弹性力学及有限元基础部分作业
《弹性力学及有限元》测验试卷
一、在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假定?
二、在什么条件下平面应力问题与平面应变问题的应力分量xy y x τσσ,,是相同的?
三、体力为零的单连体应力边界问题,设下列应力分量已满足边界条件。
试考察它们是否为
正确解答,并说明原因。
0,2,2)2(===xy y x y x τσσ
四、有限单元法中,位移模式应满足什么条件? 下列位移函数 2321x a y a x a u ++= 2321y b y b x b v ++=
能否作为三角形单元的位移模式? 简要说明理由。
)(,,)1(a
y
b x q b y q a x q
xy y x +-===τσσ
题六图
七、某结构的有限元计算网格如题七图(a )所示。
网格中两种类型单元按如题七图(b )所
示的局部编号,它们单元劲度矩阵均为
⎥⎥⎤⎢⎢⎡-----25.025.0025.025.0025.025.0025.025.0005.0000
5.0。
弹性力学及有限元法答案下载
弹性力学及有限元法答案下载一、是非题(下列各题,你认为正确的,请在题干的括号内打“√”,错的打“×”。
每题3分,共12分)1、按应力求解平面问题时,若应力分量满足平衡方程,且在边界上满足应力边界条件即为正确解答。
…………………………………………………………………………………………()2、图示弹性体在两种荷载作用下,若lh,则A点的应力分量是相同的。
…………………()3、用有限单元法求解平面应力问题时,单元刚度矩阵的子块kij的物理意义是:仅当第j个结点沿坐标正向发生x或y方向的单位位移,在i结点处引起的沿x或y 方向的结点力。
……()4、等厚度旋转圆盘以等角速度ω旋转时,该问题应属平面应变问题。
……………………()二、单选题(在本题的每一小题的备选答案中,只有一个是正确的,请把你认为正确答案的题号,填入题干的括号内。
多选不给分。
每题材5分,共15分)1、图示半平面体受集中力P作用,其应力边界条件为………………………………………()①θ=0,π,σθ=σr=0 ②θ=0,π,σθ=τθr =0③θ=0,π,r≠0,σθ=τθr=0 ④θ=0,π,r≠0,σθ=τθr=02、铅直平面内正方形薄板,边长为2a,周长固定,只受重力作用。
用瑞次法求解,其位移表达式应为…………………………………………………………………………………………()3、不计体力,图示弹性体的应力函数为………………………………………………………()①υ=τ0xy-(qy3)/6b ②υ=τxy+(qy3)/6b③υ=-τ0xy-(qy3)/6b ④υ=-τxy+(qy3)/6b三、填空题1、(3分)按应力求解平面问题。
若认应力函数υ=ax5y+bxy5(a、b 不等于零),则系数b、b应满足关系()。
2、(4分)已知一点应力状态为σx =100,σy=50,τxy=10,则σ1=(),σ2=()。
3、(3分)图示薄板,设其厚度t=1。
弹性力学与有限元法习题集
2019/7/29
slide4
返回
第二章习题与答案
1. 试说明弹性力学的基本假设?
2. 弹性力学平面问题的基本方程有哪三大类?各表征何种关系? 3. 虚功原理内容?
2019/7/29
slide5
答案 返回
4. 工程上具有什么特点的空间问题可以简化为平面应力问题? 5.工程上具有什么特点的空间问题可以简化为平面应变问题?
slide29
返回
4.题答案
解:
1 xi 1 Sijm 2 1 x j
1 xm
yi 1 4 1
1
yj
1 2
7
7 13.5
ym
11 4
2019/7/29
slide30
返回
5.题答案
1
Ni (x, y)x i N j (x, y)x j N m (x, y)x m 2 A [(ai x i a j x j am ym ) (bi x i b j x j bm x m )x
6. 应用几何方程推导应变分量应满足下列变形协调方程。
2 x 2 y 2 xy
y2 x2 xy
2019/7/29
slide6
答案 返回
7. 悬臂梁在三角形分布载荷作用下,可以看成平面应力问题,
应力分量表达式为, x
q 4a 3
x3 y
2xy3
6 5
a
y2)
Y 0
y
y
y
dy dx
( xy
弹性力学与有限元分析试题及其答案
如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。
① I 单元的整体编码为162 ② II 单元的整体编码为426③ II 单元的整体编码为246 ④ III 单元的整体编码为243⑤ IV 单元的整体编码为564A. ①③B. ②④C. ①④D. ③⑤一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
国科大有限元作业1
作业1
1.叙述弹性力学中三维空间问题的平衡方程、几何方程、物理方程、力边界条
件和位移边界条件,并写出矩阵形式的表示式。
2.分别写出平面应力问题和平面应变问题的平衡方程、几何方程、物理方程、
力边界条件和变形协调方程,请以矩阵形式表示。
3.叙述最小势能原理,并写出其数学表示式。
4.试用流程图的形式概括有限单元法的分析过程。
5.用Galerkin加权余量法求解受均布外载荷简支梁的变形。
已知梁的横向位移
满足控制方程
4
4
w
d
EI q
dx
-=,其边界条件为
2
2
0(0)
d w
w x x l
dx
====
和。
弹性力学与有限元分析试题及参考答案
按应力求解平面应变问题的相容方程:
将已知应力分量 , , 代入上式,可知满足相容方程。
4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。
(1) , , ;
(2) , , ;
(3) , , ;
其中,A,B,C,D为常数。
弹性力学与有限元分析试题及参考答案
四、分析计算题
1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1) , , ;
(2) , , ;
其中,A,B,C,D,E,F为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ;(2)在区域内的相容方程 ;(3)在边界上的应力边界条件 ;(4)对于多连体的位移单值条件。
6、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
解:将应力函数 代入相容方程
可知,所给应力函数 能满足相容方程。
由于不计体力,对应的应力分量为
, ,
对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:
上边, , , , , ;
解:应变分量存在的必要条件是满足形变协调条件,即
将以上应变分量代入上面的形变协调方程,可知:
(1)相容。
(2) (1分);这组应力分量若存在,则须满足:B=0,2A=C。
(3)0=C;这组应力分量若存在,则须满足:C=0,则 , , (1分)。
5、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
弹性力学及有限元习题参考答案(赵均海、汪梦甫)汇编
xy
x
xz
X 0
x
y
z
yx
y
yz
Y 0
x
y
z
zx
z
zy
Z 0
x
y
z
已知:
x
2f1
2f2
E(1 )
E
(
2A)
x (1 )(1 2)x2 (1 )(1 2) xy
τN =55.2Mpa;
习题 1.3
解:(1)应力不变量:
2 − 2 − 2
因为 I 1 = x + + ; I 2 = y + + −
将已知代入上式,得:I 1 = 25 MPa ,I 2 = −3250 MPa
(2)求主应力:
x −
y
2f2
2f1
E(1 )
E
(
2B)
y (1 )(1 2) y 2 (1 )(1 2) xy
z
z
0
xy
2f
2f2
E
( 21
)
y
(
2 1 ) x
xy
xz
0 , yz 0
z
z
+
z 2 z =
(1 )(1 2) (1 )
xy xy
E
xy
(
2 1 )
yz yz
E
yz
(
2 1 )
xz xz
有限元法基础习题答案
有限元法基础习题答案有限元法是一种常用的工程分析方法,广泛应用于结构力学、热传导、流体力学等领域。
它通过将复杂的物理问题离散化为一系列简单的子问题,并利用数值方法求解这些子问题,从而得到整体问题的近似解。
在学习有限元法的过程中,习题是必不可少的一环。
本文将给出一些有限元法基础习题的答案,希望能够帮助读者更好地理解和掌握这一方法。
习题一:一维线性弹性力学问题考虑一根长度为L的弹性杆,杆的截面积为A,杨氏模量为E。
在杆的一端施加一个沿杆轴向的拉力F,另一端固定。
假设杆轴向变形u(x)满足以下方程:EAu''(x) = -F,0 < x < Lu(0) = 0, u(L) = 0其中,u''(x)表示u(x)对x的二阶导数。
解答:根据上述方程,我们可以得到杆的位移函数u(x)的表达式。
首先,对方程两边进行积分,得到:EAu'(x) = -Fx + C1其中,C1为积分常数。
再次对方程两边进行积分,得到:EAu(x) = -F/2*x^2 + C1*x + C2其中,C2为积分常数。
根据边界条件u(0) = 0,可得C2 = 0。
代入边界条件u(L) = 0,可得:EAu(L) = -F/2*L^2 + C1*L = 0由此可得C1 = F/2*L。
将C1代入上式,可得:EAu(x) = -F/2*x^2 + F/2*L*x最终得到杆的位移函数u(x)的表达式为:u(x) = (-F/2*E)*(x^2 - L*x),0 < x < L习题二:二维平面弹性力学问题考虑一个正方形薄板,边长为L,板的厚度为h。
假设薄板的杨氏模量为E,泊松比为ν。
在薄板的一侧施加一个沿法向的均匀表面压力P,另一侧固定。
求薄板的位移和应力分布。
解答:根据平面弹性力学理论,我们可以得到薄板的位移和应力分布。
首先,根据杨氏模量E、泊松比ν和薄板的厚度h,可以计算出薄板的弹性模量D:D = E*h^3 / (12*(1-ν^2))接下来,根据薄板的边界条件和平衡方程,可以得到薄板的位移和应力分布。
弹性力学与有限元法习题集
2019/7/29
slide4
返回
第二章习题与答案
1. 试说明弹性力学的基本假设?
2. 弹性力学平面问题的基本方程有哪三大类?各表征何种关系? 3. 虚功原理内容?
2019/7/29
slide5
答案 返回
4. 工程上具有什么特点的空间问题可以简化为平面应力问题? 5.工程上具有什么特点的空间问题可以简化为平面应变问题?
6. “在应用有限元求解弹性力学平面问题时,单元划分得越小 越好” ,这句话对吗?试说明理由。
2019/7/29
slide18
答案 返回
7. 试证明平面三角形三结点单元的位移模式:
ux, y a1 a2 x a3 y vx, y a4 a5 x a6 y
含有刚体位移状态。
2019/7/29
slide23
答案 返回
15. 如图所示单元,在jm边上作用有线性分布的水平载荷, 试求其等效结点载荷。单元的厚度为1cm。
2019/7/29
slide24
答案 返回
16. 如图所示单元,在ij边上作用有均布,载荷密度为q,试 单元的等效结点载荷。单元的厚度为t。
2019/7/29
2
xy
,
y
qx
y3 4a3
3y 4a
1 2
xy
q 8a 3
3x 2
a2 y2
1 a4 y 4 6 a2 y 2
5
5
试检验这些应力公式是否满足变形协调方程 ?
2019/7/29
15秋弹性力学及有限元大作业
2015弹性力学及有限元课程大作业
要求:
1)以个人或小组(不超过三人)为单位完成有限元分析计算;
2)编写计算分析报告;
3)计算分析报告应包括以下部分:
a) 采用力学理论知识描述问题及数学建模;
b) 有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制)
c) 计算结果及结果分析(位移分析、应力分析、正确性分析评判), 并与弹性力学理论计算结果比较。
d) 多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的影响分析等)。
e) 结论及总结,每个成员工作量认领。
4)有限元软件不限,1月7日前完成,并递交计算分析报告(电子文档,包含联系方式)到任课老师电子信箱,请注意设定收件回执。
5) 电子信箱:Eking@
作业题:
图示为一隧道断面,其内受均布压力q,埋置于土壤中;
1)根据图1所示,设定外部土壤均布压力为p,
a)试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时
的位移和应力分布情况。
(隧道材料为钢或混凝土,几何尺寸和压力大
小自行确定)
b)利用结构轴对称条件,建立对称模型,对比分析对称模型和完整模型
的差异。
**完成a)最高80,完成a)+b)最高100分。
小组成员应最少完成一种单元类型的模型分析。
图1。
弹力有限元作业
6-4对下图所示的离散结构,试求结点1,2的位移及铰支座3,4,5的反力(按平面应力问题计算)采用MATLAB进行运算程序:一、计算弹性模量E、泊松比NU、厚度t、节点坐标为(xi,yi)、(xj,yj)、(xm,ym)的单元刚度矩阵。
p=1表明函数用于平面应力情况。
p=2表明函数用于平面应变情况。
function y=LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) A=(xi*(yj-ym)+xj*(ym-yi)+xm*(yi-yj))/2;betai=yj-ym;betaj=ym-yi;betam=yi-yj;gammai=xm-xj;gammaj=xi-xm;gammam=xj-xi;B=[betai 0 betaj 0 betam 0;0 gammai 0 gammaj 0 gammam;gammai betai gammaj betaj gammam betam]/(2*A);if p==1D=(E/(1-NU*NU))*[1 NU 0;NU 1 0; 0 0 (1-NU)/2];elseif p==2D=(E/(1+NU)/(1-2*NU))*[1-NU NU 0; NU 1-NU 0;0 0 (1-2*NU)/2]; endy=t*A*B'*D*B;二、计算整体刚度矩阵K。
function y=LinearTriangleAssemble(K,k,i,j,m)K(2*i-1,2*i-1)=K(2*i-1,2*i-1)+k(1,1);K(2*i-1,2*i)=K(2*i-1,2*i)+k(1,2);K(2*i-1,2*j-1)=K(2*i-1,2*j-1)+k(1,3);K(2*i-1,2*j)=K(2*i-1,2*j)+k(1,4);K(2*i-1,2*m-1)=K(2*i-1,2*m-1)+k(1,5);K(2*i-1,2*m)=K(2*i-1,2*m)+k(1,6);K(2*i,2*i-1)=K(2*i,2*i-1)+k(2,1);K(2*i,2*i)=K(2*i,2*i)+k(2,2);K(2*i,2*j-1)=K(2*i,2*j-1)+k(2,3);K(2*i,2*j)=K(2*i,2*j)+k(2,4);K(2*i,2*m-1)=K(2*i,2*m-1)+k(2,5);K(2*i,2*m)=K(2*i,2*m)+k(2,6);K(2*j-1,2*i-1)=K(2*j-1,2*i-1)+k(3,1); K(2*j-1,2*i)=K(2*j-1,2*i)+k(3,2);K(2*j-1,2*j-1)=K(2*j-1,2*j-1)+k(3,3); K(2*j-1,2*j)=K(2*j-1,2*j)+k(3,4);K(2*j-1,2*m-1)=K(2*j-1,2*m-1)+k(3,5); K(2*j-1,2*m)=K(2*j-1,2*m)+k(3,6);K(2*j,2*i-1)=K(2*j,2*i-1)+k(4,1);K(2*j,2*i)=K(2*j,2*i)+k(4,2);K(2*j,2*j-1)=K(2*j,2*j-1)+k(4,3);K(2*j,2*j)=K(2*j,2*j)+k(4,4);K(2*j,2*m-1)=K(2*j,2*m-1)+k(4,5);K(2*j,2*m)=K(2*j,2*m)+k(4,6);K(2*m-1,2*i-1)=K(2*m-1,2*i-1)+k(5,1); K(2*m-1,2*i)=K(2*m-1,2*i)+k(5,2);K(2*m-1,2*j-1)=K(2*m-1,2*j-1)+k(5,3); K(2*m-1,2*j)=K(2*m-1,2*j)+k(5,4);K(2*m-1,2*m-1)=K(2*m-1,2*m-1)+k(5,5); K(2*m-1,2*m)=K(2*m-1,2*m)+k(5,6);K(2*m,2*i-1)=K(2*m,2*i-1)+k(6,1);K(2*m,2*i)=K(2*m,2*i)+k(6,2);K(2*m,2*j-1)=K(2*m,2*j-1)+k(6,3);K(2*m,2*j)=K(2*m,2*j)+k(6,4);K(2*m,2*m-1)=K(2*m,2*m-1)+k(6,5);K(2*m,2*m)=K(2*m,2*m)+k(6,6);y=K;三、计算单元位移矢量为u时的单元应力。
弹性力学试题及标准答案
弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
--弹性力学与有限元分析试题及参考答案
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
弹性力学及有限元试题
弹性力学及有限元试题(一) 问答题(20分)1、什么是圣维南原理?举例说明怎样把它应用于工程问题的简化中。
2、什么叫做一点的应力状态?如何表示一点的应力状态(要求具体说明或表达)。
3、何谓逆解法和半逆解法?它们的理论依据是什么?4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。
5、要保证有限元方法解答的收敛性,位移模式必须满足那些条件?(二) (10分)1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。
2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。
(三)已知,其他应力分量为零,求位移场。
(10分)(四)设有矩形截面的悬臂粱,在自由端受有集中荷载F;体力可以不计。
试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。
(五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。
提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ).(六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。
设μ=0,试取位移分量的表达式为用瑞利—里茨法求解(15分)。
(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。
(八)用刚度集成法求下图所示结构的整体刚度矩阵K。
(10分)要求:单元刚度矩阵元素用ek形式表示;单元刚度矩阵用e K形式表ij示,其中e为单元号。
弹性力学与有限元分析考试试题及其答案
2012年某高校度弹性力学与有限元分析复习题及其答案(内部资料)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
弹性力学与有限元分析试题及参考答案
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题地应力分量存在地必要条件,并考虑下列平面问题地应力分量是否可能在弹性体中存在.资料个人收集整理,勿做商业用途(1)By Ax x,Dy Cx y,Fy Ex xy;(2))(22y xA x,)(22y xB y,Cxy xy;其中,A ,B ,C ,D ,E ,F 为常数.解:应力分量存在地必要条件是必须满足下列条件:(1)在区域内地平衡微分方程xyyxxyyyxx;(2)在区域内地相容方程02222yx yx;(3)在边界上地应力边界条件sflms f ml ysxy yxs yx x;(4)对于多连体地位移单值条件.资料个人收集整理,勿做商业用途(1)此组应力分量满足相容方程.为了满足平衡微分方程,必须A=-F ,D=-E.此外还应满足应力边界条件.资料个人收集整理,勿做商业用途(2)为了满足相容方程,其系数必须满足A+B=0;为了满足平衡微分方程,其系数必须满足A=B=-C/2.上两式是矛盾地,因此,此组应力分量不可能存在.资料个人收集整理,勿做商业用途2、已知应力分量312x C Qxyx,2223xy C y,y x C yC xy2332,体力不计,Q 为常数.试利用平衡微分方程求系数C1,C2,C3.解:将所给应力分量代入平衡微分方程0xyyxxyyyxx得23033322322212xy C xy C xC yC xC Qy即230333222231xy C C yC Q xC C 由x ,y 地任意性,得23030332231C C C Q C C 由此解得,61Q C ,32Q C ,23Q C 3、已知应力分量q x,q y,0xy,判断该应力分量是否满足平衡微分方程和相容方程.解:将已知应力分量q x,q y,0xy,代入平衡微分方程0Y xyX yxxyyyxx可知,已知应力分量q x,q y,0xy一般不满足平衡微分方程,只有体力忽略不计时才满足.按应力求解平面应力问题地相容方程:yx xyxyxy yx 22222)1(2)()(将已知应力分量q x,q y,0xy代入上式,可知满足相容方程.按应力求解平面应变问题地相容方程:yx xyxyxyyx2222212)1()1(将已知应力分量q x,q y,0xy代入上式,可知满足相容方程.4、试写出平面问题地应变分量存在地必要条件,并考虑下列平面问题地应变分量是否可能存在.(1)Axy x,3By y,2Dy C xy;(2)2Ay x ,y Bx y2,Cxy xy;(3)0x,0y ,Cxy xy ;其中,A ,B ,C ,D 为常数.解:应变分量存在地必要条件是满足形变协调条件,即yx x yxyyx 22222将以上应变分量代入上面地形变协调方程,可知:(1)相容.(2)C By A 22(1分);这组应力分量若存在,则须满足:B=0,2A=C.(3)0=C ;这组应力分量若存在,则须满足:C=0,则0x,0y,0xy(1分).5、证明应力函数2by 能满足相容方程,并考察在如图所示地矩形板和坐标系中能解决什么问题(体力不计,0b ).解:将应力函数2by 代入相容方程24422444yyxx可知,所给应力函数2by 能满足相容方程.由于不计体力,对应地应力分量为b yx222,022xy,2yx xy对于图示地矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上地面力分别为:上边,2h y,0l ,1m,0)(2h yxyxf ,0)(2h yyyf ;下边,2h y,0l ,1m ,0)(2h yxyx f ,0)(2h yyy f ;左边,2l x,1l ,0m ,b f l xxx2)(2,0)(2l xxyy f ;右边,2l x,1l ,0m ,b f l xxx 2)(2,0)(2l xxyy f .l/2l/2h/2h/2yxOOx b 可见,上下两边没有面力,而左右两边分别受有向左和向右地均布面力2b.因此,应力函数2by能解决矩形板在x 方向受均布拉力(b>0)和均布压力(b<0)地问题.资料个人收集整理,勿做商业用途6、证明应力函数axy 能满足相容方程,并考察在如图所示地矩形板和坐标系中能解决什么问题(体力不计,0a ).解:将应力函数axy 代入相容方程24422444yyxx可知,所给应力函数axy 能满足相容方程.由于不计体力,对应地应力分量为022yx,022xy,ayx xy2对于图示地矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上地面力分别为:上边,2h y,0l ,1m ,a f h yxyx2)(,0)(2h yyyf ;下边,2h y ,0l ,1m ,a f h yxyx 2)(,0)(2h yyy f ;左边,2l x ,1l ,0m ,0)(2l xxxf ,a f l xxyy 2)(;右边,2l x,1l ,0m ,0)(2l xxx f ,a f l xxyy 2)(.可见,在左右两边分别受有向下和向上地均布面力a ,而在上下两边分别受有向右和向左地均布面力 a.因此,应力函数axy 能解决矩形板受均布剪力地问题.资料个人收集整理,勿做商业用途7、如图所示地矩形截面地长坚柱,密度为,在一边侧面上受均布剪力,试求应力分量.解:根据结构地特点和受力情况,可以假定纵向纤维互不挤压,即设0x.由此可知l/2l/2h/2h/2yxO22yx将上式对y 积分两次,可得如下应力函数表达式)()(,21x f y x f yx 将上式代入应力函数所应满足地相容方程则可得)()(424414dxx f d dxx f d y2.3 直角三角形固定在刚性基础上,受齐顶地水压力和自重作用,如图 2.14所示.若按一个单元计算,水地容重g ,三角形平面构件容重g ,取泊松比v =1/6,试求顶点位移和固定面上地反力.资料个人收集整理,勿做商业用途解:按逆时针编码,局部编码与整体编码相同:1-2-3建立坐标)0,0(3)3,0(20,21:a a xoy (1)求形函数矩阵:aa a a 60321a b b a b 303321ac a c c 220321图(2.14)形函数:)(21y c x b a AN i i i i233221aa a A所以:ay ax Na y N a xN 32132321形函数地矩阵为:ay a xay ax ay a x a y a xN NN Nmji321302003210302(2)刚度矩阵333231232221131211KKKK K K K K KKesr sr s r sr s r s r s r sr rsb bc c c b b c b c c b c c b b AEtK21212121142125213531416122aE A Et t 可得:40035353415093532211EKEK251035343127273323531233E KEK215251935313EK41253535323EK431274252151273321352594140012535035250215250254150191009353E Ke(3)位移列向量和右端项由边界条件可确定:Teu a00022水压力和构件厚分别为:10tgh p TTet l q h q h q R 032031020306000001自重为W 与支座反力:Ty x y x e W R R W W R R R 330333112所以:Ty x y x eW R h q R W h q W R R R33363303011由eeeRa K得到下列矩阵方程组:3336300030301122W R h q R W h q W R R u y x y x 化简得:431274252151273321352594140012535035250215250254150191009353E Ke364035353022W h q u E可得:EW E h q u 363567022将22u 代入下式:333425135025103533031122W R h q R W R R u E y x y x 固定面上地反力:ahga gh q 330从而可得支座反力为:43221234120303011h q W Rh q W R W h q R WR y x y x 这是y 地线性方程,但相容方程要求它有无数多地解(全柱内地y 值都应该满足它),可见它地系数和自由项都应该等于零,即资料个人收集整理,勿做商业用途0)(414dxx f d ,)(424dxx f d 这两个方程要求ICx Bx Axx f 231)(,KJx Ex Dxx f 232)(代入应力函数表达式,并略去对应力分量无影响地一次项和常数项后,便得2323)(ExDxCx BxAxy 对应应力分量为22yxgyEDx B Ax y xy26)26(22CBx Axyx xy2322以上常数可以根据边界条件确定.左边,0x ,1l,0m ,沿y 方向无面力,所以有)(C xxy右边,b x ,1l ,0m ,沿y 方向地面力为q ,所以有qBb Ab bxxy23)(2上边,0y ,0l ,1m ,没有水平面力,这就要求xy 在这部分边界上合成地主矢量和主矩均为零,即)(00dx y b xy将xy地表达式代入,并考虑到C=0,则有)23(23232BbAbBxAxdx Bx Ax b b 而00)(dx ybxy自然满足.又由于在这部分边界上没有垂直面力,这就要求y在这部分边界上合成地主矢量和主矩均为零,即0)(00dx y b y,)(00x d x y b y将y地表达式代入,则有02323)26(22Eb DbEx Dx dx E Dx b b22)26(2323EbDbExDxxdx E Dx b b 由此可得2bq A,bq B,0C ,0D ,0E 应力分量为0x,gy bx by q y312,23bx bx q xy虽然上述结果并不严格满足上端面处(y=0)地边界条件,但按照圣维南原理,在稍远离y=0处这一结果应是适用地.资料个人收集整理,勿做商业用途8、证明:如果体力分量虽然不是常量,但却是有势地力,即体力分量可以表示为xV f x,yV f y,其中V 是势函数,则应力分量亦可用应力函数表示为,V yx22,V xy22,yx xy2,试导出相应地相容方程.资料个人收集整理,勿做商业用途证明:在体力为有势力地情况下,按应力求解应力边界问题时,应力分量x,y,xy应当满足平衡微分方程yV xyx V yxxyyyxx(1分)还应满足相容方程y f x f yxy x yx 12222(对于平面应力问题)yf xf yxy x yx 112222(对于平面应变问题)并在边界上满足应力边界条件(1分).对于多连体,有时还必须考虑位移单值条件.首先考察平衡微分方程.将其改写为0xVyyV x xyyyxx这是一个齐次微分方程组.为了求得通解,将其中第一个方程改写为yxxyVx根据微分方程理论,一定存在某一函数A (x ,y ),使得yA Vx,xAyx同样,将第二个方程改写为yxyxVy(1分)可见也一定存在某一函数B (x ,y ),使得xB Vy,yByx由此得yB xA 因而又一定存在某一函数y x,,使得y A,xB代入以上各式,得应力分量V yx22,V xy22,yx xy2为了使上述应力分量能同量满足相容方程,应力函数y x,必须满足一定地方程,将上述应力分量代入平面应力问题地相容方程,得资料个人收集整理,勿做商业用途Vyx Vx Vyyx2222222222221VyxV yxxy yx222222222222222212简写为V24)1(将上述应力分量代入平面应变问题地相容方程,得Vyx Vx Vyyx22222222222211VyxVyxxy yx2222222222222222112简写为V241219、如图所示三角形悬臂梁只受重力作用,而梁地密度为,试用纯三次地应力函数求解.O解:纯三次地应力函数为3223dycxyy bx ax相应地应力分量表达式为dy cx xf yx x6222,gy by ax yf xy y2622,cybx yx xy222这些应力分量是满足平衡微分方程和相容方程地.现在来考察,如果适当选择各个系数,是否能满足应力边界条件.资料个人收集整理,勿做商业用途上边,0y ,0l ,1m,没有水平面力,所以有2)(bx yxy对上端面地任意x 值都应成立,可见b 同时,该边界上没有竖直面力,所以有6)(ax yy对上端面地任意x 值都应成立,可见a 因此,应力分量可以简化为dy cx x62,gy y,cyxy2斜面,tanx y ,sin 2cosl ,cos cos m ,没有面力,所以有0tantan x y xyyx y yx x lmml 由第一个方程,得sin tan 6sin4costan 2sintan 62dx cx cx dx cx 对斜面地任意x 值都应成立,这就要求tan64d c 由第二个方程,得sin sin tan 2cos tan sintan 2gx cx gx cx 对斜面地任意x 值都应成立,这就要求0tan 2g c (1分)由此解得cot 21g c(1分),2cot31g d从而应力分量为2cot2cot gy gx x,gy y,cotgy xy设三角形悬臂梁地长为l ,高为h ,则lh ta n.根据力地平衡,固定端对梁地约束反力沿x 方向地分量为0,沿y 方向地分量为glh 21.因此,所求x 在这部分边界上合成地主矢应为零,xy应当合成为反力glh 21.资料个人收集整理,勿做商业用途cotcotcot2cot2202gh glh dygy gl dyh lxh xglhgh dygy dyh h lx xy21cot21cot2可见,所求应力分量满足梁固定端地边界条件.10、设有楔形体如图所示,左面铅直,右面与铅直面成角,下端作为无限长,承受重力及液体压力,楔形体地密度为1,液体地密度为2,试求应力分量.资料个人收集整理,勿做商业用途解:采用半逆解法.首先应用量纲分析方法来假设应力分量地函数形式.取坐标轴如图所示.在楔形体地任意一点,每一个应力分量都将由两部分组成:一部分由重力引起,应当与g 1成正比(g 是重力加速度);另一部分由液体压力引起,应当与g2成正比.此外,每一部分还与,x ,y 有关.由于应力地量纲是L-1MT-2,g 1和g 2地量纲是L-2MT-2,是量纲一地资料个人收集整理,勿做商业用途量,而x 和y 地量纲是L ,因此,如果应力分量具有多项式地解答,那么它们地表达式只可能是gx A 1,gy B 1,gx C2,gy D2四项地组合,而其中地A ,B ,C ,D 是量纲一地量,只与有关.这就是说,各应力分量地表达式只可能是x 和y 地纯一次式.资料个人收集整理,勿做商业用途其次,由应力函数与应力分量地关系式可知,应力函数比应力分量地长度量纲高二次,应该是x 和y 纯三次式,因此,假设资料个人收集整理,勿做商业用途3223dycxyy bx ax相应地应力分量表达式为dy cx xf yx x6222,gy byax yf xy y12226,cybx yx xy222这些应力分量是满足平衡微分方程和相容方程地.现在来考察,如果适当选择各个系数,是否能满足2g1gyxO应力边界条件.资料个人收集整理,勿做商业用途左面,0x ,1l,0m ,作用有水平面力gy 2,所以有gydy xx26)(对左面地任意y 值都应成立,可见62gd同时,该边界上没有竖直面力,所以有2)(cy xxy对左面地任意y 值都应成立,可见c 因此,应力分量可以简化为gy x2,gy byax y126,bxxy2斜面,tan y x ,cos l ,sin2cosm ,没有面力,所以有0tantan y x xy yy x yx x lmm l 由第一个方程,得sin tan 2cos 2by gy 对斜面地任意y 值都应成立,这就要求sin tan 2cos 2b g 由第二个方程,得sin sin4sin tan 6cos tan 2sin 2tan611y g b a by gy byay 对斜面地任意x 值都应成立,这就要求4tan61g ba 由此解得321cot31cot61g g a,22cot21g b 从而应力分量为gy x 2,y g g xg g y 122321cotcot2cot ,22cotgx xy 位移边界条件对称、固定边和简支边上支点地已知位移条件如下:对称轴: 法线转角=0固定边: 挠度=0 (或已知值)边线转角=0 (或已知值)法线转角=0 (或已知值)简支边: 挠度=0 (或已知值)边线转角=0 (或已知值)计算图示四边固定方板方板地边长为l ,厚度为t ,弹性模型量为E ,波松比μ=0.3,全板承受均布法向荷载q,求薄板中地挠度和内力. 资料个人收集整理,勿做商业用途单元划分:为了说明解题方法,采用最简单地网络2×2,即把方板分成四个矩形单元.由于对称性,只需计算一个单元,例如,计算图中有阴影地单元,单元地节点编号为1,2,3,4.此时,单元地a, b 是4l ba 计算节点荷载:由前面地均布荷载计算公式得:Tl l l l l l l l qlR ]21121212[192}{2边界条件:边界23和34为固定边,因此节点2, 3, 4地挠度、边线和法线转角均为零.边界12和14为对称轴,因此θx1 =0、θy1 =0.于是,在4个节点和12个位移分量中,只有一个待求地未知量1w .资料个人收集整理,勿做商业用途结构地代数方程组:这是一个单元地计算题目,单元刚度矩阵在此处即为总刚度矩阵.引入支承条件后,在总刚度矩阵中只取第一行、列元素,在方程组右端项中只保留第一个元素.于是结构地代数方程为:16)681(15815821201120qlw l D w k lD 资料个人收集整理,勿做商业用途同此解出04100148.0D ql w .其中32309158.0)1(12EtEt D 内力:利用式(4-2-6)可求得方板中点力矩为:由表看出,网格越密,计算结果越接近于精确答案.还可看出,位移地精度一般比内力地精度高,这是因为在位移法中,位移是由基本方程直接求出地,而内力则是根据位移间接求出地.资料个人收集整理,勿做商业用途第三章平面问题有限单元法习题答案3-2图示等腰直角三角形单元,设=1/4,记杨氏弹性模量E ,厚度为t ,求形函数矩阵[N]、应变矩阵[B]、应力矩阵[S]与单元刚度矩阵[K]e.资料个人收集整理,勿做商业用途【解】:ijmj imi j ji mm i j i m j m i i m j j m i m j i j m m j ix x c y y b y x y x a x x c y y b y x y x a x x c y y b y x y x a ,,,,,,aj(0,a)aac a a b a aa a a ac b a a a c a a b a a mmmj j j i i i 0,0,0*0*0,00,00**0000,0,0*00*02mjim j i N N N N N N N000),,()(21m j i y c x b a AN i i ii 221001010121aa a Ayxayxy x ay x a Na yx a ay ax aaN a y ay x a N a x y ax a N m j i 000001)(1)00(1)00(122221000310131031001310311103)411(2412100141141411411)4121)(411()411()1(2210011011)21)(1()1(EE E E D321B B B Baa c a ab a aa a a a cb a a ac a a b a a mmmj jj i i i 0,0,0*0*0,000,00**0000,0,0*00*0211011010100001000111110011011000110000110000100212aBaB aB a a a aB b c c b AB mjii i i i i1003101310E D1101101010000100011aB11011313001*********11110100001000110003101310aE a E BD S 1003101310E D11111010000100011aB42311124111331300111011011011013100320211101101010000100011000310131101101010000100011022Et at aE tAB D BKTTe3-3正方形薄板,受力与约束如图所示,划分为两个三角形单元,=1/4,板厚为t ,求各节点位移与应力.【解】:yP 34242311124111331300111011011011013100320Et tAB D BKTe0000000000000000003001310001101100011011001003130031114200111324201Et K4211310024131100111001001303100031013000111001000000000000000000202Et K4211310241311001140023113042011310240111120041300311142001113242021Et KKK 载荷向量:000000P R1001414004040042000000004211310241311001140023113042011310240111120041300311142001113242013344332211P v u Et P v u v u v u v u Et 101414041PEt PEt v u 05010015330050000044332211Et P v u v u v u v u 10003101310E D111101010000100011a B1101110001000010111aB12BB31201010003101325000000110111000100001011000310131033221111atPatPEtP aE v u v u v u BD 1002101031013200500011111000100001110310131022334422atP atP Et P aE v u v u v u BD 3-4三角形单元i,j,m 地j ,m 边作用有如图所示线形分布面载荷,求结点载荷向量.【解】:面力移置公式:tdsp NRTe其中:mjim j i N N N N N N N000),,()(21m j i y c xb a AN i i ii 426,132,62*63*2352,426,26*22*5165,363,213*56*6mmmj j j i i i c b a c b a c b a 213431402212165136122121Aj(6,3)i(2,2)m(5,6)1q 2q yxo)46(131)342(131)321(131y x N y x N y x N mj i 所以:yx yx yx y x yx y x N460342033004603420321131载荷分布函数:0)6(3)(121y q q q p积分函数:])6,5[(213x x y dyy q q q yxyx y x yx yxyxttdsy q q q yx y x yx yxyx y xRe3100)6(3)(460463420034233003211310)6(3)(464634200342330032113112163121dyy q q q y y y y t dyy q q q y yyy yy yy tRe)6(3)(133130013313263130026313000013*3100)6(3)(473160473163283420032834200013*3101216312163dyy q q q q y y q q q q y tdyy q q q q y y q q q q y tRe63121212126312121212))(36(*30))(36(*60027100)3)(2(*133130)3)(2(*26313013*310126323122126312631212632312212631263129292331)(321)36(3)(3)36(299331)(621)36(6)(6)36(q q y yq q yyq q dyy y q q dy y q q q q yyq q yyq q dy y y q q dy y q q 所以:210210031002182902990027100)3)(2(*133130)3)(2(*26313013*310121212126312121212q q q q tq q q q t dyy q q q q y y q q q q ytRe3-5图示悬臂深梁,右端作用均布剪力,合力为P ,取=1/3,厚度为t ,如图示划分四个三角形单元,求整体刚度方程.资料个人收集整理,勿做商业用途【解】:13524612341000420248410012102112)311(23121001311310311311)3121)(311()311()1(22100011011)21)(1()1(EE E E D10420248E D1111101000010001B53411235211442400211011011011024200416211101101010000100011020410241101101010000100018Et t E tAB D B KTTe534112352114424002110110110110242004164321Et KKKK0000000000000000000000000000000000000000000000400042020000010011100000000000000000000000000000410053120000210035140000010011100000200024041K534112352114424002110110110110242004164321Et KKKK00000000000000000000000000000000000000000000001011000100000424002000001253004100001435002100000000000000000000000000002420040000010110001162Et K00000000000000000000000000000000000000000000000080008404000002002220000000000000000000000000000082001062400004200610280000020022200000400048081612Et KK80844000020022200000000000000000000000000000820010624000042006102800000200222000004000480800000000000000000000000000000000000000000000000000001643Et KK808440200222000000000000000000000000000008200186248404420061228222002002220000040004808000000008200106240000420061028000002002220000040004808164321Et K K K K K算例2:正方形薄板平面应力问题地求解已知图示正方形薄板,沿其对角线承受压力作用,载荷沿厚度为均匀分布,P=20kN/m.设泊松比u=0,板厚t=1m ,求此薄板应力.资料个人收集整理,勿做商业用途课本第42页3.7节计算结果如下:变形:76.176.172.388.052.1252.32653321u u v u v v 应力:)/(40.40.2088.021m kN xyy x ;)/(052.1276.122m kN xyy x;)/(08.372.388.023m kN xyy x ;)/(32.172.3024m kN xyy x 1、如图1所示等腰直角三角形单元,其厚度为t ,弹性模量为E ,泊松比0;单元地边长及结点编号见图中所示.求(1)形函数矩阵N(2)应变矩阵B 和应力矩阵S (3)单元刚度矩阵eK1、解:设图1所示地各点坐标为点1(a ,0),点2(a ,a ),点3(0,0)于是,可得单元地面积为12A2a ,及(1)形函数矩阵N 为(7分)123aa12122121(0a a )a 1(00a )a 1(aa 0)aN x y N x y N x y ;123123N N N NI I I N N N (2)应变矩阵B 和应力矩阵S 分别为(7分)12a 010-a a-aaB ,220010a aa 0B ,32-a 0100a-aB ;123B B B B 12a00-a a11-a a 22E S ,22000a a1a 02E S ,32-a 000a10-a 2E S ;123123SD B B B S S S (3)单元刚度矩阵eK(6分)111213T21222331323331102113120111100140202002000201111eEt tAK K K KB DB K K K K K K 2、图2(a )所示为正方形薄板,其板厚度为t ,四边受到均匀荷载地作用,荷载集度为21/N m ,同时在y 方向相应地两顶点处分别承受大小为2/N m 且沿板厚度方向均匀分布地荷载作用.设薄板材料地弹性模量为E ,泊松比0.试求资料个人收集整理,勿做商业用途(1)利用对称性,取图(b )所示1/4结构作为研究对象,并将其划分为4个面积大小相等、形状相同地直角三角形单元.给出可供有限元分析地计算模型(即根据对称性条件,在图(b )中添加适当地约束和荷载,并进行单元编号和结点编号).资料个人收集整理,勿做商业用途(2)设单元结点地局部编号分别为i 、j 、m ,为使每个单元刚度矩阵eK 相同,试在图(b )中正确标出每个单元地合理局部编号;并求单元刚度矩阵eK .资料个人收集整理,勿做商业用途(3)计算等效结点荷载.(4)应用适当地位移约束之后,给出可供求解地整体平衡方程(不需要求解).图13①②③④2、解:(1)对称性及计算模型正确(5分) (2)正确标出每个单元地合理局部编号(3分) (3)求单元刚度矩阵eK(4分) (4)计算等效结点荷载(3分)(5)应用适当地位移约束之后,给出可供求解地整体平衡方程(不需要求解).(5分)如图3.11所示地平面三角形单元,厚度t=1cm ,弹性模量E=2.0*105mpa ,泊松比γ=0.3,试求插值函数矩阵N ,应变矩阵B ,应力矩阵S ,单元刚度矩阵Ke.资料个人收集整理,勿做商业用途图2j m m mmi ii ij j j 1N /m21N /m 12456对称1011012020031214301201eEt K对称123356322000026121006120146101620212v v u Et tv u u解:此三角形单元可得:2△=(10-2)*4=32,故有a1=1/32*(8u1-5u2-16u3)a2=1/32*(4u1-4u2)a3=1/32*(-8u1+8u3)a4=1/32*(56v1-8v2-16v3)a5=1/32*(-4v1+4v2)a6=1/32*(-8v1+8v3)而b1=y2-y3=-4 b1=x2-x3=-8b1=y3-y1=4 b1=x3-x1=0b1=y1-y2=0 b1=x1-x2=8b1 0 b2 0 b3 0 -4 0 4 0 0[B]=1/2△* 0 c1 0 c2 0 c3 =1/32* 0 -8 0 0 8资料个人收集整理,勿做商业用途c1 b1 c2 b2 c3 b3 -8 4 0 8 01 γ 0 1 0.3 0[D]=[E/(1-γ2)]* γ 1 0 =[E/0.91]* 0.3 1 0资料个人收集整理,勿做商业用途0 0 (1-γ)/2 0 0 0.351 0.3 0 -0.125 0 0.125 0 0[S]=[D]*[B]={E/0.91}* 0.3 1 0 * 0 -0.25 0 0 0.25资料个人收集整理,勿做商业用途0 0 0.35 -0.25 0.125 0 0.25 01.4 0 -1.4 -0.7 0 0.70 4 -0.6 -4 0 0[K]①=BT*D*B①*t*△={E/36.4}* -1.4 -0.6 2.4 1.3 0.6 0.7资料个人收集整理,勿做商业用途-0.7 -4 1.3 -0.6 -1 0.350 0 0.6 -1 -0.6 00.7 0 0.7 -0.35 0 01 0 0 0.6 -1 -0.60 0.35 0.7 0 -0.7 -0.350 0.7 1.4 0 -1.4 -0.7[K]②=BT*D*B②*t*△={E/36.4}* 0.6 0 0 4 -0.6 -4资料个人收集整理,勿做商业用途1 -0.7 -1.4 -0.6 2.4 1.30.6 -0.35 -1.4 -4 1.3 3.53.12 求下图中所示地三角形地单元插值函数矩阵及应变矩阵,u1=2.0mm,v1=1.2mm,u2=2.4mm,v2=1.2mm,u3=2.1mm,v3=1.4mm,求单元内地应变和应力,求出主应力及方向.若在单元jm边作用有线性分布面载荷(x轴),求结点地地载荷分量.资料个人收集整理,勿做商业用途解:如图2△=64/3,解得以下参数:a1=19 a2=-2 a3=6;b1=-3 b2=4 b3=-1;c1=-1 c2=-3 c3=4;资料个人收集整理,勿做商业用途N1={64/3}*(19-3x-y) N2={64/3}*(-2-3x-3y)N3={64/3}*(6-x+4y)故N=Ni 0 Nj 0 Nm 00 Ni0 Nj0 Nm1 0 1 0 1 0 =0 1 0 1 0 1bi 0 bj 0 bm 0[B]={1/2△}* 0ci 0 cj 0 cm ci bi cj bj cm bm -3 0 4 0 -1 0={64/3}*0 -1 0 -3 0 4 -1 -3 -3 4 4 -11 γ 0[D]={E/(1-γ2)}*γ 1 00 (1-γ)/21 γ 0 -3 0 4 0 -1 0 单元应力矩阵[S]=[D]*[B]={E/13(1-γ2)}* γ 1 0* 0 -1 0 -3 0 4资料个人收集整理,勿做商业用途0 (1-γ)/2 -1 -3 -3 4 4 -12 1.1-3 -u 4 3u -1 4u2.4单元应力[δ]=[S]*[q]= {E/13(1-γ2)}* -3u -1 4u -3 -u 4* 1.2资料个人收集整理,勿做商业用途(u-1)/2 (3u-3)/2(3u-3)/2 2-2u 2-2u (u-1)/22.4资料个人收集整理,勿做商业用途1.43.13解:二维单元在x,y 坐标平面内平移到不同位置,单元刚度矩阵相同,在平面矩阵180°时变化,单元作上述变化时,应力矩阵不变化.3.14解:令1t,1p ,而E2.0e 011,1/3,210101102E D(0,1)(2,1)x y①②(0,0)(2,0)12312311223300000b b b Nc c c c b c b c b 2NBA单元①2.250.7500.75 2.25000.75D①②0.500.50000100010.500.51B①-1.125-0.75 1.125000.751.0+011*-0.375-2.250.37502.25-0.75-0.37500.3750.75Se ①S DB1.31250.75-0.5625-0.375-0.75-0.3750.752.4375-0.375-0.1875-0.375-2.25-0.5625-0.3750.562500.375*1.0011-0.375-0.187500.18750.3750-0.75-0.37500.3750.750-0.375-2.250.3752.25kee ①单元②:00.500.50B101001010.50.5②00.75 1.1250.75 1.125002.250.375 2.250.3750*1.00110.7500.750.37500.375Se ②0.7500.750.37500.37502.250.3752.250.3750.750.3751.31250.750.56250.3750.375 2.250.75 2.43750.3750.187500.3750.56250.37510.562500.37500.3750.18750.1875ke②由ke①和ke ②扩充KZ (总刚度阵)1.31250.750.56250.3750.750.375000.752.43750.3750.18750.375 2.25000.56250.3751.312500.75000.3750.3750.18750 2.437502.250.37501.01011*0.750.3750.750 2.06250.750.56250.3750.375 2.250kz e 2.250.75 4.68750.3750.18750000.3750.56250.3750.56250000.37500.3750.187500.1875而Re .kz qe ,其中112211Re22Rx Ry Rx Ry ,112200qex y x y ,化简得:112201.312500.7500.11310 2.43750 2.250.596820.750 2.06250.7500.194702.250.754.687510.42432x y x y 则,11220.56250.3750.750.3750.11130.148100.18750.375 2.250.59680.95170.750.3750.56250.3750.19470.17420.3750.3750.18750.42430.0482Rx Ry Rx Ry 3.15如图所示有限元网格,cm a4,单元厚度mm t 1,弹性模量MPa E5100.2,泊松比3.0.回答下述问题:(1)结点如何编号才能使结构刚度矩阵带宽最小?(2)如何设置位移边界条件才能约束结构地刚体移动?(3)形成单元刚度矩阵并集成结构刚度矩阵.(4)如果施加一定载荷,拟定求解步骤.(1) (2) (3)资料个人收集整理,勿做商业用途解:1、节点编号如图(2)所示;2、如图(3)设置位移边界条件才能约束结构地刚体移动;3、如图(2)所示各节点地坐标为(以m 为单位):1(0,0),2(0.08,0),3(0,0.04),4(0.08,0.04 ),5(0,0.08),6(0.08,0.08),7(0,0.12),8(0.08,0.12)资料个人收集整理,勿做商业用途解:单元号 1 2 3 4 56相邻结点1 3 4 5 5 72 2 5 4 6 63436 78对于单元号1:04.0321y y b ;04.0132y y b ;0213y y b ;08.0231x x c ;0312x x c ;08.0123x x c ;对于单元号2:04.0423y y b ;0342y y b ;04.0234y y b ;0243x x c ;08.0432x x c ;08.0324x x c ;对于单元号3:04.0354y y b ;0435y y b ;04.0543y y b ;0534x x c ;08.0345x x c ;08.0453x x c ;对于单元号4:04.0645y y b ;0564y y b ;04.0456y y b ;0465x x c ;08.0654x x c ;08.0546x x c ;对于单元号5:04.0765y y b ;04.0576y y b ;0657y y b ;08.0675x x c ;0756x x c ;08.0567x x c ;对于单元号6:04.0867y y b ;0786y y b ;04.0678y y b ;0687x x c ;08.0876x x c ;08.0768x x c ;平面三角形单元地面积均为1112321x x x 23210032.0m y y y 弹性矩阵均为0112E D12/)1(0003.0191.0100.21113.035.000应变矩阵11)5()3()1(021c b BBB110b c 220c b 220b c 330c b 33b c 2505.125.1225005.125.12002500025033)6()4()2(021c b BBB330b c 220c b 220b c 440c b 44b c 005.125.1200250002502505.125.12250应力矩阵)1()5()3()1(BD SSS2308.192418.84725.27100.1116154.99451.544835.1602418.84725.276154.9002308.190009451.544835.16)2()6()4()2(BD SSS2418.84725.27100.1116154.9002308.190009451.544835.162308.192418.84725.276154.99451.544835.16单元刚度矩阵tA SBKKKT)1()1()5()3()1(3297.07692.03846.05495.07143.03187.1100.181978.23846.01923.03297.03901.27143.03297.0005495.03297.05495.003846.01923.001923.03846.007692.03846.003846.07692.01978.2003297.01978.23297.0t A SBKKKT)2()2()6()4()2(3297.05495.03297.0005495.0100.181923.03846.003846.01923.003846.07692.007692.03846.001978.23297.01978.2003297.07143.03187.13297.07692.03846.05495.03901.27143.01978.23846.01923.03297.0结构刚度矩阵为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2 第10-6题图 解:本题只有三个结点,两个单元,计算结果应该是准确度不 会很高。 单元1的刚度矩阵 单元1的刚度矩阵
总刚度矩阵 载荷列阵为 为了消除总刚度矩阵的奇异性,利用乘大数法引入位移边 界条件,总刚度矩阵可以改写为 因此,位移列阵 于是,结点2和3处的位移和转角分别为 , , 10-7.如图 3所示薄板结构用四个三角形单元离散: i结 j结 m结 单元 点 点 点 A B C D 求结构的刚度矩阵。 1 3 2 1 4 4 3 3 3 5 5 2
Ke(2*jj-1:2*jj,2*kk-1:2*kk); end end end % 4.求解P矩阵 P=zeros(1,2*(n1+n2+1)); P(2*(n1+1))=P0; % 5.消除刚度矩阵奇异性 K=Kt; K(1,1)=K(1,1)*1e9; K(2,2)=K(2,2)*1e9; K(2*(n1+n2+1)-1,2*(n1+n2+1)-1)=K(2*(n1+n2+1)-1,2* (n1+n2+1)-1)*1e9; K(2*(n1+n2+1),2*(n1+n2+1))=K(2*(n1+n2+1),2*(n1+n2+1))*1e9; % 6.求解位移 a=(K\P')'; % 7.求解节点力 Pt=(Kt*a')'; % 8.求解节点应力 sigma_element=zeros(1,n1+n2); epsilon_element=zeros(1,n1+n2); B=[-1/2 sqrt(3)/2 1/2 -sqrt(3)/2]/Le1; for ii=1:n1 k=[ii,ii+1]; a_e(1:2)=a(2*k(1)-1:2*k(1)); a_e(3:4)=a(2*k(2)-1:2*k(2)); epsilon_element(ii)=B*a_e'; sigma_element(ii)=E*B*a_e'; end B=[-1/sqrt(2) -1/sqrt(2) 1/sqrt(2) 1/sqrt(2)]/Le2; for ii=n1+1:n1+n2 k=[ii,ii+1]; a_e(1:2)=a(2*k(1)-1:2*k(1)); a_e(3:4)=a(2*k(2)-1:2*k(2)); epsilon_element(ii)=B*a_e'; sigma_element(ii)=E*B*a_e'; end
10-4.图 1中所示钢索BC长600mm,BC和BD与铅垂线的夹角分别 为,在B点处沿竖直方向作用一集中力P=80kN,求B点的水平 方向和竖直方向的位移,点C和D处的支反力,单元节点力和 应力。钢索的弹性模量E=207GPa,截面面积。
图 1 第10-4题图 设BC钢索上某个单元内的两个结点的左边分别为,位移分 别为,那么该单元内的正应变的大小为 即 其中, 单位刚度矩阵为 同理BD钢索上某个单元内正应变的大小为 即 其中, 单位刚度矩阵为 由于BC钢索、BD钢索的内的应变均为常量,故将BC钢索 作为一个单元,BD钢索作为一个单元。可以利用如下的matlab 程序求得位移的大小以及相应的单元节点力,应力。
plot(B(1),B(2),'k.', 'Marker','.','MarkerSize',15) plot(D(1),D(2),'k.', 'Marker','.','MarkerSize',15) text(C(1)-30,C(2)-20,'C'); text(B(1)+20,B(2),'B'); text(D(1)+10,D(2)-20,'D'); text(B(1)+20,B(2)-200,'P','FontWeight','Bold'); text(C(1)-100,C(2)-100,'L_{BC}=600mm'); text(B(1)-100,B(2)+200,'\alpha=30^{。}'); text(B(1)+50,B(2)+180,'\beta=45^{。}'); plot([B(1),B(1)],[B(2),B(2)+200],'k-.'),hold on plot([B(1),B(1)],[B(2),B(2)-200],'k-','LineWidth',1.5),hold on arrow_P= [B(1),B(1)+8,B(1)-11;B(2)-200,B(2)-200+30,B(2)-200+30]; fill(arrow_P(1,:),arrow_P(2,:),'k') axis([-200,1000,-800,100]) theta=90:(120-90)/30:120; theta=theta*pi/180; r=100; x0=B(1); y0=B(2); x=x0+r*cos(theta); y=y0+r*sin(theta); plot(x,y,'k-'),hold on theta=45:(120-90)/45:90; theta=theta*pi/180; r=150; x0=B(1); y0=B(2); x=x0+r*cos(theta); y=y0+r*sin(theta); plot(x,y,'k-'),hold on box off
end BB=BB/D; Ke=conj(BB')*DD*BB*A; for jj=1:3 for kk=1:3 Kt((k(jj)*2-1):k(jj)*2,(k(kk)*2-1):k(kk)*2)=... Kt((k(jj)*2-1):k(jj)*2,(k(kk)*2-1):k(kk)*2)+... Ke((jj*2-1):jj*2,(kk*2-1):kk*2); end end end
B点是第2个结点,其位移大小为 C,D两点分别是第1个和第3个结点,由于没有力的加载 为,。 C,D两点的约束反力分别为, ,方向为沿各自钢索的方 向。 相应的正应力为,。 10-6.如图所示梁的结点2和3处的位移和转角。已知梁的弹性模 量为E,截面惯性矩。提示,梁的刚度方程为 其中,v为y方向位移,V为剪力,M为弯矩。
求得总刚度矩阵为令 图 1的matlab绘图指令
C=[0,0]; B=[600/2,-600*sqrt(3)/2]; plot([C(1),B(1)],[C(2),B(2)],'k-'),hold on axis equal D=[B(1)-B(2),0]; plot([D(1),B(1)],[D(2),B(2)],'k-'),hold on plot([C(1)-50,D(1)+50],[C(2),D(2)],'k-','LineWidth',2),hold on n=20; yinying=zeros(2,n+1); yinying(1,1:n+1)=(C(1)-50):((D(1)+50)-(C(1)-50))/n:(D(1)+50); yinying(2,1:n+1)=zeros(1,n+1); yinying(3,1:n+1)=yinying(1,1:n+1)+20*ones(1,n+1); yinying(4,1:n+1)=yinying(2,1:n+1)+20*ones(1,n+1); for ii=1:n+1 plot([yinying(1,ii),yinying(3,ii)], [yinying(2,ii),yinying(4,ii)],'k-'),hold on end plot(C(1),C(2),'k-', 'Marker','.','MarkerSize',15)
图 3 第10-7题图 解:对于某一单元 A是该单元的面积。 单元刚度矩阵 总刚度矩阵,代入诸 后可以得到 其中,t为厚度,E为杨氏模量,ν是泊松比 取h=40mm,w=100mm,E=200GPa,ν=0.32,t=1mm,可以利
用如下的matlab程序求解总刚度矩阵。
clc clear all E=200; % 杨氏模量 niu=0.32; % 泊松比 DD=[1,niu,0;niu,1,0;0,0,(1-niu)/2]; DD=DD*E/(1-niu^2); h=40; w=100; t=1; coord=conj([... 0 0;... 0 h;... w/2 h/2;... w 0;... w h ]'); nc=length(coord); element=[... 1 4 3;... 3 4 5;... 2 3 5;... 1 3 2 ]'; ne=length(element); for ii=1:ne k=element(1:3,ii)'; % 计算Ke x=coord(1,k(1:3)); y=coord(2,k(1:3)); b=[y(2)-y(3),y(3)-y(1),y(1)-y(2)]; c=[x(3)-x(2),x(1)-x(3),x(2)-x(1)]; D=det([1,1,1;x;y]); A=D/2; for jj=1:3 BB(1:3,(2*jj-1):2*jj)=[... b(jj) 0;... 0 c(jj);... c(jj) b(jj)];
clc clear all % 1.常量定义 E=207; A=120; L1=600; L2=L1*sqrt(3)/2*sqrt(2);