竞赛课件:电路等效电阻计算方法技巧[1].共29页
【精品】全国中学生物理竞赛课件19:电阻等效方法ABC
♠ Y-△变换法
利用Y型联接电阻与△型联接电阻间等价关系的结论,通
过电阻Y型联接与△型联接方式的互换,达到简化电路成单纯
串联或并联的目的.
2
专题19-例1 如图所示,12个阻值都是R的电阻,组成一立
方体框架,试求AC间的电阻RAC 、AB间的电阻RAB与AG间的电阻 RAG.
解: AC间等效电阻:
I RAB
r
11 15
5 15
I
2r
10 15
7 15
4
I
r
A
2r
RAB 2r C
4I 15
I 15
BC
7I 15
4r
B
11 I 15
8I 15
2I
15
A
A
19
IA A RAB B IB
IA Ia IB Ib IC Ic
Ia a O
R
25
由7个阻值相同的均为r的电阻组成的网络元如
图所示,由这种网络元彼此连接形成的无限网络如图⑵所示,试求
P、Q两点之间的等效电阻.
解: r Rx r/4 r/2
r r r rr P rr Q
3
2 3
1 1
2 15
B
R
11 R 15
2R/3
2
24
如图所示,由电阻丝构成的网络中,每
一段电阻丝的电阻均为R,试求RAB.
解: R R 2
R/8 R/4
B
RAB
1
2
例析物理竞赛中纯电阻电路的简化和等效变换
例析物理竞赛中纯电阻电路的简化和等效变换计算一个电路的电阻,通常从欧姆定律出发,分析电路的串并联关系。
实际电路中,电阻的联接千变万化,我们需要运用各种方法,通过等效变换将复杂电路转换成简单直观的串并联电路。
本节主要介绍几种常用的计算复杂电路等效电阻的方法。
1、等势节点的断接法在一个复杂电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等电势节点间的导线或电阻或不含电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势节点连接起来,且不影响电路的等效性。
这种方法的关键在于找到等势点,然后分析元件间的串并联关系。
常用于由等值电阻组成的结构对称的电路。
【例题1】在图8-4甲所示的电路中,R1 = R2 = R3 = R4 = R5 = R ,试求A、B两端的等效电阻R AB。
模型分析:这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。
将图8-4甲图中的A、D缩为一点A后,成为图8-4乙图。
3R 。
答案:R AB =8【例题2】在图8-5甲所示的电路中,R1 = 1Ω,R2 = 4Ω,R3 = 3Ω,R4 = 12Ω,R5 = 10Ω,试求A、B两端的等效电阻R AB。
模型分析:这就是所谓的桥式电路,这里先介绍简单的情形:将A、B两端接入电源,并假设R5不存在,C、D两点的电势相等。
因此,将C、D缩为一点C后,电路等效为图8-5乙对于图8-5的乙图,求R AB 是非常容易的。
事实上,只要满足21R R =43R R 的关系,该桥式电路平衡。
答案:R AB =415Ω 。
【例题3】在如图所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。
【例题4】用导线连接成如图所示的框架,ABCD 是正四面体,每段导线的电阻都是1Ω。
求AB 间的总电阻。
2、电流分布法 设有电流I 从A 点流入、B 点流出,应用电流分流的思想和网络中两点间不同路径等电压的思想,(即基耳霍夫定理),建立以网络中各支路的电流为未知量的方程组,解出各支路电流与总电流I 的关系,然后经任一路径计算A 、B 两点间的电压AB U ,再由IU R ABAB =即可求出等效电阻。
大学物理-电阻电路的等效变换名师公开课获奖课件百校联赛一等奖课件
+ u_
N2 压电流与电路(b)中外电路部分旳完
全相同。
(b)
思索题:
i +
2 u
4V
_
N1
i +
3 u
5V
_
N2
如上图所示两个一端口网络N1和N2,已知N1:当u=2V时,i =-1A; 对于N2: 当u=2V时,i=-1A;即两个网络具有相同 旳电压和电流,问这两个网络是否等效?
两个端口旳伏安关系:
由串联组合(us, R)
并联组合(is, G)旳等效变换:
i
+
uS _
+
u
R
_
变换
由并联组合(is, G)
串
联组合(us, R)旳等效变换:
i
iS
+
Gu _
i
iS
+
Gu _
is us R , G 1 R
i
+
uS _
+
u
R
_
us is G ,
R
1 G
注意:
1. 一般情况下,这两种等效变换前后旳内部功率不相同, 但对外部来说,他们吸收或发出旳功率相同。
– i1 u31 R31
1+ u12
R12
+ i3 3–
R23 u23
型网络
i2 +2
,Y 网络旳变形:
型电路 ( 型)
T 型电路 (Y 型)
2. — Y 等效变换
外
电
路
1
R31
R12
3
R23
2
1
外 电 路
R1
R3
竞赛电阻等效方法
社团讲义电阻等效方法一■对稗法这种方法适用于具有一定对称性的电路,通过对等势点 拆、台和对称电路的“折叠”,使电路简化为基本的串、并联形 式.例1如图19-1所示J2个阻值都是R 的电阻,组成一立 方体框架,试求A£间的电阻Rw 和A 、B 间的电阻与 G 间的电阻R 的.图 19-2例2如图19-6所示的正方形网格由24个电阻力 =8 0 的电阻丝构成,电池电动势E-fi. 0 U,内电阻不计*求通过电 池的电流.图 19-6S 19-1 图 19-5甲乙例3波兰数学家谢尔宾斯基在1916年研究了一个有触的几何图形.他格如图19飞甲所示的一块黑色的等边r角形ABC的每一个边长平分为二,再把平分点联起来,此三角形被分成四个相等的等边三角形,然后将中间的等边三角形挖掉*得到如图19*乙的图形「接着再将剩下的黑色的三个等边三角形按相同的方法处理,经过第二次分割就得到图19-8丙的图形,经三次分割后,又蹲到图19-3 T 的图形.这是带有自相似特征的图形.这样的图形又称为谢尔宾斯基楼垫.它的自相似性就是将其中一个小单元(例如图19 8 丁中的△8JK)适当放大后,就得到图19 8乙的图形.如果这个分割过程继续下去,直至无穷,谢尔宾斯基楼垫中的民色部分将被不断地镂空,a 19-8数学家对这类几何图形的自相似性进行了研究,创造和发展出了一门称为“分形几何学”的新学科,近三十多年来,物理学家将分形几何学的研究成果和方法用于有关的物理领域,取得了有意义的进展.我们现在就在这个背景下研究按谢尔宾斯基镂壁图形的各边构成的电阳网结的等效电阻问题工设如图19-8中所示的三角形ABC边长八的电阻均为门经一次分割得到如图19-8 乙所示的图形,其中每个小三角形边长的电阻是原三角形ABC的边长的电阻厂的二分之一।经二次分割得到如图19-8 丙所示的图形,其中每个小二角形边长的电阻是原三角形月BC的边长的电阻r的四分之一.三次分割得到如图19-8 T 所示的图形,其中每个小三角形边长的电阻是原三角形ABC 的边长的电阻r的八分之一.(1)试求睡三次分割后,三角形ABC任意两个顶点间的等效电阻.(2)试求按此期律作了n次分割后•三角形ABC任意两个顶点间的等效电阻二.电流鬓加法对于一些并不具备直观的对称性的电路,可根据电流的可叠加性,重新设W电流的分布方式,将原本不对称问题转化成具有对林性的问题加以解决.电场具有可♦加性是众所周知的I几个点电荷引起的电场叠加,其场强施可蚪结为某一个点电荷引起的电场场强I同样. 直流电路中也存在这样的叠加关系:各电源单独存在时的电路电流代数更加后与所有电源同时存在的电路电流分布是一样的,任一直流电路电流分布,总可归纳为只含某一个宜流电源的电路电流分布.这就是电流的可叠加性.下面的例子展示通过电流叠加法寻求等效电阻.例4 "阳”宇形电阻理网络如图19 11所示•每小段电阻丝的电阻均为凡试求网络中A W阚点间的等效电阻尺用1911 图19-12例5如图19T4所示的一个无限的平面方格导线网,豆接两个结点的导战的电阻为物,如果将A和B接入电路,求此导线网的等效电二二二二二二二限克AH, ---- ——।力一物例6有一无限大平面导悻网络,它由大小相同的正六边形网眼组成,如图19 i5所示,所有六边形每边的电阻均为R D求间位结点4、白间的等效电阻.图1915三.Y—△变换法这是利用Y型连接电阻与△型连接电阻间等价关系的结论,通过电阻Y型连接与△型连接方式的互换,达到蔺化电路成单饨串联或并联的目的.我们先推导电阻Y一△连接的等价关系.如图19T7甲、乙所示的两个三端电路ABC与刈一用电路叫做△型连接电路,乙电路叫做¥型连接阻路,每端流入电流及答电阻阻值已标示在图上,两个电路完全等效.即对底端电流相等11勇=11(1丹=1*.1(:=[「),对应两端电压相等 1 口栖=Ug 《U M=U W.Uw=UG,因而区分不出虚线框内电阻的连接方式.fl 19 17当△一Y变换时,Y型连接每两端间等效电阻为r> _R A^R A C T>_R A J]R B C n _ RjI?R HCR尸F—四--------- 「国---------其中A=R AB + Rae + R E.倒了用变换法求例1网络中A、G间的电阻氏腐.例8如图19-19所示,个立方体原来用12根相同的电阻丝构成的立方体椎架,每根电阻丝的电阻均为「,现将其中一根拆去. 求A,B两点间的电阻.分析与解先将框架“压扁”成图19-C 20所示的平面图形,每边电阻不变.而后对明心、「三点间作Y变换,替换电阻依次为F全?电路连图"191、如图可二'K叶米,图甲中二端也容网络为△型网稿儿.图乙中三端电容网络为Y型网络元,试导出其间的等效变换公式.图.19 262、如图19-36所示是由电阻丝连接成的无限电阻网络, 已知每一段电阻丝的电阻均为n成求A,B两点之间的总电阻.3、三个相同的均匀金属圆圈网两相交地连接成如图19-37所示的网络.已知短一个金属圆圜的电阻都是R,显求图中A、E两点间的等效电阻R..图19-36图19-37。
电路等效电阻的求法
电路等效电阻的求法在电路分析以及电路设计过程中,求解电路中的等效电阻是一个非常重要的任务。
准确地求解电路等效电阻可以帮助我们理解电路的特性,优化电路设计,提高电路性能。
本文将介绍一些常用的方法来求解电路的等效电阻。
一、串联电阻的等效电阻求解串联电阻是指多个电阻依次连接在电路中,电流按顺序依次流过每个电阻的电路。
求解串联电阻的等效电阻可以使用以下公式:R等效 = R1 + R2 + R3 + ... + Rn其中,R1、R2、R3......Rn分别表示电路中每个串联电阻的电阻值。
通过按照电阻的顺序将各个电阻的电阻值相加,即可得到串联电阻的等效电阻。
二、并联电阻的等效电阻求解并联电阻是指多个电阻同时连接在电路中,电流在分支中按并联电阻的比例流过各个电阻的电路。
求解并联电阻的等效电阻可以使用以下公式:1/Requ = 1/R1 + 1/R2 + 1/R3 + ... + 1/Rn其中,R1、R2、R3......Rn分别表示电路中每个并联电阻的电阻值。
通过将每个并联电阻的倒数相加,然后再取倒数,即可得到并联电阻的等效电阻。
三、复杂电路的等效电阻求解对于复杂的电路,可以通过将其划分成简单的串并联电路来求解等效电阻。
首先,将电路按照串并联的结构进行分解,将电路简化为串并联电路组合。
然后,分别求解每个子电路的等效电阻。
最后,将各个子电路的等效电阻按照串并联的方式进行组合,得到整个电路的等效电阻。
四、其他方法的等效电阻求解除了上述的串并联求解方法,还有一些其他方法可以用来求解电路的等效电阻。
例如,可以使用电路的节点分析或者网孔分析等方法来建立方程,进而求解电路的等效电阻。
此外,还可以借助软件工具进行电路分析,得到电路的等效电阻。
求解电路的等效电阻是电路分析中的重要任务,可以帮助我们理解电路特性,优化电路设计。
通过串并联的方法以及其他分析方法,我们可以准确地求解电路的等效电阻。
在实际应用中,我们可以根据具体情况选择合适的方法,灵活运用,以满足电路分析的需要。
高中物理竞赛辅导 等效电阻方法
等效电阻方法班级 姓名1、 如图所示,12个阻值都是R 的电阻,组成一立方体框架,试求AC 间的电阻R AC 、AB 间的电阻R AB 与AG 间的电阻R AG .2、如图所示的正方形网格由24个电阻r 0=8 的电阻丝构成,电池电动势ε=6.0 V ,内电阻不计,求通过电池的电流.3、 如图所示,7个电阻均为R 的电阻连接而成,求A 、B 两点间的电阻。
A B CD E FG H4、 如图所示的一个无限的平面方格导线网,连接两个结点的导线的电阻为r 0,如果将A和B 接入电路,求此导线网的等效电阻R AB .5、 有一无限大平面导体网络,它有大小相同的正六边形网眼组成,如图所示,所有六边形每边的电阻均为R 0,求间位结点a 、b 间的等效电阻.6、如图是一个无限大导体网络,它由无数个大小相同的正三角形网眼构成,小三角形每边的电阻均为r ,求把该网络中相邻的A 、B 两点接入电路中时,AB 间的电阻R AB .7、证明如图所示的Y 形电阻网络与1c a c a b b c AB R R R R R R R R =++,1b ac a b b c ACR R R R R R R R =++ 1a a c ab bc BCR R R R R R R R =++.,,AB AC ABBC AC BC a b c R R R R R RR R R ===∆∆∆,其中AB BC AC R R R ∆=++.8、试求框架上A 、B 两点间的电阻R AB .此框架是用同种细金属制作的,单位长度的电阻为ρ.一连串内接等边三角形的数目可认为趋向无穷,如图所示.取AB 边长为a ,以下每个三角形的边长依次减少一半.c9、如图所示是由电阻丝连接成的无限电阻网络,已知每一段电阻丝的电阻均为r,试求A、B两点之间的总电阻.AB。
【精品】全国中学生物理竞赛课件19:电阻等效方法ABC
A
A
A
A
形几数何图学学1家”对B的这新类l0学几科C何.图图近2形三的B十D自多相F年似E来C性,进图物行3理了B学D研家究F将,E分C创形造图几和4何发B学G展KDI的J出F研了究E一C成门果称和为方“法分
用于有关的物理领域,取得了有意义的进展.
我们现在就在这个背景下研究按谢尔宾斯基镂垫图形的各边构成的电阻网络的
3
2 3
1 1
2 15
B
R
11 R 15
2R/3
2
24
如图所示,由电阻丝构成的网络中,每
一段电阻丝的电阻均为R,试求RAB.
解: R R 2
R/8 R/4
B
RAB
1
2
1 4
1 8
3 4
1 2
1 2
A
R
47 22
♠ Y-△变换法
利用Y型联接电阻与△型联接电阻间等价关系的结论,通
过电阻Y型联接与△型联接方式的互换,达到简化电路成单纯
串联或并联的目的.
2
专题19-例1 如图所示,12个阻值都是R的电阻,组成一立
方体框架,试求AC间的电阻RAC 、AB间的电阻RAB与AG间的电阻 RAG.
解: AC间等效电阻:
网络,其基本单元如图丙
A
B
A B
RR
An Rx Bn
R
R
A
BA
B An
2R
Bn
甲
乙
丙
当n→∞时,多一个单元,只是使Rx按边长同比增大,即