未来微电子封装技术发展趋势

合集下载

微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。

而微电子封装技术作为微电子技术的重要组成部分,其发展方向更是备受关注。

微电子封装技术,简单来说,就是将芯片等微电子元件进行保护、连接、散热等处理,以实现其在电子产品中的可靠应用。

随着电子产品的日益小型化、高性能化和多功能化,对微电子封装技术也提出了更高的要求。

未来,高性能、高密度和微型化将是微电子封装技术的重要发展方向。

在高性能方面,封装技术需要更好地解决信号传输的完整性和电源分配的稳定性问题。

为了实现这一目标,先进的封装材料和结构设计至关重要。

例如,采用低介电常数和低损耗的材料来减少信号延迟和衰减,以及优化电源网络的布局以降低电源噪声。

高密度封装则是为了满足电子产品集成度不断提高的需求。

通过三维封装技术,如芯片堆叠和硅通孔(TSV)技术,可以在有限的空间内集成更多的芯片,从而大大提高系统的性能和功能。

此外,扇出型晶圆级封装(Fanout WLP)技术也是实现高密度封装的重要手段,它能够将芯片的引脚扩展到更大的区域,增加引脚数量和布线密度。

微型化是微电子封装技术永恒的追求。

随着移动设备、可穿戴设备等的普及,对电子产品的尺寸和重量有着极为苛刻的要求。

因此,封装技术需要不断减小封装尺寸,同时提高封装的集成度和性能。

例如,采用更薄的封装基板、更小的封装引脚间距和更精细的封装工艺等。

绿色环保也是微电子封装技术未来发展的一个重要趋势。

随着环保意识的不断增强,电子产品的生产和使用过程中对环境的影响越来越受到关注。

在封装材料方面,将更多地采用无铅、无卤等环保材料,以减少对环境的污染。

同时,封装工艺也将朝着节能、减排的方向发展,提高生产过程的资源利用率和降低废弃物的排放。

此外,异质集成将成为微电子封装技术的一个重要发展方向。

随着各种新型器件和材料的不断涌现,如化合物半导体、MEMS 器件、传感器等,如何将这些不同性质的器件集成在一个封装体内,实现更复杂的系统功能,是未来封装技术面临的挑战之一。

微电子封装技术的发展趋势

微电子封装技术的发展趋势

微电子封装技术的发展趋势本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。

1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。

微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。

第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。

比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。

PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。

第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。

2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。

微电子发展趋势

微电子发展趋势

微电子发展趋势微电子是指尺寸在纳米至微米级别的电子器件和系统。

在过去几十年中,微电子领域取得了巨大的发展,并且其发展趋势也在不断变化和演进。

以下是微电子发展的一些趋势:1. 小型化和集成化:微电子器件逐渐实现小型化和集成化的发展。

其尺寸不断缩小,功能不断增加。

例如,原本需要多个电子器件才能实现的功能现在可以集成到一个芯片中,减小了体积和功耗。

2. 低功耗和高性能:随着移动设备和物联网的发展,对微电子器件的功耗和性能要求也越来越高。

微电子技术不断提升功耗效率,同时提高性能和稳定性,以满足不同应用的需求。

3. 高集成度和3D技术:为了满足多功能和高性能的需求,微电子器件的集成度也越来越高。

通过3D技术,可以在三维空间中布置电子器件,提高了空间利用率,同时降低了电路布线的复杂性。

4. 新材料和制造工艺:微电子器件的发展还受益于新材料的引入和制造工艺的改进。

例如,石墨烯、碳纳米管等新材料的应用使得器件性能得到了提升。

同时,新的制造工艺也使得器件的制造成本和周期得到了降低。

5. 医疗和生物应用:微电子技术在医疗和生物领域的应用也越来越广泛。

例如,微机械系统(MEMS)可以用于制造微型传感器和生物芯片,用于监测人体健康状况和进行基因研究等。

6. 量子计算和量子通信:微电子领域还涌现出了量子计算和量子通信等新兴技术。

量子计算利用量子叠加和量子纠缠等性质,可以进行超快速计算,并且具有极高的安全性。

量子通信则利用量子纠缠实现了绝对安全的通信。

7. 人工智能和边缘计算:随着人工智能的兴起,微电子领域也在努力满足人工智能的需求。

边缘计算技术可以在网络边缘进行数据处理和决策,减少了数据传输的延迟和压力。

微电子器件和系统的发展将进一步推动人工智能的应用。

总之,微电子领域的发展趋势是小型化、集成化、功耗和性能的提升、新材料和制造工艺的引入、医疗和生物应用的拓展、量子技术的发展以及与人工智能的结合等。

这些趋势将不断推动微电子技术的创新和应用,为我们的生活和工作带来更多的便利和可能性。

微电子封装技术

微电子封装技术

微电子封装技术1. 引言微电子封装技术是在微电子器件制造过程中不可或缺的环节。

封装技术的主要目的是保护芯片免受机械和环境的损害,并提供与外部环境的良好电学和热学连接。

本文将介绍微电子封装技术的发展历程、常见封装类型以及未来的发展趋势。

2. 微电子封装技术的发展历程微电子封装技术起源于二十世纪五十年代的集成电路行业。

当时,集成电路芯片的封装主要采用插入式封装(TO封装)。

随着集成度的提高和尺寸的缩小,TO封装逐渐无法满足发展需求。

在六十年代末,贴片式封装逐渐兴起,为微电子封装技术带来了发展的机遇。

到了二十一世纪初,球栅阵列(BGA)和无线芯片封装技术成为主流。

近年来,微电子封装技术的发展方向逐渐向着三维封装和追求更高性能、更小尺寸的目标发展。

3. 常见的微电子封装类型3.1 插入式封装插入式封装是最早使用的微电子封装技术之一。

它的主要特点是通过将芯片引线插入封装底座中进行连接。

插入式封装一开始使用的是TO封装,后来发展出了DIP(双列直插式封装)、SIP(单列直插式封装)等多种封装类型。

插入式封装的优点是可维修性高,缺点是不适合高密度封装和小尺寸芯片。

3.2 表面贴装封装表面贴装封装是二十世纪六十年代末期兴起的一种封装技术。

它的主要原理是将芯片连接到封装底座上,再将整个芯片-底座组件焊接到印刷电路板(PCB)上。

表面贴装封装可以实现高密度封装和小尺寸芯片,适用于各种类型的集成电路芯片。

常见的表面贴装封装类型有SOIC、QFN、BGA等。

3.3 三维封装三维封装是近年来兴起的一种封装技术。

它的主要原理是在垂直方向上堆叠多个芯片,通过微弧焊接技术进行连接。

三维封装可以实现更高的集成度和更小的尺寸,同时减少芯片间的延迟。

目前,三维封装技术仍在不断研究和改进中,对于未来微电子封装的发展具有重要意义。

4. 微电子封装技术的未来发展趋势随着科技的不断进步,微电子封装技术也在不断发展。

未来,微电子封装技术的发展趋势可以总结为以下几点:1.高集成度:随着芯片制造工艺的不断进步,集成度将继续提高,将有更多的晶体管集成在一个芯片上,这将对封装技术提出更高的要求。

微电子封装技术的研究现状及其应用展望

微电子封装技术的研究现状及其应用展望

微电子封装技术的研究现状及其应用展望近年来,随着电子产品的快速普及和电子化程度的不断提高,微电子封装技术越来越引起人们的重视。

微电子封装技术主要是将电子器件、芯片及其他微型电子元器件封装在合适的封装材料中以保护它们免受机械损伤和外部环境的影响。

本文将分析现有微电子封装技术的研究现状,并探讨其未来的应用前景。

一、微电子封装技术的研究现状随着电子元器件不断地微型化、多功能化、高集成化和高可靠化,微电子封装技术越来越得到广泛的应用和发展。

在微电子封装技术中,主要有以下几种常用的封装方式:1. 线路板封装技术线路板封装技术(PCB)是较为常见的一种微电子封装技术。

这种方式主要利用印刷板制成印刷电路板,并通过它与芯片之间实现联系,使其具有一定能力。

通常,PCB 封装技术可用于集成电路和大多数微型传感器中的有效信号接口。

2. QFP 封装技术QFP 封装技术指的是方形封装技术,它是一种常见的微电子封装技术,这种技术的特点在于其实现方式非常灵活,具有高密度、高可靠的特点。

这种技术可以用于各种芯片、集成电路、传感器和其他各种微型电子元器件的封装。

3. BGA 封装技术BGA 封装技术指的是球格阵列封装技术,这种技术主要利用钎接技术将芯片连接到小球上。

BGA 封装技术常用于高密度封装尺寸的芯片和集成电路中,并具有高可靠和高信号性能等特点。

它目前被广泛应用于计算机芯片、消费电子、汽车电子、无人机和航空电子等领域中。

4. CSP 封装技术CSP 封装技术指的是芯片级封装技术,该技术是近年来发展起来的一种新型微电子封装技术,主要是使用钎接工艺将芯片封装在封装材料上。

CSP 封装技术具有极小的尺寸和高密度、高可靠性、高信号性能和高互连和生产效率等优点,因此,它被广泛地应用于各种电子元器件和集成电路中。

二、微电子封装技术的应用展望微电子封装技术具有比传统封装技术更高的密度、高速度、高可靠性和多功能的优点,因此,它的应用前景是广阔的。

微电子器件封装技术的优化与创新

微电子器件封装技术的优化与创新

微电子器件封装技术的优化与创新微电子器件是现代电子技术的基础,它的封装技术也是电子制造业中不可或缺的一部分。

随着科技的发展和创新,微电子器件封装技术也在不断地进行优化和创新,以满足日益增长的市场需求。

本文将探讨微电子器件封装技术的优化与创新,以及未来的发展趋势。

一、微电子器件封装技术的发展历程微电子器件封装技术最初出现在20世纪50年代。

当时的封装方式主要是使用外框、连接线、引脚等元器件进行封装。

后来,随着集成电路技术的不断发展,微电子器件的封装技术也在不断地进行更新换代。

目前,微电子器件的封装方式主要分为裸芯片封装和模块化封装两种。

其中,裸芯片封装是指将芯片直接固定在印刷电路板上,并进行导线连接,免去其他部件的使用;而模块化封装则是将芯片、电源、传感器等元器件放置在一起,形成一个整体模块。

二、微电子器件封装技术的优化与创新1. 封装材料的多元化在传统的微电子器件封装技术中,使用的封装材料主要是塑料和陶瓷。

但随着人们对封装材料性能的要求不断提高,越来越多的新型封装材料也被引入使用。

例如,金属基板、硅胶、环氧树脂等材料的应用,可以提高封装材料的耐热性、耐腐蚀性以及抗震动性能,进一步提高了微电子器件的可靠性和性能稳定性。

2. 封装工艺的精细化封装工艺的精细化是微电子器件封装技术创新的另一个方向。

目前,很多公司都在研究和使用微纳米技术,将封装工艺做的更加细致化。

例如,采用微纳米技术可以实现微纳米级别的电子线路制作和微型结构制造,使得微电子器件封装更加精细化。

3. 三维封装技术三维封装技术是指将芯片垂直堆叠,以达到空间利用效率的最大化。

与传统封装技术相比,三维封装技术具有更小的体积、更高的集成度和更快的传输速度等优点。

这种技术的应用已经广泛进入到手机、电脑、平板等产品中,有望成为未来微电子器件封装技术的发展趋势。

三、未来的发展趋势1. 大规模集成未来的微电子器件封装技术将实现更高的功率密度、更多的信号处理功能、更快的运算速度和更低的功耗水平。

微电子技术的发展现状与未来趋势分析

微电子技术的发展现状与未来趋势分析

微电子技术的发展现状与未来趋势分析追溯微电子技术的历史,我们可以发现它已经在过去数十年间实现了蓬勃发展。

微电子技术通过将电子元器件电缆化、小型化和高度集成化,从而使得电子设备的性能大幅提升,其潜力和前景也越来越显著。

首先,让我们来看看微电子技术领域目前的现状。

我们可以将其划分为两个方面:硬件技术和应用领域。

在硬件技术方面,微电子技术的发展主要包括集成电路技术、封装技术和芯片制造技术等。

集成电路技术是微电子技术的核心,它将数百万甚至上亿个晶体管集成在一个芯片上,从而实现了电子设备的高度集成化。

随着半导体工艺的不断进步,集成电路的密度也在不断提高,使得芯片的性能得以极大地增强。

另一方面,封装技术则是为了保护芯片以及将其连接到电子产品中。

目前,3D封装和薄膜封装是封装技术的主要发展方向。

而芯片制造技术则是研究如何制造高度集成芯片的技术,包括光刻技术、薄膜沉积技术等。

在应用领域方面,微电子技术已经广泛应用于各个领域。

信息技术是微电子技术的一个重要应用领域,例如移动通信、计算机硬件和互联网等。

这些应用领域的发展离不开微电子技术的推动。

另外,医疗卫生领域也是微电子技术的重要应用领域之一。

微电子技术可以用于制造医学传感器、可植入芯片和医学成像设备,从而提供了更加精确和高效的医疗服务。

更为重要的是,微电子技术还在能源、交通和环境保护等领域发挥着重要作用。

通过微电子技术的应用,我们可以实现能源的高效利用、交通的智能化和环境的监控与保护。

接下来,让我们展望一下微电子技术未来的发展趋势。

从目前的发展态势来看,未来微电子技术可能呈现以下几个趋势。

首先,随着智能化和物联网技术的快速发展,微电子技术将会更加智能化。

例如,智能手机和智能家居等设备的普及,将需要更加高效和智能的微电子技术。

微电子技术将不仅仅解决硬件技术问题,还将涉及到软件开发、人工智能等方面的问题。

其次,随着人工智能技术的发展,微电子技术将逐渐融入到人工智能技术中。

集成电路封装技术的发展方向

集成电路封装技术的发展方向

集成电路封装技术的发展方向随着科技的不断进步和人们对高性能电子器件的需求不断增长,集成电路封装技术也在不断地发展和改进。

本文将分析集成电路封装技术的现状和发展趋势。

一、集成电路封装技术的现状随着电子产品使用场景的不断扩大,对封装技术的要求也越来越高。

尤其是随着人工智能、大数据、云计算等高性能电子器件的出现,集成电路封装技术变得更加重要。

现代封装技术面临着一系列新的挑战,包括:1. 高密度封装随着电路尺寸的缩小,半导体晶体管的密度和数量的增加,同样面积的集成电路上需要容纳更多的电路和元器件。

因此,封装技术的发展需要满足更高的密度要求。

2. 多功能封装电子产品产品不断发展,用户对产品的功能要求也越来越高。

因此,一个封装器件要满足多种功能,如散热、脱焊、防水等。

3. 可重用封装传统的封装技术是一次性的,因此难以适应快速迭代的电子产品市场的需求,造成浪费和效益低下。

二、集成电路封装技术的未来发展为了应对上述挑战,并提供更多的解决方案,集成电路封装技术需要进一步发展。

1. 引入新的材料新材料的引入是提高封装性能和开发高级封装的关键。

例如,硅酸盐玻璃可以制成高质量的二层封装,以改善散热和崩裂问题;有机基板通过提高介电常数,提高信号速度和抑制互相干扰效果。

2. 工艺的优化工艺的优化可以很好的解决集成电路封装过程中遇到的问题。

例如,薄膜制程、金属ELP等制程的应用可以提高封装公差、拼接和可重用性。

3. 创新的封装结构创新的封装结构能够为集成电路提供更多的功能和易于纳入微小装置的能力。

例如,球网阵列封装结构能够实现紧凑型、轻量化、低成本和高可靠性的优势。

4. 智能化封装智能化封装是未来集成电路封装的趋势。

通过智能化设计,可以实现更高的产品精度、智能化质检功能以及让封装适应更多的场景。

结语本文从集成电路封装技术的现状和发展趋势两个方面对集成电路封装技术进行了分析。

未来集成电路封装技术的不断发展,必将为自动驾驶、5G通信和人工智能等领域的发展带来更加稳定的基础条件。

2024年微电子封装市场发展现状

2024年微电子封装市场发展现状

微电子封装市场发展现状引言微电子封装是电子行业的一个重要领域,涉及到电子元器件的封装和连接技术。

随着科技的不断进步和应用需求的增长,微电子封装市场正面临着巨大的发展机遇。

本文将对微电子封装市场的现状进行分析和评估,为读者提供市场发展的全面了解。

市场概述微电子封装市场广泛应用于电子设备、通信设备、汽车电子、医疗设备等行业。

随着智能手机、物联网、5G通信等新技术的兴起,对微电子封装的需求不断增长。

根据市场研究机构的数据显示,微电子封装市场规模在过去几年中保持稳定增长,并有望在未来几年内保持良好的发展趋势。

技术进展微电子封装市场的发展得益于技术的不断进步。

随着微电子封装技术的不断升级,封装密度和性能得到了显著提升,同时尺寸和功耗也得到了有效控制。

新的封装技术,例如薄型封装、多芯片封装和三维封装等,为微电子封装市场注入了新的活力。

市场挑战微电子封装市场面临着一些挑战。

首先,封装成本较高,这限制了一些应用领域的发展。

其次,封装技术的发展速度较慢,难以满足新兴应用对性能和功耗的需求。

此外,市场竞争激烈,技术壁垒较高,对企业的创新能力提出了更高的要求。

发展趋势微电子封装市场在未来几年中有望保持持续增长。

首先,5G通信的商用化将推动微电子封装市场的快速发展。

其次,人工智能、物联网等新兴技术的普及将提高对微电子封装的需求。

此外,节能环保、小型化等市场需求也将促进微电子封装技术的创新和升级。

市场竞争格局微电子封装市场竞争激烈,主要厂商包括英特尔、三星电子、台积电、中芯国际等。

这些企业在封装技术研发、生产能力和市场份额方面具有较强优势。

此外,新兴企业也在不断涌现,通过技术创新和市场定位寻求突破。

结论微电子封装市场是一个充满机遇与挑战并存的市场。

随着新技术的不断涌现和应用领域的不断扩展,微电子封装市场有望进一步发展壮大。

为保持竞争力,企业需加强技术创新、提高生产效率,并关注市场趋势的变化,及时调整发展战略。

电子元器件的封装与封装技术进展

电子元器件的封装与封装技术进展

电子元器件的封装与封装技术进展随着电子科技的不断发展,电子元器件在现代社会中起着关键的作用。

而电子元器件的封装和封装技术则是保证其正常运行和长期可靠性的重要环节。

本文将介绍电子元器件封装的概念、封装技术的发展以及未来的趋势。

一、电子元器件封装的概念电子元器件封装是指将裸露的电子器件(如芯片、晶体管等)进行包装,并加入保护层,以充分保护元器件的性能、提高连接可靠性,并便于安装和维护。

合理的封装设计能够保护电子器件不受外界环境的影响,同时提高电子器件在电磁环境中的工作稳定性。

二、封装技术的进展随着电子技术的不断创新和发展,电子元器件的封装技术也在不断进步。

以下是一些主要的封装技术进展:1. 芯片封装技术芯片封装技术是将芯片包装在塑料、陶瓷或金属封装中。

近年来,微型封装技术的发展使得芯片的封装更加紧凑,能够将更多的功能集成在一个芯片中,从而提高了元器件的性能和可靠性。

2. 表面贴装技术(SMT)表面贴装技术是指将元器件直接通过焊接或贴合等方式固定在印刷电路板表面的技术。

与传统的插针连接方式相比,SMT可以提高元器件的连接可靠性,同时减小了电路板的尺寸。

3. 多芯片封装(MCP)多芯片封装是将多个芯片封装在同一个封装体中。

通过这种方式,可以将不同功能的芯片集成在一个封装中,同时减少了电路板上元器件的数量,提高了整体系统的紧凑性和可靠性。

4. 三维封装技术三维封装技术是将多个芯片层叠在一起,并通过微连接技术进行连接。

这种封装方式大大提高了元器件的集成度和性能,同时减小了系统的体积。

三、未来的趋势随着电子技术的不断发展,电子元器件封装技术也将朝着以下几个方向发展:1. 进一步集成化未来的电子元器件封装技术将会更加注重集成化,将更多的功能集成在一个封装中。

这样可以提高整体系统的紧凑性,减小系统的体积,并提供更高性能的元器件。

2. 更高的可靠性和稳定性未来的封装技术将注重提高元器件的可靠性和稳定性。

通过采用先进的封装材料和工艺,可以提高元器件在极端环境下的工作性能,如高温、高湿等。

微电子封装技术的发展趋势研究

微电子封装技术的发展趋势研究

微电子封装技术的发展趋势研究随着电子产品轻、雹短、小的发展趋势和微电子技术的不断更新, 微电子封装技术以其高密度和高性能的特点正逐渐进入超高速发展时期, 已成为当前电子封装技术的主流。

当下,微电子工业迅速发展,微电子产品已经涉及到我们生活中的方方面面,信息行业、通讯行业、能源行业等都离不开微电子技术,而在微电子技术中,微电子封装技术是微电子技术中的核心。

一、微电子封装技术种类目前,占市场主流的新型微电子封装技术,主要包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、原片级封装(WLP)、三位封装(3D)和系统封装(SIP)等项技术。

1、焊球阵列封装(BGA)。

BGA 是上世纪90 年代开始发展的新型微电子封装技术,此技术展现了以下几点优势。

一是电性能优越,BGA 采用的是焊球,摒弃了传统的引线,引出路径短,这样可以减少延迟。

二是封装的密度更加高。

焊球的方式是在整个平面进行排列,在面积同等的情况下,引脚数量会更加多。

例如边长为31mm 的BGA,当焊球节距为1mm时有900 只引脚。

三是安装可靠,安装可靠主要体现在BGA 的节距设置上,通常情况下,BGA 的节距设置为1.4mm、1.37mm。

2、芯片尺寸封装(CSP)。

CSP 的发展历史和BGA 相同,是同一个时期的产生技术,两者在技术本质上区别不大,美国著名科学家指出,当焊球节间距在lmm 以上可视为BGA,在lmm 以下可视为CSP。

CSP 也有着自身突出的优点:一是芯片的尺寸更加小,实现超小型封装。

二是电热性能优良,密度高,三是安装便捷灵活,方便安装与更换。

随着CSP 技术的不断成熟,CSP 也出现了一系列种类。

3、3D 封装。

3D 封装技术在种类上可以分为三大类。

一是埋置型3D封装,其结构是在基板的内部或者布线的夹层中埋置器件,在最上层再贴装SMC 和SMD,这种结构可以实现立体封装。

二是有源基板型3D 封装,就是在源基板上进行多层次的布线,然后在最上层贴装SMC 和SMD,这种结构也可以构成立体封装。

微电子封装技术的发展与展望

微电子封装技术的发展与展望

微电子封装技术的发展与展望The development and the prospect for microelectronics packaging technology周智强湖南工学院电气与信息工程学院电子0902班学号:09401140245摘要微电子技术的发展, 推动着微电子封装技术的不断发展、封装形式的不断出新。

介绍了微电子封装的基本功能与层次, 微电子封装技术发展的三个阶段, 并综述了微电子封装技术的历史、现状、发展及展望。

关键词:微电子; 集成电路; 封装技术AbstractThe development of microelectronics technology promotes the development of microelectronics packaging technology continuously, and new packaging forms appear time and again. In this paper, the basic functions and series of microelectronics packaging, the three stages of microelectronics packaging technology are introduced. And the history, the current state and the future trend of the microelectronics packaging technology are summarized.Keyword: microelectronics; integrated circuit; packaging technology引言随着微电子技术的发展, 集成电路复杂度的增加, 一个电子系统的大部分功能都可集成于一个单芯片的封装内, 这就要求微电子封装具有很高的性能: 更多的引线、更密的内连线更小的尺寸、更大的热耗散能力、更好的电性能、更高的可靠性、更低的单个引线成本等。

2024年封装技术市场前景分析

2024年封装技术市场前景分析

2024年封装技术市场前景分析引言封装技术是一种将复杂的系统、组件或模块进行抽象和封装,隐藏内部实现细节,以便用户能够更加方便地使用的技术。

封装技术在软件开发、电子产品、物流管理等领域都得到广泛应用。

随着科技的发展和市场的需求,封装技术市场具有广阔的前景。

本文将探讨封装技术市场的发展趋势、应用领域和市场前景。

封装技术市场发展趋势1. 智能化和自动化需求的增长随着人工智能和大数据技术的迅猛发展,人们对智能化和自动化产品的需求不断增加。

封装技术可以将复杂的算法和模型进行封装,使其更易于使用和集成。

因此,封装技术将成为实现智能化和自动化的重要手段,市场需求将呈现快速增长的趋势。

2. 物联网产业的兴起随着物联网技术的成熟和普及,各行各业都开始使用物联网技术实现设备之间的连接和信息交互。

封装技术在物联网产业中起到了关键作用,它可以将各种传感器和设备进行封装,以便与物联网平台进行连接和交互。

随着物联网产业的不断发展,封装技术市场将获得更大的发展空间。

3. 电子产品的迭代更新在日常生活和工作中,电子产品扮演着重要角色。

随着科技的进步和市场的竞争,电子产品的迭代更新速度加快。

封装技术可以将电子产品的功能模块进行封装,使其更具集成性和可扩展性。

这将有助于电子产品的研发和生产,推动封装技术市场的发展。

封装技术应用领域1. 软件开发封装技术在软件开发中起到重要作用。

通过将复杂的业务逻辑和算法进行封装,软件开发人员可以更快地开发出高质量的软件产品。

封装技术还使得软件的维护和升级更加便捷,有助于降低开发成本和提高效率。

2. 电子产品制造封装技术在电子产品制造中得到广泛应用。

通过将功能模块进行封装,电子产品制造商可以更快地推出新产品,并满足不同用户的需求。

封装技术还有助于提高电子产品的性能和可靠性,提升用户体验。

3. 物流管理封装技术在物流管理中的应用越来越广泛。

通过使用封装技术,物流公司可以更好地管理和追踪货物的运输和存储过程。

2024年芯片封装设备市场前景分析

2024年芯片封装设备市场前景分析

2024年芯片封装设备市场前景分析引言近年来,随着电子产品市场的不断发展壮大,芯片封装设备市场也得到了迅猛的发展。

芯片封装设备是集成电路制造过程中的重要设备之一,主要用于将芯片封装在塑料或陶瓷外壳中,保护芯片的正常运行。

本文将对芯片封装设备市场的发展现状和前景进行分析。

市场发展现状目前,全球范围内芯片封装设备市场呈现出快速增长的趋势。

主要原因有以下几点:1.电子产品市场不断扩大:随着人们对电子产品的需求日益增长,电子产品市场规模持续扩大,使得芯片封装设备市场需求量不断增加。

2.技术不断进步:随着科技的不断创新,芯片封装设备的技术水平也在不断提高,生产效率和封装质量得到了显著提升,进一步增加了市场需求。

3.制造成本下降:随着制造工艺和设备技术的成熟,芯片封装设备的制造成本不断下降,使得企业更容易购买和使用这些设备,进一步推动了市场的发展。

市场前景分析未来几年,芯片封装设备市场具有广阔的发展前景。

以下是市场前景的几个主要因素:1.5G技术的普及:随着5G技术的商用化,对芯片封装设备的需求将大幅增加。

5G技术需要更高性能的芯片进行支持,这将促使企业加大对芯片封装设备的投资,以满足市场对高性能芯片的需求。

2.物联网行业的快速发展:物联网作为未来的发展趋势,将带动芯片封装设备市场的需求。

物联网需要大量的传感器和芯片进行数据采集和处理,这将使得芯片封装设备市场进一步得到扩大。

3.人工智能技术的兴起:人工智能技术在各行各业得到广泛应用,对计算能力要求较高的芯片需求持续增长。

这将进一步推动芯片封装设备市场的发展。

4.新兴经济体需求增加:随着新兴经济体的经济发展和人民生活水平的提高,对电子产品的需求不断增加,这将进一步推动芯片封装设备市场的发展。

总之,芯片封装设备市场将在技术推动和需求拉动下继续保持快速增长的态势,市场前景广阔。

结论从目前市场发展现状和未来市场前景来看,芯片封装设备市场具有巨大的发展潜力。

随着科技的不断进步和各行业对高性能芯片的需求增加,芯片封装设备市场将持续保持快速增长的态势。

封装基板行业发展趋势

封装基板行业发展趋势

封装基板行业发展趋势
随着信息技术的飞速发展,封装基板行业也受到了世界各地消费者的普遍关注,其发展也迎来了高速增长。

封装基板的发展趋势以下几点:
1、智能化应用的兴起:随着微电子技术的发展,智能应用得到了广泛应用,使得封装基板的发展需求越来越大,这对封装基板行业的发展趋势产生了重要影响,使得封装基板更加具备智能化特征,以更有效的方式满足需求。

2、多功能技术支持:现在,封装基板正在不断寻求更高效的发展方式,以满足用户需求,多功能技术的应用是封装基板发展的重要支持。

多功能技术可以提高封装基板的性能,降低成本和保证产品质量,同时可以使封装基板更加易用,更安全可靠。

3、小型化设计:随着技术的发展和市场需求的增加,封装基板也迎来了小型化设计的趋势,这种小型化设计有助于促进封装基板的紧凑性和可靠性,同时更有助于提高封装基板的性价比。

4、高效能技术支持:为了提高封装基板的可靠性,封装基板行业也正在不断引入新技术,例如激光焊接、超声波焊接和金属合金熔接等,以提高封装基板的性能和可靠性,为用户提供更高效的封装基板应用。

微电子封装技术及其应用研究

微电子封装技术及其应用研究

微电子封装技术及其应用研究第一章:引言微电子封装技术是现代微电子技术中的重要组成部分,其在各种电子设备和产品中的应用越来越广泛。

封装技术除了能够保护芯片及其内部器件不受外部环境影响外,还能提高其集成度,使电路板布线简单化,功耗降低,信号传输速度加快。

本文将从微电子封装技术的概念、分类等方面入手,介绍微电子封装技术的基本原理和工艺,探讨其在实际应用中的作用和未来发展方向。

第二章:微电子封装技术的概念和分类微电子封装技术是指在微电子芯片上运用一定的封装工艺,将芯片进行包封,通过引脚或其他电器连接方式与外部环境进行连接。

从封装方式来看,常见的微电子封装技术主要有三种:无封装(COB)、裸芯封装(FC)和塑封封装(PLCC)。

其中,无封装封装方式指的是不使用任何塑封材料的封装方式,而是直接在芯片背面搭接球系统,以实现引脚的电器连接;裸芯封装是指在芯片上涂一层导电胶水,通过覆盖在芯片上的电极铜线连接到外部环境;而塑封封装则是将整个芯片用特定的塑料封装起来,通过引脚或其他电器连接方式与外部环境进行连接。

第三章:微电子封装技术的基本原理和工艺微电子封装技术的基本原理是在芯片上运用一定的封装工艺,以实现芯片的保护和封装。

在进行微电子封装前,需要对芯片进行相关处理,以满足封装工艺的要求。

现代微电子封装技术主要采用半导体加工工艺,采用光刻、蒸镀等工艺,通过在芯片上制作金属线、电极、晶圆等结构,最终实现芯片的封装。

在封装过程中,塑封材料是最常用的材料之一,通过将芯片包封在塑封材料中,可以保护芯片不受到外部环境的损害,同时也起到一定的隔热和防潮作用。

第四章:微电子封装技术在实际应用中的作用微电子封装技术在实际应用中具有重要的作用。

首先,封装技术能够提高芯片的集成度,减少芯片体积,从而实现多芯片模组的设计,满足不同类型的电子设备的需要。

其次,封装技术能够提高芯片的可靠性和稳定性,在芯片运行过程中能够保证信号的传输速度和准确度,保证电路的稳定性和可靠性。

微电子封装技术的发展研究报告

微电子封装技术的发展研究报告

微电子封装技术的发展研究报告摘要:本研究报告旨在探讨微电子封装技术的发展趋势和未来的挑战。

首先,我们回顾了微电子封装技术的历史和现状,包括其在电子产品中的重要性和应用范围。

然后,我们介绍了目前主流的微电子封装技术,如晶圆级封装、芯片级封装和3D封装等。

接下来,我们分析了微电子封装技术的发展趋势,包括高密度封装、低成本封装和高性能封装等。

最后,我们讨论了微电子封装技术面临的挑战,并提出了未来的研究方向和发展建议。

1. 引言微电子封装技术是现代电子产品制造中不可或缺的一环。

随着电子产品的不断进步和发展,对封装技术的要求也越来越高。

微电子封装技术的发展对于提高电子产品的性能、降低成本和增强可靠性具有重要意义。

2. 微电子封装技术的历史和现状微电子封装技术起源于上世纪60年代,随着集成电路的发展,封装技术也逐渐成熟。

目前,微电子封装技术已广泛应用于各种电子产品,如智能手机、平板电脑和汽车电子等。

封装技术的发展使得电子产品在体积、重量和功耗方面得到了显著改善。

3. 目前主流的微电子封装技术目前,主流的微电子封装技术包括晶圆级封装、芯片级封装和3D封装等。

晶圆级封装技术将多个芯片封装在同一块晶圆上,可以提高封装效率和降低成本。

芯片级封装技术将芯片直接封装在基板上,可以实现更小尺寸和更高性能。

3D封装技术将多个芯片堆叠在一起,可以提高系统集成度和性能。

4. 微电子封装技术的发展趋势微电子封装技术的发展趋势主要包括高密度封装、低成本封装和高性能封装等。

高密度封装要求在有限的空间内实现更多的功能和连接。

低成本封装要求降低生产成本和材料成本。

高性能封装要求提高电子产品的工作速度和可靠性。

5. 微电子封装技术面临的挑战微电子封装技术面临着许多挑战,如封装材料的热膨胀系数匹配、封装工艺的精确控制和封装可靠性的提高等。

此外,封装技术还需要适应新兴的电子器件和应用,如物联网、人工智能和自动驾驶等。

6. 未来的研究方向和发展建议为了应对微电子封装技术的挑战,我们需要加强封装材料的研发和工艺的改进。

浅析未来微电子封装技术发展趋势

浅析未来微电子封装技术发展趋势

浅析未来微电子封装技术发展趋势作者:李荣茂来源:《科技创新导报》2011年第36期摘要:在电子封装技术中,微电子封装更是举足轻重,所以IC封装在国际上早已成为独立的封装测试产业,并与IC设计和IC制造共同构成IC产业的三大支柱。

本文介绍了对微电子封装的要求,以及未来微电子封装的发展趋势,其中着重介绍了芯片直接安装(DCA)优越性。

关键词:微电子封装发展趋势 DCA 三维封装中图分类号: TN957.52+9文献标识码:A文章编号:1674-098X(2011)12(c)-0000-001 概述如今,全球正迎来电子信息时代,这一时代的重要特征是以电脑为核心,以各类集成电路,特别是大规模、超大规模集成电路的飞速发展为物质基础,并由此推动、变革着整个人类社会,极大地改变着人们的生活和工作方式,成为体现一个国家国力强弱的重要标志之一。

因为无论是电子计算机、现代信息产业、汽车电子及消费类电子产业,还是要求更高的航空、航天及军工产业等领域,都越来越要求电子产品具有高性能、多功能、高可靠、小型化、薄型化、轻型化、便携化以及将大众化普及所要求的低成本等特点。

满足这些要求的正式各类集成电路,特别是大规模、超大规模集成电路芯片。

要将这些不同引脚数的集成电路芯片,特别是引脚数高达数百乃至数千个I/O的集成电路芯片封装成各种用途的电子产品,并使其发挥应有的功能,就要采用各种不同的封装形式,如DIP、SOP、QFP、BGA、CSP、MCM等。

可以看出,微电子封装技术一直在不断地发展着。

现在,集成电路产业中的微电子封装测试已与集成电路设计和集成电路制造一起成为密不可分又相对独立的三大产业。

而往往设计制造出的同一块集成电路芯片却采用各种不同的封装形式和结构。

今后的微电子封装又将如何发展呢?根据集成电路的发展及电子整机和系统所要求的高性能、多功能、高频、高速化、小型化、薄型化、轻型化、便携化及低成本等,必然要求微电子封装提出如下要求:(1)具有的I/O数更多;(2)具有更好的电性能和热性能;(3)更小、更轻、更薄,封装密度更高;(4)更便于安装、使用、返修;(5)可靠性更高;(6)性能价格比更高;2 未来微电子技术发展趋势具体来说,在已有先进封装如QFP、BGA、CSP和MCM等基础上,微电子封装将会出现如下几种趋势:DCA(芯片直接安装技术)将成为未来微电子封装的主流形式DCA是基板上芯片直接安装技术,其互联方法有WB、TAB和FCB技术三种,DCA与互联方法结合,就构成板上芯片技术(COB)。

微电子封装技术的发展趋势

微电子封装技术的发展趋势

微电子封装技术的发展趋势陆逢(中国矿业大学材料学院,221116)【摘要】 :论述了微电子封装的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术(BGA封装技术.CSP封装技术.MCM封装技术.3D 封装技术.SIP封装技术等)。

封装技术的进步满足了人们的需求,促进了电子产业的发展。

【关键词】:微电子技术;封装;BGA; MCM ;3D封装; SIP0引言电子产品正朝着便携式、小型化、网络化和多媒体化方向发展[9],这种市场需求对电路组装技术提出了相应的要求,单位体积信息的提高和单位时间处理速度的提高成为促进微电子封装技术发展的重要因素。

封装承接承接集成电路的制作,是电子产品制造过程的重要环节,它保护芯片,并提供元器件之间的信号传递。

人们对电子产品的要求逐步提高,因而对PCB的依赖性越来越大。

PCB的制作逐步向高密度.多层化.细线路发展,电子产品也趋于轻.薄.密.小,推动了封装小型化[1]。

1 微电子封装的发展历程集成电路封装的引线和安装类型有很多,按安装到电路板的方式可分通孔插入式和表面安装式,目前的电子封装主要采用表面贴装方式,通孔插入的方式已经很少使用,只用在在个别部件。

集成电路封装的历史,其发展主要划分为三个阶段。

第一阶段,在二十世纪七十年代之前,以插装型封装为主。

包括最初的金属圆形(TO型)封装,后来的瓷双列直插封装、瓷-玻璃双列直插封装和塑料双列直插封装(PDIP)。

尤其是PDIP,由于性能优良、成本低廉又能批量生产而成为主流产品。

第二阶段,在二十世纪八十年代以后,以表面安装类型的四边引线封装为主。

当时,表面安装技术被称作电子封装领域的一场革命,得到迅猛发展。

与之相适应,一批适应表面安装技术的封装形式,如塑料有引线片式裁体、塑料四边引线扁平封装、塑料小外形封装以及无引线四边扁平封装等封装形式应运而生,迅速发展。

由于密度高、引线节距小、成本低并适于表面安装,使PQFP 成为这一时期的主导产品。

微电子行业的封装技术资料

微电子行业的封装技术资料

微电子行业的封装技术资料封装技术是微电子行业中的关键环节,它涉及到将微电子器件封装成集成电路,保护其免受外界环境的影响,并提供良好的导电、传热和机械保护等功能。

本文将对微电子封装技术进行详细介绍。

一、封装技术的背景与现状随着微电子器件不断发展,其封装方式也在不断演变。

最初的微电子封装是使用插件式封装,而现在主要采用集成电路封装。

这种封装方式可在小型、轻薄、可靠、高性能的芯片上提供功能强大的封装。

二、封装技术的分类与特点封装技术可根据封装材料和封装方式进行分类。

常见的封装材料包括塑料封装、金属封装和陶瓷封装等。

封装方式有无引脚封装和多引脚封装等。

不同的封装材料和封装方式在导热性能、散热效果、电气性能等方面有所不同。

三、封装技术中的关键环节封装技术中的关键环节包括电路设计、晶圆制备、封装材料选择、封装工艺等。

电路设计要求合理布局,兼顾信号传输和供电等需要;晶圆制备需要严格的工艺流程,确保芯片的质量;封装材料的选择要考虑导热性能、尺寸匹配等因素;封装工艺则涉及到焊接、封装注意事项描写、封装尺寸控制等多个步骤,要保证每个步骤都能准确无误地完成。

四、封装技术的发展趋势随着技术的发展,封装技术也在不断创新。

目前,微电子行业封装技术的发展趋势主要表现在以下几个方面:1. 三维封装技术的应用将进一步提高芯片的集成度和性能。

2. 基于微纳尺度材料和技术的封装将提供更好的导热性和电气性能。

3. 模块化封装技术将使芯片的维修更加方便。

4. 绿色环保封装技术将成为未来发展的重要趋势。

五、封装技术的挑战与前景尽管封装技术在微电子行业中发挥着至关重要的作用,但仍面临一些挑战。

如封装材料的热膨胀系数不匹配、封装工艺的复杂性、芯片密度过高导致的散热问题等。

未来,随着科技的不断进步,这些挑战将得到有效解决,封装技术将进一步提升,为微电子行业带来更多的发展机遇。

总结:微电子行业的封装技术是一项复杂而关键的技术,它直接影响着微电子器件的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析未来微电子封装技术发展趋势
摘要:在电子封装技术中,微电子封装更是举足轻重,所以ic
封装在国际上早已成为独立的封装测试产业,并与ic设计和ic制造共同构成ic产业的三大支柱。

本文介绍了对微电子封装的要求,以及未来微电子封装的发展趋势,其中着重介绍了芯片直接安装(dca)优越性。

关键词:微电子封装发展趋势 dca 三维封装
中图分类号: tn957.52+9文献标识码:a文章编号:
1674-098x(2011)12(c)-0000-00
1 概述
如今,全球正迎来电子信息时代,这一时代的重要特征是以电脑为核心,以各类集成电路,特别是大规模、超大规模集成电路的飞速发展为物质基础,并由此推动、变革着整个人类社会,极大地改变着人们的生活和工作方式,成为体现一个国家国力强弱的重要标志之一。

因为无论是电子计算机、现代信息产业、汽车电子及消费类电子产业,还是要求更高的航空、航天及军工产业等领域,都越来越要求电子产品具有高性能、多功能、高可靠、小型化、薄型化、轻型化、便携化以及将大众化普及所要求的低成本等特点。

满足这些要求的正式各类集成电路,特别是大规模、超大规模集成电路芯片。

要将这些不同引脚数的集成电路芯片,特别是引脚数高达数百乃至数千个i/o的集成电路芯片封装成各种用途的电子产品,并使其发挥应有的功能,就要采用各种不同的封装形式,如dip、sop、
qfp、bga、csp、mcm等。

可以看出,微电子封装技术一直在不断地发展着。

现在,集成电路产业中的微电子封装测试已与集成电路设计和集成电路制造一起成为密不可分又相对独立的三大产业。

而往往设计制造出的同一块集成电路芯片却采用各种不同的封装形式和结构。

今后的微电子封装又将如何发展呢?根据集成电路的发展及电子
整机和系统所要求的高性能、多功能、高频、高速化、小型化、薄型化、轻型化、便携化及低成本等,必然要求微电子封装提出如下要求:
(1)具有的i/o数更多;(2)具有更好的电性能和热性能;(3)更小、更轻、更薄,封装密度更高;(4)更便于安装、使用、返修;(5)可靠性更高;(6)性能价格比更高;
2 未来微电子技术发展趋势
具体来说,在已有先进封装如qfp、bga、csp和mcm等基础上,微电子封装将会出现如下几种趋势:
dca(芯片直接安装技术)将成为未来微电子封装的主流形式
dca是基板上芯片直接安装技术,其互联方法有wb、tab和fcb 技术三种,dca与互联方法结合,就构成板上芯片技术(cob)。

当前,在dca技术中,wb仍是主流,但其比重正逐渐下降,而fcb技术正迅速上升。

因为它具有以下优越性:
(1)dca特别是fc(倒装芯片)是“封装”家族中最小的封装,实际上是近于无封装的芯片。

(2)传统的wb只能利用芯片周围的焊区,随着i/o数的增加,wb引脚节距必然缩小,从而给工艺实施带来困难,不但影响产量,也影响wb质量及电性能。

因此,高i/o数的器件不得不采用面阵凸点排列的fc。

(3)通常的封装(如sop、qfp)从芯片、wb、引线框架到基板,共有三个界面和一个互联层。

而fc只有芯片一个基板一个界面和一个互联层,从而引起失效的焊点大为减少,所以fcb的组件可靠性更高。

(4)fc的“引脚”实际上就是凸点的高度,要比wb短得多,因此fc的电感非常低,尤其适合在射频移动电话,特别是频率高达2ghz以上的无线通信产品中应用。

(5)由于fc可直接在圆片上加工完成“封装”,并直接fcb到基板上,这就省去了粘片材料、焊丝、引线框架及包封材料,从而降低成本,所以fc最终将是成本最低的封装。

(6)fc及fcb后可以在芯片背面直接加装散热片,因此可以提高芯片的散热性能,从而fc很适合功率ic芯片应用。

通过以上对dca及fcb优越性的分析,可以看出dca特别是fcb 技术将成为未来微电子封装的主流形式应是顺理成章的事。

2.2 三维(3d)封装技术将成为实现电子整机系统功能的有效途径
三维封装技术是国际上近几年正在发展着的电子封装技术,它又称为立体微电子封装技术。

3d已成为实现电子整机系统功能的有效
途径。

各类smd的日益微型化,引线的细线宽和窄间距化,实质上是为实现xy平面(2d)上微电子组装的高密度化;而3d则是在2d的基础上,进一步向z方向,即向空间发展的微电子组装高密度化。

实现3d,不但使电子产品的组装密度更高,也使其功能更多,传输速度更高、相对功耗更低、性能更好,而可靠性也更高等。

与常规的微电子封装技术相比,3d可使电子产品的尺寸和重量缩小十倍。

实现3d,可以大大提高ic芯片安装在基板上的si效率(即芯片面积与所占基板面积之比)。

对于2d多芯片组件情况,si效率在20%—90%之间,而3d的多芯片组件的si效率可达100%以上。

由于3d的体密度很高,上、下各层间往往采取垂直互联,故总的引线长度要比2d大为缩短,因而使信号的传输延迟线也大为减小。

况且,由于总的引线长度的缩短,与此相关的寄生电容和寄生电感也大为减小,能量损耗也相应减少,这都有利于信号的高速传输,并改善其高频性能。

此外,实现3d,还有利于降低噪声,改善电子系统性能。

还由于3d紧密坚固的连接,有利于可靠性的提高。

3d也有热密度较大、设计及工艺实施较复杂的不利因素,但随着3d技术日益成熟,这些不利因素是可以克服的。

总之,微电子封装技术的发展方向就是小型化、高密度、多功能和低成本。

参考文献
[1] 微电子封装技术[m].中国电子学会生产技术学分会丛书编
委会.中国科学技术大学出版社.
[2] 金玉丰.微系统封装技术概论[m] 科学出版社.2006第1版.。

相关文档
最新文档