单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

合集下载

单晶多晶非晶硅的区别

单晶多晶非晶硅的区别

单晶多晶非晶硅的区别单晶多晶非晶硅的区别太阳能电池的种类有如下儿种:(一)、硅系太阳能电池1、单晶硅太阳能电池硅系列太阳能电池中,单晶硅太阳能电池转换效率最高,技术也最为成熟。

高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。

现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。

提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。

在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。

该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。

并在表面把一13nm。

厚的氧化物钝化层与两层减反射涂层相结合•通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。

Kyocera公司制备的大面积(225cm2)单晶硅太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cmX2cm)转换效率达到19. 79%,刻槽埋栅电极晶体硅电池(5cmX5cm)转换效率达8.6%。

单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但山于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。

为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。

2、多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450 u m的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。

因此实际消耗的硅材料更多。

为了节省材料,人们从70 年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。

光伏组件的分类及其性能对比

光伏组件的分类及其性能对比

光伏组件的分类及其性能对比随着太阳能的广泛应用,光伏组件已成为太阳能发电的重要组成部分。

光伏组件主要分为单晶硅、多晶硅、非晶硅和柔性薄膜四种。

本文将从性能和应用方面对它们进行对比。

1. 单晶硅组件单晶硅组件是目前使用最广泛的光伏组件之一。

它是由单块纯硅片制成,效率高达21%。

单晶硅组件的优点在于其高效率和长寿命,但制造成本较高。

2. 多晶硅组件多晶硅组件是由多块硅片拼接而成的。

其效率较单晶硅稍低,大约为15%-18%。

然而,其制造成本较低,适合大范围的应用。

3. 非晶硅组件非晶硅属于第三代太阳能电池,是一种薄膜太阳能电池组件,非晶硅薄膜可以在较低的温度下制造,具有较高的柔韧性,非晶硅薄膜的效率约为7%-10%。

4. 柔性薄膜组件柔性薄膜组件是最新的太阳能电池技术之一。

它可以制成通过卷曲的形式使其更容易运输和安装。

然而,它的效率只有3%-5%,因此它仅适用于一些需要低功率输出的应用。

总体来说,单晶硅和多晶硅组件依然是光伏组件的主要制造材料,它们的效率和寿命相对较高,适用范围更广。

非晶硅和柔性薄膜组件则在一些特殊应用领域有很大的潜力,但目前产业化进程较为缓慢。

根据你的具体的应用场景和需求,可以根据不同的性能指标和技术成本来选择适合的光伏组件。

除了上述分类外,光伏组件还有许多其它的细分类型,例如高效组件、双面组件、透明组件等。

这些组件类型在特定的应用领域中能够发挥更有效的作用。

1. 高效组件高效组件通常指那些效率超过传统单晶硅和多晶硅组件的光伏组件。

这些高效组件包括单接面背阳极太阳能电池、双接面太阳能电池、共振光伏电池等,这些组件的效率通常能够达到更高的水平。

2. 双面组件双面组件是一种能够利用阳光正反两面的光伏组件,它的工作原理类似于太阳能追踪系统。

不同于普通单面贴在房顶上的光伏组件,双面组件既可以在房顶上使用,也可以放在地面上使用。

因为它可以利用反射的光线转换成电能,所以效率相对更高。

3. 透明组件透明组件是一种特殊的光伏组件,它的外观透明度高,能够在光敏效应下转换太阳光线为电能,同时也能做到视觉上不影响建筑物本身的外观。

太阳能电池材料的种类、原理和特点

太阳能电池材料的种类、原理和特点

太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。

太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。

本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。

一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。

1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。

2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。

3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。

4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。

二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。

不同类型的太阳能电池材料有着不同的工作原理。

1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。

当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。

这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。

2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。

其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。

3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。

三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。

单晶、多晶、薄膜太阳能电池介绍

单晶、多晶、薄膜太阳能电池介绍

(1)单晶硅太阳能电池目前单晶硅太阳能电池的光电转换效率为15%左右,最高的近24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。

由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。

单晶硅大阳能电池转换效率最高,技术也最为成熟。

高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。

现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。

单晶硅太阳能电池转换效率是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。

为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。

(2)多晶硅太阳能电池多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。

从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。

此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。

晶体硅光电池晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结成制作,生产技术成熟,是光伏市场上的主导产品。

采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及接触电极等技术,提高材料中的载流子收集效率,优化抗反肘膜、凹凸表面、高反射背电极等方式,光电转换效率有较大提高。

单晶硅光电池面积有限,目前比较大的为∮10至20cm的圆片,年产能力46MW/a。

太阳能电池的分类

太阳能电池的分类

太阳能电池的分类以太阳能电池的分类为标题,我们来详细介绍一下太阳能电池的不同种类和特点。

一、单晶硅太阳能电池单晶硅太阳能电池是最早被应用于太阳能发电领域的一种电池。

它的特点是具有较高的转换效率和较好的稳定性。

单晶硅太阳能电池由单个晶体生长而成,因此晶体结构完整,能够充分吸收光能,并将其转化为电能。

单晶硅太阳能电池的缺点是生产成本较高,制造过程相对复杂。

二、多晶硅太阳能电池多晶硅太阳能电池是由多个晶体片拼接而成的。

相比于单晶硅太阳能电池,多晶硅太阳能电池的制造过程更简单,成本更低。

然而,由于晶体之间存在晶界,多晶硅太阳能电池的转换效率相对较低,稳定性也略差。

三、薄膜太阳能电池薄膜太阳能电池是一种采用薄膜材料制造的太阳能电池。

薄膜太阳能电池的制造工艺相对简单,成本较低。

薄膜太阳能电池的转换效率相对较低,但在低光照条件下性能表现较好。

薄膜太阳能电池还具有柔性,可以应用于更多的场景,例如建筑物外墙、车顶等。

四、有机太阳能电池有机太阳能电池是利用有机半导体材料制造的一种太阳能电池。

有机太阳能电池具有制造工艺简单、成本低廉的特点。

然而,由于有机材料的稳定性较差,有机太阳能电池的寿命相对较短,转换效率也较低。

目前,有机太阳能电池主要用于一些小型设备的供电,如智能手表、智能眼镜等。

五、钙钛矿太阳能电池钙钛矿太阳能电池是近年来新兴的一种太阳能电池技术。

它利用钙钛矿材料作为光敏层,具有较高的转换效率和较好的稳定性。

钙钛矿太阳能电池的制造工艺相对简单,可以采用低成本的生产方法。

然而,目前钙钛矿太阳能电池的寿命和稳定性仍然存在一定问题,需要进一步改进和研究。

六、染料敏化太阳能电池染料敏化太阳能电池是一种利用染料吸收光能并将其转化为电能的太阳能电池。

染料敏化太阳能电池具有制造工艺简单、成本低廉的特点。

然而,染料敏化太阳能电池的转换效率相对较低,稳定性也较差。

目前,染料敏化太阳能电池主要用于一些低功率应用,如电子设备的充电等。

太阳能电池板的分类及特点详细介绍

太阳能电池板的分类及特点详细介绍

太阳能电池板的分类及特点详细介绍太阳能电池板是一种将太阳能转化为电能的装置,广泛应用于太阳能发电系统中。

太阳能电池板根据不同的材料和工艺,可以分为单晶硅、多晶硅、薄膜和有机太阳能电池板等不同类型。

下面将逐一介绍各种类型的太阳能电池板及其特点。

1.单晶硅太阳能电池板:单晶硅太阳能电池板由单晶硅元件组成,具有高效能转化率和较高的稳定性。

其制造过程中采用了较高的温度和气氛,因此成本相对较高。

单晶硅太阳能电池板的特点包括高效率、较长的使用寿命和良好的稳定性,但其能量密度较低,故面积较大。

2.多晶硅太阳能电池板:多晶硅太阳能电池板以多晶硅元件制成,制造过程简单,因此成本相对较低。

多晶硅太阳能电池板的特点包括性价比高、适用于大规模生产和可塑性强。

然而,多晶硅太阳能电池板的转化效率较低,且在高温环境下性能容易衰减。

3.薄膜太阳能电池板:薄膜太阳能电池板由柔性材料上的薄膜组成,可以分为非晶硅薄膜、铜铟镓硒薄膜(CIGS)和碲化铟镓薄膜(CIG)等。

薄膜太阳能电池板具有重量轻、可弯曲性强等特点,可以应用于曲面建筑物和可穿戴设备中。

然而,薄膜太阳能电池板的转化效率一般较低,且使用寿命有限。

4.有机太阳能电池板:有机太阳能电池板由有机材料构成,具有低成本、柔性和轻质等优点。

有机太阳能电池板的制造工艺相对简单且环境友好。

然而,有机太阳能电池板的转化效率较低,且在高温和潮湿环境下易受到损坏。

总体而言,太阳能电池板是将太阳能转化为电能的装置,根据不同的材料和工艺,可以分为单晶硅、多晶硅、薄膜和有机太阳能电池板等不同类型。

每种类型的太阳能电池板都有其独特的特点和应用场景。

单晶硅太阳能电池板具有高效率和较长的使用寿命,适用于需要高转化效率和稳定性的场合;多晶硅太阳能电池板具有低成本和可塑性强,适用于大规模生产和柔性应用;薄膜太阳能电池板具有重量轻、可弯曲性强的特点,适用于曲面建筑物和可穿戴设备;有机太阳能电池板具有低成本和环境友好的特点,适用于柔性和轻质应用。

太阳能电池板的分类

太阳能电池板的分类

太阳能电池板的分类
太阳能电池板是一种利用太阳能转化为电能的设备。

随着科技的发展,太阳能电池板也经历了多种改进和发展,现在已经有多种分类方式:
1、按照材料分类
(1)单晶硅太阳能电池板:由单晶硅制成,具有高效率、低温系数的
特点,但价格相对较高。

(2)多晶硅太阳能电池板:由多晶硅制成,具有较高的效率和较低的
价格。

(3)非晶硅太阳能电池板:由非晶硅制成,价格相对较低,但效率较低。

2、按照转换方式分类
(1)薄膜太阳能电池板:利用薄膜技术,将太阳能电池板制成薄膜状,体积小、重量轻、柔韧性好,适用于柔性组合。

(2)晶体硅太阳能电池板:采用传统的硅片工艺制成,具有较高的转
换效率和可靠性,但对于尺寸和形状有一定限制。

(3)有机太阳能电池板:利用有机材料制成,具有成本低,可制作成柔性和半透明等特点,但效率较低。

3、按照工艺分类
(1)单面结构太阳能电池板:太阳能电池片和背面支撑材料组成的单面结构。

(2)双面结构太阳能电池板:太阳能电池片和背面支撑材料组成的双面结构,可以实现从正反两面收集太阳能。

(3)背接式太阳能电池板:太阳能电池片背面直接接地,不需要背面支撑材料,可以减少组件的重量和成本。

总之,太阳能电池板作为清洁能源的代表之一,各种分类方式主要是为了满足不同用途的需求,在工业、商业和家庭中都有广泛应用。

随着科技的不断发展,太阳能电池板的效率和性能还会不断提高,为人类节能减排做出更大的贡献。

单晶硅,多晶硅,非晶硅简介及区别

单晶硅,多晶硅,非晶硅简介及区别

单晶硅,多晶硅,非晶硅简介及区别物理性质:是一种比较活泼的非金属元素,是晶体材料的重要组成部分。

硅的单晶体,具有基本完整的点阵结构的晶体。

不同的方向具有不同的性质,是一种良好的半导材料。

纯度要求达到99.9999%,甚至达到99.9999999%以上。

用于制造半导体器件、太阳能电池等。

用高纯度的多晶硅在单晶炉内拉制而成。

制备方法:熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。

超纯的单晶硅是本征半导体。

在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。

单晶硅主要用于制作半导体元件。

用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。

名称:多晶硅英文名:polycrystalline silicon物理性质:灰色金属光泽。

密度2.32~2.34。

熔点1410℃。

沸点2355℃。

溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。

硬度介于锗和石英之间,室温下质脆,切割时易碎裂。

加热至800℃以上即有延性,1300℃时显出明显变形。

常温下不活泼,高温下与氧、氮、硫等反应。

高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。

具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。

制备方法:多晶硅是单质硅的一种形态。

熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。

多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。

太阳能电池板单晶硅和多晶硅介绍与区别

太阳能电池板单晶硅和多晶硅介绍与区别

太阳能电池板单晶硅和多晶硅介绍与区别来源:商友照明发布日期:2012.08.04阅读:134在太阳能利用上,单晶硅和多晶硅发挥着巨大的作用。

虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。

从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)单晶硅、非晶硅、多晶硅的区别1.区别晶体非晶体?日常所见到的固体分为非晶体和晶体两大类,非晶体物质的内部原子排列没有一定的规律,当断裂时断口也是随机的,如塑料和玻璃等,而称之为晶体的物质,外形呈现天然的有规则的多面体,具有明显的棱角与平面,其内部的原子是按照一定的规律整齐的排列起来,所以破裂时也按照一定的平面断开,如食盐、水晶等。

2.区别单晶体和多晶体?有的晶体是由许许多多的小晶粒组成,若晶粒之间的排列没有规则,这种晶体称之为多晶体,如金属铜和铁。

但也有晶体本身就是一个完整的大晶粒,这种晶体称之为单晶体,如水晶和晶刚石。

3.单晶硅与多晶硅光伏电池的比较?单晶硅电池具有电池转换效率高,稳定性好,但是成本较高。

多晶硅电池成本低,转换效率略低于直拉单晶硅太阳能电池,材料中的各种缺陷,如晶界、位错、微缺陷,和材料中的杂质碳和氧,以及工艺过程中玷污的过渡族金属。

单晶硅和多晶硅介绍:一、单晶硅Monocrystallinesilicon可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。

在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。

北京2008年奥运会将把绿色奥运做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。

现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。

光伏板材料的种类

光伏板材料的种类

光伏板材料的种类光伏板材料是太阳能光伏发电系统中的核心组成部分,其选择对于光伏系统的性能和效率具有重要影响。

在回答你的问题之前,我将会介绍几种常见的光伏板材料,包括单晶硅、多晶硅、非晶硅和薄膜太阳能电池。

1.单晶硅:单晶硅是最常见的光伏板材料之一,也被称为单晶硅太阳能电池。

它由高纯度的硅单晶材料制成,具有非常高的效率和稳定性。

单晶硅电池的外观为深蓝色或黑色,具有光滑的外表。

单晶硅光伏板通常具有较高的转换效率和较长的寿命,但成本较高。

2.多晶硅:多晶硅也是一种常用的光伏板材料,由由多个晶体颗粒组成。

与单晶硅相比,多晶硅制造成本较低,但效率稍低。

多晶硅光伏板的颜色通常呈现浅蓝色,表面较粗糙。

尽管多晶硅的效率相对较低,但它在大规模生产中具有成本优势。

3.非晶硅:非晶硅光伏板材料是一种非晶态硅材料,通常具有较薄的厚度。

它由非晶硅薄膜沉积在基板上形成。

非晶硅电池的制造成本更低,而且可以灵活地应用于各种形状和尺寸的表面。

然而,非晶硅电池的效率较低,并且随着时间的推移可能会有一定的功率衰减。

4.薄膜太阳能电池:薄膜太阳能电池采用一种或多种材料的薄膜形式制成,如铜铟镓硒(CIGS)、铜铟镓硫(CIGS)或硒化镉(CdTe)。

薄膜太阳能电池具有较低的制造成本、较小的重量和较高的灵活性。

然而,薄膜太阳能电池的效率通常较低,且在长时间使用中可能出现功率衰减。

总体而言,不同的光伏板材料具有各自的优势和劣势,选择合适的材料取决于特定应用的需求,如预算、空间限制、效率和可持续性等因素。

随着技术的进步和研究的不断发展,未来可能会涌现出更多种类的光伏板材料。

如何正确区分单晶硅、多晶硅、非晶硅电池 分别有哪些优缺点?

如何正确区分单晶硅、多晶硅、非晶硅电池 分别有哪些优缺点?

如何正确区分单晶硅、多晶硅、非晶硅电池分别有哪些优缺点?“如何区分单晶硅电池和多晶硅电池”?对于此问题,想必大家都有了一个比较深层次的了解,但对于刚加入光伏行业的人来说,我觉得还是有必要再给大家说一下单晶硅电池、多晶硅电池和非晶硅电池之间的区别。

如果有说的不妥当的地方,也还请大家见谅。

太阳电池最早问世的是单晶硅太阳电池。

硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可以说是取之不尽的,用硅来制造太阳电池,原料可谓不缺。

但是提炼它却不容易,因此人们在生产单晶硅太阳电池的同时,又研究了多晶硅太阳电池,至今商业规模生产的太阳电池,还没有跳出硅的系列。

那么该如何正确区分单晶硅、多晶硅与非晶硅电池呢?第一:外观上的区别从外观上面看的话,单晶硅电池的四个角呈现圆弧状,表面没有花纹;而多晶硅电池的四个角呈现方角,表面有类似冰花一样的花纹;而非晶硅电池也就是我们平时说的薄膜组件,它不像晶硅电池可以看出来栅线,表面就如同镜子一般清晰、光滑。

单晶硅电池多晶硅电池非晶硅电池第二:使用上面的区别对于使用者来说,单晶硅电池和多晶硅电池没有太大的区别,它们的寿命和稳定性都很好。

虽然单晶硅电池平均转换效率要比多晶硅高1%左右,但由于单晶硅电池只能做成准正方形(四边都是圆弧状),因此当组成太阳能电池板的时候就会有一部分面积填不满;而多晶硅是正方形,所以不存在这样的一个问题,它们的优缺点具体如下:晶硅组件:单块组件功率相对较高。

同样占地面积下,装机容量要比薄膜组件高。

但组件厚重易碎,高温性能较差,弱光性差,年度衰减率高。

薄膜组件:单块组件功率相对略低。

但发电性能高,高温性能佳,弱光性能好,阴影遮挡功率损失较小,年度衰减率低。

应用环境广泛,美观,环保。

第三:制造工艺多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,因此多晶硅太阳能电池占全球太阳能电池总产量的份额大,制造成本也小于单晶硅电池,所以使用多晶硅太阳能电池将会更加的节能、环保!其实可供制造太阳电池的半导体材料很多,随着材料工业的发展、太阳电池的品种将越来越多。

单晶硅、多晶硅、非晶硅三种太阳能电池根底常识

单晶硅、多晶硅、非晶硅三种太阳能电池根底常识

单晶硅、多晶硅、非晶硅三种太阳能电池根底常识单晶硅、多晶硅、非晶硅三种太阳能电池根底常识单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池改换功率最高,技能也最为老到。

高功用单晶硅电池是树立在高质量单晶硅资料和有关的成热的加工处理技能根底上的。

如今单晶硅的电地技能己近老到,在电池制作中,通常都选用外表织构化、发射区钝化、分区掺杂等技能,开发的电池首要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。

跋涉转化功率首要是靠单晶硅外表微构造处理和分区掺杂技能。

在此方面,德国夫朗霍费费莱堡太阳能体系研讨所坚持着国际抢先水平。

该研讨所选用光刻照相技能将电池外表织构化,制成倒金字塔构造。

并在外表把一13nm。

厚的氧化物钝化层与两层减反射涂层相联络.通过改进了的电镀进程添加栅极的宽度和高度的比率:通过以上制得的电池转化功率跨过23%,是大值可达23.3%。

Kyocera公司制备的大面积(225cm2)单电晶太阳能电池改换功率为19.44%,国内北京太阳能研讨所也生动进行高效晶体硅太阳能电池的研讨和开发,研发的平面高效单晶硅电池(2cmX2cm)改换功率抵达19.79%,刻槽埋栅电极晶体硅电池(5cmX5cm)改换功率达8.6%。

单晶硅太阳能电池改换功率无疑是最高的,在大方案运用和工业出产中仍占有主导方位,但因为受单晶硅资料报价及相应的繁琐的电池技能影响,致使单晶硅本钱报价居高不下,要想大凹凸下降其本钱对错常艰难的。

为了节约高质量资料,寻觅单晶硅电池的代替商品,如今翻开了薄膜太阳能电池,其间多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池即是典型代表。

多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350-450mu;m的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。

因而实习耗费的硅资料更多。

为了节约资料,咱们从70年代中期就开端在便宜衬底上堆积多晶硅薄膜,但因为成长的硅膜晶粒巨细,未能制成有价值的太阳能电池。

单晶硅、多晶硅、非晶硅……太阳能电池板有辣么多种类你都知道吗?

单晶硅、多晶硅、非晶硅……太阳能电池板有辣么多种类你都知道吗?

单晶硅、多晶硅、非晶硅……太阳能电池板有辣么多种类你都知道吗?我们目前最成熟的技术就是火力发电和风力发电以及太阳能发电。

其中火力发电几乎占到了城市供电量的绝大多数份额,环境污染和资源减少成为了世界性的难题,世界环保组织也提倡大家能节约用电,但毕竟不是解决问题的方法,发现新的能源成为了科学家的新课题。

那么在没有新能源之前电子爱好者如何自主发电呢?电阳能电池板则成了最方便也最经济的选择。

下面小编就列出三种不同的电池板种类供大家学习和了解。

单晶硅电池单晶硅太阳能电池板以纯度99.999%的单晶硅为原料,批量生产过程中也有用半导体器件加工后的头、尾料和瑕疵的单晶硅材料,回炉再复拉,制成太阳能电池专用单晶硅棒,再将其切成0.3mm厚度的硅片,经过成形、抛磨、清洗等工序,制成电池原料硅片。

接着,要在该硅片上进行掺杂和扩散,一般掺杂物为微量的硼、磷、锑等元素。

扩散是在石英管制成的高温扩散炉中进行,从而在硅片上形成具有光电转化功能的“PN”结。

然后,采用丝网印刷技术,将银浆印制在硅片上,做成栅线,烧结后形成电极,用于收集和传输光/电转换的电流。

至此,单晶硅光伏电池单体片即告完成。

将检验后参数一致的单体片,按国际电工委员会IEC 1215标准,采用如36片或72片单体电池片进行串、并混联(避免因为某片损坏、开路,导致整个串联支路电池片失效),制成12V、24V、48V或者其他电压输出的电池板组件,并在栅线面整体涂覆减反射膜、抗紫外线剂、抗氧化剂和固化剂等,以阻止光能被镜面般的硅片反射掉,利于吸收光能,又可延长光伏电池的寿命,最后,采用抗机械冲击能力较强的铝合金边框进行装裹,并由其背部密封接线盒引出光伏供电专用电缆线及超强防水插头。

多晶硅电池虽然“硅”的初级原料取之不尽,但“硅”的提炼、提纯却十分不易,且耗能巨大,于是,兼顾“硅”的用量及光伏发电效率,又研制出多晶硅太阳能电池(见图2)。

我们知道,单晶硅棒呈圆柱状,制作成单体电池片时,4个角将存在菱形倒角,呈缺损方形,制作成组(板)后将存在平面利用率低下的缺点。

太阳能电池材料的工作原理

太阳能电池材料的工作原理

太阳能电池材料的工作原理一、引言太阳能电池作为一种新型的清洁能源,其应用前景广阔。

而太阳能电池的核心部分就是材料,因此研究太阳能电池材料的工作原理对于提高太阳能电池的效率和稳定性具有重要意义。

二、太阳能电池材料的分类1.硅基太阳能电池材料硅基太阳能电池是目前应用最广泛的太阳能电池之一,其材料主要包括单晶硅、多晶硅和非晶硅等。

其中单晶硅具有较高的转换效率和稳定性,但制造成本较高;多晶硅制造成本较低,但转换效率稍低;非晶硅则具有制造工艺简单、生产成本低等优点。

2.无机薄膜太阳能电池材料无机薄膜太阳能电池主要包括CdTe、CIS/CIGS等材料。

其中CdTe 具有制造成本低、转换效率较高等优点;CIS/CIGS则具有更高的转换效率,但制造成本较高。

3.有机光伏材料有机光伏材料具有制造工艺简单、生产成本低等优点,但转换效率较低。

目前主要应用于柔性太阳能电池等领域。

三、太阳能电池材料的工作原理太阳能电池是一种将光能直接转换为电能的器件,其工作原理可以简单概括为光生电效应。

当太阳光照射到太阳能电池的材料表面时,会激发出一些自由载流子(即带有正负电荷的粒子),这些载流子会在材料内部移动,并被导体收集到电路中。

最终形成直流电流输出。

具体来说,不同类型的太阳能电池材料其工作原理略有差异:1.硅基太阳能电池硅基太阳能电池主要利用p-n结构实现光生电效应。

p-n结是指将p 型半导体和n型半导体通过特殊工艺连接在一起形成的结构。

当光照射到p-n结时,会产生空穴和自由电子。

由于p型半导体和n型半导体中掺入了不同类型的杂质元素,因此会形成电场,将空穴和自由电子分别向p型半导体和n型半导体移动。

最终在p-n结处形成电荷分离,产生光生电流输出。

2.无机薄膜太阳能电池无机薄膜太阳能电池主要利用异质结构实现光生电效应。

异质结构是指将不同材料的薄膜通过特殊工艺层叠在一起形成的结构。

当光照射到异质结构时,会产生空穴和自由电子。

由于不同材料的能带结构不同,因此会形成能带偏移,在界面处形成电场,将空穴和自由电子分别向不同材料的界面移动。

太阳能光伏发电之单晶硅、多晶硅、非晶硅电池的区别

太阳能光伏发电之单晶硅、多晶硅、非晶硅电池的区别

太阳能光伏发电之单晶硅、多晶硅、非晶硅电池的区别光伏发电主要是靠电池来吸引太阳能转化为电能,在安装光伏电站前,还需要对电池有个明确的了解,这样才能更好地选择光伏产品。

目前市面上的太阳能电池主要有单晶硅、多晶硅与非晶硅电池,今天就来告诉大家三种电池各有什么特征和优缺点!1、外观上的区别从外观上面看的话,单晶硅电池的四个角呈现圆弧状,表面没有花纹;而多晶硅电池的四个角呈现方角,表面有类似冰花一样的花纹;而非晶硅电池也就是我们平时说的薄膜组件,它不像晶硅电池可以看出来栅线,表面就如同镜子一般清晰、光滑。

▲单晶硅电池▲多晶硅电池▲薄膜组件2、使用上面的区别对于使用者来说,单晶硅电池和多晶硅电池没有太大的区别,它们的寿命和稳定性都很好。

虽然单晶硅电池平均转换效率要比多晶硅高1%左右,但由于单晶硅电池只能做成准正方形(四边都是圆弧状),因此当组成太阳能电池板的时候就会有一部分面积填不满;而多晶硅是正方形,所以不存在这样的一个问题,它们的优缺点具体如下:晶硅组件:单块组件功率相对较高。

同样占地面积下,装机容量要比薄膜组件高。

但组件厚重易碎,高温性能较差,弱光性差,年度衰减率高。

薄膜组件:单块组件功率相对略低。

但发电性能高,高温性能佳,弱光性能好,阴影遮挡功率损失较小,年度衰减率低。

应用环境广泛,美观,环保。

3、制造工艺多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,因此多晶硅太阳能电池占全球太阳能电池总产量的份额大,制造成本也小于单晶硅电池,所以使用多晶硅太阳能电池将会更加的节能、环保!其实可供制造太阳电池的半导体材料很多,随着材料工业的发展、太阳电池的品种将越来越多。

目前已进行研究和试制的太阳电池,除硅系列外,还有硫化镉、砷化镓、铜铟硒等许多类型的太阳电池,举不胜举,通常这些材料都会用来制作非晶硅电池。

但这些都没有广泛商用,这里就不再一一分析啦!总而言之,单晶的利用面积会比较高,单晶在面积利用率上会比较好;多晶市场比例比较高,应用的比较广,价格方面也是有一定的优势。

单晶硅,多晶硅,非晶硅的区别和性能差异

单晶硅,多晶硅,非晶硅的区别和性能差异

单晶硅,多晶硅,非晶硅的区别和性能差异一、单晶硅太阳能电池名称:单晶硅英文名:Monocrystalline silicon单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。

硅的单晶体,具有基本完整的点阵结构的晶体。

不同的方向具有不同的性质,是一种良好的半导材料。

纯度要求达到99.9999%,甚至达到99.9999999%以上。

用于制造半导体器件、太阳能电池等。

用高纯度的多晶硅在单晶炉内拉制而成。

熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。

超纯的单晶硅是本征半导体。

在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。

单晶硅主要用于制作半导体元件。

用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。

二、多晶硅太阳能电池名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。

密度2.32~2.34。

熔点1410℃。

沸点2355℃。

溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。

硬度介于锗和石英之间,室温下质脆,切割时易碎裂。

加热至800℃以上即有延性,1300℃时显出明显变形。

常温下不活泼,高温下与氧、氮、硫等反应。

高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。

具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。

多晶硅是单质硅的一种形态。

熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。

单晶硅、多晶硅、非晶硅简介及区别

单晶硅、多晶硅、非晶硅简介及区别

单晶硅、多晶硅、非晶硅简介及区别名称:单晶硅英文名: Monocrystalline silicon分子式: Si单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。

硅的单晶体,具有基本完整的点阵结构的晶体。

不同的方向具有不同的性质,是一种良好的半导材料。

纯度要求达到99.9999%,甚至达到99.9999999%以上。

用于制造半导体器件、太阳能电池等。

用高纯度的多晶硅在单晶炉内拉制而成。

熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。

超纯的单晶硅是本征半导体。

在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。

单晶硅主要用于制作半导体元件。

用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。

名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。

密度2.32~2.34。

熔点1410℃。

沸点2355℃。

溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。

硬度介于锗和石英之间,室温下质脆,切割时易碎裂。

加热至800℃以上即有延性,1300℃时显出明显变形。

常温下不活泼,高温下与氧、氮、硫等反应。

高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。

具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。

多晶硅是单质硅的一种形态。

熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。

单晶硅、多晶硅和非晶硅薄膜的区别

单晶硅、多晶硅和非晶硅薄膜的区别

作为目前整条产业链的核心,硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。

◇单晶硅、多晶硅和非晶硅薄膜的区别:
单晶硅、多晶硅和非晶硅就发电能效及价格依次由高到低,如不考虑价格,单晶硅最好。

非晶硅低效、易老化,但低价。

多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。

被称为“微电子大厦的基石”。

单晶硅
单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。

其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。

单晶硅建设项目具有巨大的市场和广阔的发展空间。

单晶硅电池具有电池转换效率高,稳定性好,但是成本较高。

单晶硅电池早在20多年前就已突破光电转换效率20%以上的技术关口。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。

在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1讲课讲稿

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1讲课讲稿

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别硅太阳能电池的外形及基本结构如图1。

其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。

上表面为N+型区,构成一个PN+结。

顶区表面有栅状金属电极,硅片背面为金属底电极。

上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。

当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。

各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。

光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。

当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。

太阳能电池各区对不同波长光的敏感型是不同的。

靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。

电池基体域产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。

2.单晶硅太阳能电池单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。

这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。

为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。

有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。

将单晶硅棒切成片,一般片厚约0.3毫米。

硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。

加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。

扩散是在石英管制成的高温扩散炉中进行。

这样就在硅片上形成PN结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别硅太阳能电池的外形及基本结构如图1。

其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。

上表面为N+型区,构成一个PN+结。

顶区表面有栅状金属电极,硅片背面为金属底电极。

上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。

当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。

各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。

光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。

当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。

太阳能电池各区对不同波长光的敏感型是不同的。

靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。

电池基体域产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。

2.单晶硅太阳能电池单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。

这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。

为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。

有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。

将单晶硅棒切成片,一般片厚约0.3毫米。

硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。

加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。

扩散是在石英管制成的高温扩散炉中进行。

这样就在硅片上形成PN结。

然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。

单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。

用户根据系统设计,可将太阳能电池组件组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。

目前单晶硅太阳能电池的光电转换效率为15%左右,实验室成果也有20%以上的。

用于宇宙空间站的还有高达50%以上的太阳能电池板。

另外硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。

高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。

现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。

提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。

在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。

该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。

并在表面把一13nm。

厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。

Kyocera 公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cmX2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cmX5cm)转换效率达8.6%。

3.多晶硅太阳能电池单晶硅太阳能电池的生产需要消耗大量的高纯硅材料,而制造这些材料工艺复杂,电耗很大,在太阳能电池生产总成本中己超二分之一,加之拉制的单晶硅棒呈圆柱状,切片制作太阳能电池也是圆片,组成太阳能组件平面利用率低。

因此,80年代以来,欧美一些国家投入了多晶硅太阳能电池的研制。

目前太阳能电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,或用废次单晶硅料和冶金级硅材料熔化浇铸而成。

其工艺过程是选择电阻率为100~300欧姆•厘米的多晶块料或单晶硅头尾料,经破碎,用1:5的氢氟酸和硝酸混合液进行适当的腐蚀,然后用去离子水冲洗呈中性,并烘干。

用石英坩埚装好多晶硅料,加人适量硼硅,放人浇铸炉,在真空状态中加热熔化。

熔化后应保温约20分钟,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。

这种硅锭可铸成立方体,以便切片加工成方形太阳能电池片,可提高材质利用率和方便组装。

多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,其光电转换效率约12%左右,稍低于单晶硅太阳能电池,但是材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。

随着技术得提高,目前多晶硅的转换效率也可以达到14%左右。

与单晶硅太阳能电池相比,多晶硅电池成本低,但也存在明显缺陷。

晶粒界面和晶格错位,造成多晶硅电池光电转换效率一直无法突破20%的关口。

而单晶硅电池早在20多年前就已经突破20%。

然而,近年来多晶硅太阳能电池的技术水平提升很快,其电池转换效率最高已经达到17%以上,组件转换效率可达15%以上,与单晶硅的差距正逐步减小。

最近,德国弗劳恩霍夫协会发表公报说,目前该协会下属的弗赖堡太阳能系统研究所经过两年攻关,成功开发出一种新技术,可以使多晶硅电池的晶格错位等缺陷得到部分解决。

其技术关键是在太阳能电池生产过程中选择适当温度,使多晶硅的电子性能得到提高,并同时形成高效率的太阳能电池结构。

该所的研究人员已经找到了适当的温度平衡点,既保证太阳能电池高效率所需高温,又兼顾这一温度在材料可接受的范围以及它在工业生产中的可行性。

如果该技术能够达到产业化应用,将进一步提高多晶硅太阳能电池产品的竞争力。

4.非晶硅太阳能电池非晶硅太阳能电池是1976年有出现的新型薄膜式太阳能电池,它与单晶硅和多晶硅太阳能电池的制作方法完全不同,硅材料消耗很少,电耗更低,非常吸引人。

制造非晶硅太阳能电池的方法有多种,最常见的是辉光放电法,还有反应溅射法、化学气相沉积法、电子束蒸发法和热分解硅烷法等。

辉光放电法是将一石英容器抽成真空,充入氢气或氩气稀释的硅烷,用射频电源加热,使硅烷电离,形成等离子体。

非晶硅膜就沉积在被加热的衬底上。

若硅烷中掺人适量的氢化磷或氢化硼,即可得到N型或P型的非晶硅膜。

衬底材料一般用玻璃或不锈钢板。

这种制备非晶硅薄膜的工艺,主要取决于严格控制气压、流速和射频功率,对衬底的温度也很重要。

非晶硅太阳能电池的结构有各种不同,其中有一种较好的结构叫PiN电池,它是在衬底上先沉积一层掺磷的N型非晶硅,再沉积一层未掺杂的i层,然后再沉积一层掺硼的P型非晶硅,最后用电子束蒸发一层减反射膜,并蒸镀银电极。

此种制作工艺,可以采用一连串沉积室,在生产中构成连续程序,以实现大批量生产。

同时,非晶硅太阳能电池很薄,可以制成叠层式,或采用集成电路的方法制造,在一个平面上,用适当的掩模工艺,一次制作多个串联电池,以获得较高的电压。

因为普通晶体硅太阳能电池单个只有0.5伏左右的电压,现在日本生产的非晶硅串联太阳能电池可达2.4伏。

目前非晶硅太阳能电池存在的问题是光电转换效率偏低,国际先进水平为10%左右,且不够稳定,常有转换效率衰降的现象,所以尚未大量用于作大型太阳能电源,而多半用于弱光电源,如袖珍式电子计算器、电子钟表及复印机等方面。

估计效率衰降问题克服后,非晶硅太阳能电池将促进太阳能利用的大发展,因为它成本低,重量轻,应用更为方便,它可以与房屋的屋面结合构成住户的独立电源。

非晶硅作为太阳能材料尽管是一种很好的电池材料,但由于其光学带隙为1.7eV,使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率。

此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S一W效应,使得电池性能不稳定。

解决这些问题的这径就是制备叠层太阳能电池,叠层太阳能电池是由在制备的p、i、n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。

叠层太阳能电池提高转换效率、解决单结电池不稳定性的关键问题在于:①它把不同禁带宽度的材科组台在一起,提高了光谱的响应范围;②顶电池的i层较薄,光照产生的电场强度变化不大,保证i层中的光生载流子抽出;③底电池产生的载流子约为单电池的一半,光致衰退效应减小;④叠层太阳能电池各子电池是串联在一起的。

非晶硅薄膜太阳能电池的制备方法有很多,其中包括反应溅射法、PECVD法、LPCVD法等,反应原料气体为H2稀释的SiH4,衬底主要为玻璃及不锈钢片,制成的非晶硅薄膜经过不同的电池工艺过程可分别制得单结电池和叠层太阳能电池。

目前非晶硅太阳能电池的研究取得两大进展:第一、三叠层结构非晶硅太阳能电池转换效率达到13%,创下新的记录;第二.三叠层太阳能电池年生产能力达5MW。

美国联合太阳能公司(VSSC)制得的单结太阳能电池最高转换效率为9.3%,三带隙三叠层电池最高转换效率为13%。

上述最高转换效率是在小面积(0.25cm2)电池上取得的。

曾有文献报道单结非晶硅太阳能电池转换效率超过12.5%,日本中央研究院采用一系列新措施,制得的非晶硅电池的转换效率为13.2%。

国内关于非晶硅薄膜电池特别是叠层太阳能电池的研究并不多,南开大学的耿新华等采用工业用材料,以铝背电极制备出面积为20X20cm2、转换效率为8.28%的a-Si/a-Si叠层太阳能电池。

非晶硅太阳能电池由于具有较高的转换效率和较低的成本及重量轻等特点,有着极大的潜力。

但同时由于它的稳定性不高,直接影响了它的实际应用。

如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅大阳能电池无疑是太阳能电池的主要发展产品之一。

5.薄膜太阳能电池薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,因此在同一受光面积之下可较硅晶圆太阳能电池大幅减少原料的用量(厚度可低于硅晶圆太阳能电池90%以上),目前转换效率最高以可达13%,薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,在薄膜太阳电池制造上,则可使用各式各样的沈积(deposition)技术,一层又一层地把p-型或n-型材料长上去,常见的薄膜太阳电池有非晶硅、CuInSe2 (CIS)、CuInGaSe2 (CIGS)、和CdTe..等。

薄膜太阳能电池的种类:非晶硅(Amorphus Silicon, a-Si)、微晶硅(Nanocrystalline Silicon,nc-Si,Microcrystalline Silicon,mc-Si)、化合物半导体II-IV 族[CdS、CdTe(碲化镉)、CuInSe2]、色素敏化染料(Dye-Sensitized Solar Cell)、有机导电高分子(Organic/polymer solar cells) 、CIGS (铜铟硒化物)..等。

相关文档
最新文档