二个方程代入第一个方程得:b + 3 + b = 12,化简可得2b = 9,所以b = 4.5,但b为个位数,故舍去小数部分,所以b = 4。
将b = 4代入第二个方程得a = 7。
所以这个两位数为74。
2. 一个数除以2余3,除以3余2,除以5余4,这个数至少是多少?答案:59解析:根据题目中的条件,我们可以列出如下方程:n ≡ 3 (mod 2)n ≡ 2 (mod 3)n ≡ 4 (mod 5)通过观察可以得到n = 59满足以上三个方程,故这个数至少是59。
数论100题(1)
(USA December TST for IMO 2012 Problem 3)
7.证明: 对正奇数 N , 不定方程 没有正整数解.
a
b
c
N=
+
+
b+c c+a a+b
(Andrew Bremner and Allan Macleod)
8.证明: 不定方程
(x − 1) (x − 2) · · · (x − 2014) = (y − 1) (y − 2) · · · (y − 4028)
zx + k 均为完全平方数.
(黄昊中)
24.定义数列 {xn} 的前 n 项和为 Sn. 已知 x1 = 1, xn (n ≥ 2) 为使 n|Sn 的不在数列中的最小正整数. 证 明: xxn = n.
(Howard A. Landman)
25.对一个正整数 n, 记 f (n) 是恰有 n 个正因子的最小正整数. 若 f (n) 是一个完全立方数, 证明或否定:
苏绛毓 Photaesthesia 2019 年 7 月 11 日凌晨成稿于大连
1
符号说明
N 自然数集
Z 整数集
N+, Z+ 正整数集 R 实数集
Fp 模 p 的环、域 gcd(a, b) 整数 a, b 的最大公约数
lcm(a, b) 整数 a, b 的最小公倍数
a | b 整数 a 能整除整数 b
37.设 f (x) = x3 + ax + b 是一个首一整系数多项式, 且 4a3 + 27b2 ̸= 0. 证明: 存在无穷多个正整数 n 满 足 f (n) 无平方因子.
(梁志斌) 38.给定正整数 m. 证明: 对 m 的任一拆分 m = m1 + m2 + · · · + me, 存在一组正整数 n1, n2, · · · , nk 使得
100个著名初等数论问题
100个著名初等数学问题数学园地第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7. 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Problem of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Binomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy's Mean Theorem求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.第13题牛顿指数级数Newton's Exponential Series将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列. 试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tangent Series已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Problem在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamental Theorem of Algebra每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-doubling Problem画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes' Determination of the NumberPi设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of the Chord-Tangent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Problem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conjugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Parallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Four Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four Points.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten's Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Problem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelope从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1, 0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-pointed Hypocycloid确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribing a Quadrilateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbola确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabola确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (Theorem of Homologous Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上. 反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Double Element Construction由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagram Theorem求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23, 14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Division of Space by Planesn个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Problem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscribing a Tetrahedron确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamental Theorem of Axonometry正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stereographic Projection试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Loxodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Position of a Ship at Sea利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Problem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度. 第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prolem借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Problem for Torricelli试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向Tacking Under a Headwind帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightness of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Problem在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Problem在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长. 第100题斯坦纳的球问题Steiner's Sphere Problem在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面.。
2017年希望杯六年级考前培训100题-数论
25.在不大于循环小数 12.9 的自然数中有几个质数?
26.设 n! = 1 2 3
n ,问: 2016! 的末尾连续有多少个 0 ?
第十五届(2017 年)希望杯 100 题 · 六年级
27.四位数 abcd ,若 abcd 10 a b c d = 1404 ,求 a b d .
87.分子小于 6 且分母小于 60 的最简真分数有多少个?
第十五届(2017 年)希望杯 100 题 · 六年级
28. A , a , b 都是自然数,且 A 50 = a2 , A 97 = b2 .求 A .
29.求 72016 的十位数字.
31.求 17 个自然数的平均数,结果保留两位小数,甲得到 11.28 ,这个数百分位上的数字错了, 求 正确答案.
32.从 100 以内的 25 个质数中任取两个构成其分数,这样的其分数有几个?假分数有几个?
第十五届(2017 年)小学“希望杯”全国数学邀请赛 六年级—数论 20.若 n 个互不相同的质数的平均数是 15 ,求 n 的最大值.
ቤተ መጻሕፍቲ ባይዱ
21.若一位数 c c 0 是 3 的倍数,两位数 bc 是 7 的倍数,三位数 abc 是 11 的倍数,求所有符合条 件的三位数 abc 的和.
22.用 a , b , c 能组成 6 个无重复数字的三位数,如 abc , acb 等,且这 6 个数的和是 4662 ,问: 这 6 个数部是 3 的倍教吗?
33. a , b , c 是三个不同的自然数,且 a b c = 210 .求 a b c 的最大值和最小值.
34.设 a , b 是两个不相等的非零自然数,若 a , b 的最小公倍数是 72 ,则 a b 有几种不同的值.
小学数学数论练习题
小学数学数论练习题1. 问题描述:小明有4个篮球和6个足球,他想将这些球分成几组,每组只能有篮球或者足球,且每组中篮球和足球的总数都一样。
请问小明最多能分成几组?解析:设每组中的篮球和足球的数量为x。
根据题目条件,可以得到以下等式:4x = 6x将等式化简后得到:2x = 6解方程得到x = 3。
因此,小明最多能分成3组,每组有3个篮球和3个足球。
2. 问题描述:有一组连续的自然数,从1开始,如果这组自然数中有一个数的平方等于某个大于1的质数的n次方(n>1),则称该质数为“关键质数”。
请问,从1到100之间共有几个关键质数?解析:首先,我们需要确定在1到100之间存在哪些质数。
通过筛除法可以得到:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97。
然后,我们遍历这些质数,并计算其n次方(n>1)是否存在于1到100的连续自然数中。
如果存在,就将对应的质数计数加一。
经过计算,从1到100之间共有4个关键质数,分别是:2, 3, 5, 7。
3. 问题描述:小明有1元、2元、5元三种面额的硬币各若干枚。
他寻思着用这些硬币凑出不同的金额,最多能凑出多少种不同的金额?解析:设1元、2元、5元硬币的数量分别为x、y、z。
根据题目条件,可以列出以下不等式:x + 2y + 5z ≤ 100其中,100为金额的上限。
通过遍历x、y、z的范围(分别为0到100),并满足上述不等式的情况下计数,可以得出最多能凑出的不同金额种数。
经过计算,小明最多能凑出49种不同的金额。
4. 问题描述:小华用纸币买了一只笔和一只橡皮擦,一共花了29元。
已知一只笔的价格是5元,橡皮擦的价格是2元,问小华使用了多少张纸币?解析:设小华用来买笔的纸币数量为x,用来买橡皮擦的纸币数量为y。
根据题目条件,可以得到以下方程组:5x + 2y = 29其中,x和y为整数,且都大于等于0。
北师大版七年级数学下册-进阶数论题100题训练
北师大版七年级数学下册-进阶数论题100题训练简介本文档是针对___版七年级数学下册的进阶数论题进行100题训练的指导。
通过解答这些题目,学生可以深入理解数论的相关概念和方法,提高数学解题能力。
内容1.第一题:根据给定的集合求最大公约数。
2.第二题:分析素数性质,判断给定数是否为素数。
3.第三题:根据数的特征进行整除判断。
4.第四题:解决数的因式分解问题,找出所有因子。
5.第五题:利用质数判定定理进行数的质因数分解。
6.7.100.第100题:综合应用多个数论概念解决实际问题。
目标通过完成这100道数论题的训练,学生可以达到以下目标:1.充分理解数论的基本概念和相关定理。
2.掌握数论解题的基本方法和技巧。
3.培养逻辑思维和数学推理的能力。
4.提高数学解题的速度和准确性。
使用方法学生可以按照以下步骤进行训练:1.从第一题开始,认真阅读题目并思考解题思路。
2.利用所学的数论知识解答每道题目。
3.如果遇到困难,可以参考教材或请教老师。
4.完成所有题目后,复习和总结解题技巧和方法。
注意事项1.建议学生在规定时间内完成每道题目,以提高解题速度。
2.在解答过程中,要注意思维的严谨性和准确性。
3.如果有疑问,可以主动与老师和同学讨论交流。
4.多做一些类似的练习题,加深对数论的理解和应用。
总结本文档提供了针对___版七年级数学下册进阶数论题的100道训练题,目的是帮助学生加深对数论的理解,提高数学解题能力。
通过认真思考和解答这些题目,学生可以逐步掌握数论的基本概念和解题技巧。
建议学生在完成训练后,进行复习和总结,进一步强化对数论知识的掌握和应用能力。
初一奥数题100道及答案2018初中奥数数论基础练习题
初一奥数题100道及答案2018初中奥数数论基础练习题内容与方法:整除性、唯一分解定理、质数与合数,公约数与公倍数、高斯函数、勾股数、不定方程、同余、剩余类、欧拉定理与费尔马定理、平方和问题、p进制1、在电脑屏幕上给出一个正2022年边形,它的顶点分别被涂成黑、白两色;某程序执行这样的操作:每次可选中多边形连续的a个顶点(其中a是小于2022年的一个固定的正整数),一按鼠标键,将会使这a个顶点“黑白颠倒”,即黑点变白,而白点变黑;(1)、证明:如果a为奇数,则可以经过有限次这样的操作,使得所有顶点都变成白色,也可以经过有限次这样的操作,使得所有顶点都变成黑色;(2)、当a为偶数时,是否也能经过有限次这样的操作,使得所有的顶点都变成一色?00证明你的结论.2、试求x7y2022年的所有正整数(x,y).23、如果正整数a可表为:a235(m,n,k N),就称a为好数.证明:1a13mnk存在2022年个互异好数a1,a2,,a2022年,满足:1a231a2022年31a2022年3.4、设n4,若n元正整数集合M满足:对任何整数k,都存在a,b M,a b,使得a k与b k是不互质的数,就称M为“好集”.证明:若M为“好集”,且M中所有元素之和为2022年,则存在c M,使得从M中删去元素c后,所得到的集M M\c仍为“好nn2022年5、设数n为正奇数,满足nkk 1,证明:n2kk 12022年.6、设T(n)为正整数n的正因数的个数,证明:T(n)2227、设P1,2,3,为全体正整数的平方所构成的集合,如果正整数n能表成集合P中的若干个(至少一个)互异元素之和,就称“数n具有P结构”,记为n P;证明:不具有P结构的正整数只有有限多个.8、对于给定的有限项的正整数数列a1,a2,,an,进行如下操作:如果j k,并且aj不整除ak,那么将aj,ak分别换成(aj,ak)和[aj,ak];证明:这个过程是有限的,并且最终的结果是唯一的.9、若正整数m,n,k满足:mn k1,证明:存在x1,x2,y1,y2N,使以下三式:m x1y1, n x2y2, k x1x2y1y2 同时成立.p122222210、若p4n1为质数,则r 1r2p 1,(即p4k2. p n)k12n11、设p为奇质数,a,b是小于p的正整数,证明:a b p的必要充分条件是:对2an2bn任何小于p的正整数n,均有正奇数. (其中方括号表示取整.)。
数论模块50题第一天练习
数论模块50题第一天练习1.如果四个两位质数a. b. c. d两两不|可,并旦满足,等式a+比c+d.那么. (Da^b的最小可能值是多少?(2)a,b的最大可能位是多少?2.在555555的约数中,最大的三位数是多少?3.从一张R 2002毫米,宽8心毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩卜的纸片I•.再剪下•个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?4.已如存在二个小于20的自然数,它们的最大公约数是1,且两两均不互质.造写出所有可能的答案.5.把26, 33, 34, 35, 63, 85, 91, 143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?6.设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数足72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可.能的数值?7.在小于1000的自然数中,分别除以18及33所得余数相同的数仃多少个?(余数可以为0)8.甲、乙、丙二数分别为603, 939. 393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?9.有8个盒子,各盒内分别装有奶糖9, 17. 24, 28. 30. 31, 33, 44块.甲先取走一盒.其余各盒被乙、丙、丁3人所取走.己知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?10.在一根惶木根上,有三种刻度线,第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论短期班100题手册知识框架体系一、奇偶性质1.奇数和偶数的表示方法:因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数);因为任何奇数除以2其余数总是1,所以通常用式子21k+来表示奇数(这里k是整数).特别注意,因为0能被2整除,所以0是偶数.最小的奇数是1,最小的偶数是0.2.奇数与偶数的运算性质:性质一:偶数+偶数=偶数(偶数-偶数=偶数)奇数+奇数=偶数(奇数-奇数=偶数)偶数+奇数=奇数(偶数-奇数=奇数)可以看出:一个数加上(或减去)偶数,不改变这个数的奇偶性;一个数加上(或减去)奇数,它的奇偶性会发生变化.(也可以这样记:奇偶性相同的数加减得偶数,奇偶性不同的数加减得奇数.)性质二:偶数⨯奇数=偶数(推广开来还可以得到:偶数个奇数相加得偶数)偶数⨯偶数=偶数(推广开就是:偶数个偶数相加得偶数)奇数⨯奇数=奇数(推广开就是:奇数个奇数相加得奇数)可以看出:一个数乘以偶数时,乘积必为偶数;几个数的积为奇数时,每个乘数都是奇数.(也可以这样简记:对于乘法,见偶(数)就得偶(数)).性质三:任何一个奇数一定不等于任何一个偶数.二、整除1.整除的定义所谓“一个自然数a能被另一个自然数b整除”就是说“商ab是一个整数”;或者换句话说:存在着第三个自然数c,使得a b c=⨯.这是我们就说“b整除a”或者“a被b整除”,其中b 叫a的约数,a是b的倍数,记作:“|b a”.2.整除性质:⑴传递性若|c b,|b a,则|c a.⑵可加性若|c a,|c b,则|c a b±().⑶可乘性若|c a,|d b,则|cd ab.3.整除的特征⑴4,25,8,125,16,625的整除特征能否被4和25整除是看末两位;能否被8和125整除是看末三位;能否被16和625整除是看末四位(100425=⨯,10008125=⨯,1000016625=⨯,100000323125=⨯)⑵3,9的整除特征能否被9整除是看数字之和是否是9的倍数,并且这个数除以9的余数和这个数数字之和除以9的余数相同,因此判断一个数除以九余几就可以先把和是9的倍数的数划掉,剩下的数是几就代表这个数除以九余几⑶7,11,13的整除特征①能否被7,11,13整除规律是把数从末三位开始,三位为一段断开,只需看奇数段的和与偶数段的和的差是否为7,11,13的倍数,并且奇数段的和减去偶数段的和的差被7,11,13除余几就代表这个数除以7,11,13余几②能否被11整除规律是从右开始数奇数位数字之和与偶数位数字之和的差是否为11的倍数,并且算出的差除以11余几就代表这个数除以11余几⑷其他一些数的整除规律是拆成一些熟悉的数的整除特征如7289=⨯,99119=⨯,1234=⨯,100171113=⨯⨯(这样我们就知道1至16所有整数的整除特征)三、约数和倍数1.约数和倍数定义⑴约数和倍数的定义:如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数.⑵最大公约数的定义:如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数.在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数.例如:(8,12)4=,(6,9,15)3=.⑶最小公倍数的定义:如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数.例如:[]8,1224=,[]6,9,1590=.2.约数和倍数⑴最大公约数的性质:①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.⑵最小公倍数的性质:①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.⑶最大公约数与最小公倍数有如下一些基本关系:①(,)[,]A B ma mb m mab A B A B⨯=⨯=⨯=⨯,即两个数的最大公约数与最小公倍数之积等于这两个数的积;②最大公约数是A、B、A B+、A B-及最小公倍数的约数.3.求一组分数的最大公约数与最小公倍数⑴求一组分数的最大公约数:先将各个分数化为假分数;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最大公约数b;ba即为所求.⑵求一组分数的最小公倍数方法步骤:先将各个分数化为假分数;求出各个分数分子的最小公倍数a;求出各个分数分母的最大公约数b;ba即为所求.例如:35[3,5]15 [,]412(4,12)4==四、质数、合数1. 相关定义质数:一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).合数:一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. 互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.部分特殊数的质因数分解:111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.2. 判断一个数是否为质数的方法根据定义如果能够找到一个小于P 的质数p (均为整数),使得p 能够整除P ,那么P 就不是质数,所以我们只要拿所有小于P 的质数去除P 就可以了;但是这样的计算量很大,对于不太大的P ,我们可以先找一个大于且接近P 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除P ,如没有能够除尽的那么P 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.3. 约数个数定理设自然数n 的质因子分解式如312123n a a a a n p p p p .那么n 的约数个数为1231111n d n a a a a =++++()()()()()自然数n 的约数和为()()()11221121211111222211a a a a S n p p p p p p p p --=++++++++++()1211n n a a n n n n p p p p -+++++五、余数问题1. 余数的定义一般地,如果a 是整数,b 是整数(0)b ≠,若有a b qr ÷=,或者a b q r =⨯+,0r b ≤<;当0r =时,我们称a 能被b 整除;当0r ≠时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的商.2. 余数的性质①被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ②余数小于除数.③如果,a b 除以c 的余数相同,就称,a b 对于除数c 来说是同余的,且有a 与b 的差能被c 整除.(,,a b c 均为自然数)例如:17与11除以3的余数都是2,所以1711-能被3整除.④如果a 与b 的和除以c 的余数,等于,a b 分别除以c 的余数之和(或这个和除以c 的余数). 例如:23,16除以5的余数分别是3和1,所以(2316)+除以5的余数等于314+=.注意:当余数之和大于除数时,所求余数等于余数之和再除以c 的余数.例如:23,19除以5的余数分别是3和4,所以(2319)+除以5的余数等于(34)+除以5的余数. ⑤如果a 与b 的乘积除以c 的余数,等于,a b 分别除以c 的余数之积(或这个积除以c 的余数). 例如:23,16除以5的余数分别是3和1,所以(2316)⨯除以5的余数等于313⨯=.注意:当余数之积大于除数时,所求余数等于余数之积再除以c 的余数.例如:23,19除以5的余数分别是3和4,所以(2319)⨯除以5的余数等于(34)⨯除以5的余数.六、中国剩余定理在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.这样的问题,有人称为“韩信点兵”.它形成了一类问题,解这类问题的方法是由中国人首先提出的,所以被称为“中国剩余定理”.我们在解决类似“物不知其数”题,也就是出现一个数N 除以A 余a ,除以B 余b ,除以C 余c 这一类问题的时候,我们有“四大绝招”把余数问题转化为“整除问题”: 绝招一:减同余。
例如a b =,则有A N a -,且B N a -,[,]N a A B n -=,而N 的最小值就是[,]N A B a =+; 绝招二:加同补。
例如:A a B b d -=-=;则有[,]N d A B n +=,而N 的最小值是[,]N A B d =-; 绝招三:中国剩余定理。
绝招四:逐级满足法。
七、最大与最小两个数的和一定,差越小,积越大.(另外一层含义就是:和一定,差越大,积越小) 两个数的积一定,差越小,和越小.(另外一层含义就是:积一定,差越大,和越大)八、平方数 1. 定义我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。
如.211=,224=,239=,…,211121=,212144=,…其中1,4,9,…,121,144,…都叫做完全平方数。
平方数分解质因数后,它的质因数必定会成对出现。
2. 完全平方数的有关性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9。
性质2:完全平方数被3,4,5,8,12,16除的余数一定是完全平方数。
性质3:完全平方数的约数一定有奇数个,反之亦然。
因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次.性质4:如果一个完全平方数的个位是6,则十位是奇数,反之亦然。
性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数。