北邮-电磁场电磁波实验报告合集版

合集下载

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。

本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。

实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。

电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。

磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。

实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。

然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。

在不同电流下,我们分别测量了电磁场的强度,并记录下来。

接下来,我们使用磁力计来测量电磁场的方向。

将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。

然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。

在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。

通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。

根据这些数据,我们可以绘制出电磁场的强度和方向分布图。

从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。

讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。

这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。

而我们的实验结果也验证了这一规律。

此外,我们还发现电磁场的强度和方向与测量位置和角度有关。

在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。

这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。

结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。

为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。

本报告将详细介绍我们在北邮进行的电磁场实验及其结果。

实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。

实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。

此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。

实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。

实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。

当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。

实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。

实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。

根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。

此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。

实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。

实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。

此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。

结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。

我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。

这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。

同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。

由开槽波导、不调谐探头和滑架组成。

在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。

线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。

北邮电磁场与电磁波测量实验报告2双缝衍射

北邮电磁场与电磁波测量实验报告2双缝衍射

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:双缝衍射实验迈克尔逊双缝实验学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年4月18日实验三双缝衍射实验一、实验目的掌握来自双缝的两束中央衍射波相互干涉的影响。

二、预习内容电磁波双缝干涉现象三、实验仪器和设备DH926B型微波分光仪一台四、实验原理当一平面波垂直入射到一金属板的两条狭缝上时,每一条狭缝就是次级波波源,由两缝发出的次级波是相干波,在金属板的背后空间将产生干涉现象。

由于入射波通过每个狭缝也有衍射现象,实验将是干涉和衍射两者结合的结果,我们为了只研究主要是来自双缝的两束中央衍射波相互干涉的结果,令双缝的宽度a接近λ,例如,入射波波长λ=32mm,取缝宽a=40mm,由单缝衍射的一级极小公式,得,我们在一级极小范围内研究两束中央衍射波相互干涉现象。

当衍射角Φ 适合条件:(1)时,两狭缝射出的光波的光程差是波长的整数倍,因而相互加强,形成明纹。

当衍射角Φ 适合条件(2)时,两狭缝射出的子波的光程差是半波长的奇数倍时,干涉减弱应形成暗纹。

所以干涉加强的角度为(3)干涉减弱的角度(4)五、实验内容及步骤1.仪器连接时,预先接需要调整双缝衍射板的缝宽。

2.当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。

3.转动小平台使固定臂的指针在小平台的180处,此时小平台的0就是狭缝平面的法线方向。

4.这时调整信号电平使表头指示接近满度。

然后从衍射角0开始,在双缝的两侧使衍射角每改变1 读取一次表头读数,并记录下来。

5.这时就可画出双缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。

此实验曲线的中央较平,甚至还有稍许的凹陷,这可能是由于衍射板还不够大之故。

由于衍射板横向尺寸小,所以当b取得较大时,为了避免接收喇叭直接收到发射喇叭的发射波或通过板的边缘过来的波,活动臂的转动角度应小些。

北邮_电磁场电磁波实验报告合集版

北邮_电磁场电磁波实验报告合集版

北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:实验一微波测量系统的使用和信号源波长功率的测量一、实验目的:(1)学习微波的基本知识;(2)了解微波在波导中传播的特点,掌握微波基本测量技术;(3)学习用微波作为观测手段来研究物理现象。

二、实验原理:本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。

该系统由以下九个部分组成:1.波导测量线装置2.晶体检波器微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流I来读数的。

3.波导管本实验所使用的波导管型号为BJ-100。

4.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

5.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

6.谐振式频率计(波长表)电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

7.匹配负载波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

8.环形器它是使微波能量按一定顺序传输的铁氧体器件。

主要结构为波导Y型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外面有“U”形永磁铁,它提供恒定磁场H0。

9.单螺调配器插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配状态。

北邮电磁场与电磁波测量实验报告4 场强特性

北邮电磁场与电磁波测量实验报告4 场强特性

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:无线信号场强特性的研究学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日一、实验目的1.通过实地测量校园内室内外的无线电信号场强值,掌握室内外电波传播的规律。

2.熟悉并掌握无线电中的传输损耗,路径损耗,穿透损耗,衰落等概念。

3.熟练使用无线电场强仪测试空间电场强的方法。

4.学会对大量数据进行统计分析,并得到相关传播模型。

二、实验原理1、电波传播方式电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。

2、无线信道中信号衰减无线信道中的信号衰减氛围衰落,路径损耗,建筑物穿透损耗。

此外还有多径传播的影响。

移动环境下电波的衰落包括快衰落和慢衰落(又叫阴影衰落),快衰落的典型分布为Rayleigh分布或Rician分布;阴影衰落的典型分布为正态分布,即高斯分布。

快衰落和慢衰落两者构成移动通信系统中接收信号不稳定因素。

路径损耗:测量发射机和接收机之间信号的平均衰落。

即定义为有效发射功率(Pt )和平均接收功率(Pr )之差(dB )。

距离是决定路径损耗大小的首要因素;除此之外,还与接收点的电波传播条件密切相关。

人们根据不同的地形地貌条件,总结出各种电波传播模型:自由空间模型,布林顿模型,Egli 模型,Hata-Okumura 模型。

建筑物的穿透损耗是指建筑物外测量的信号的中值电场强度和同一位置室内测量的信号中值电场强度之差(dB )。

建筑物穿透损耗的大小同建筑物的材料、结构、高度、室内陈设、工作频率等多种因素有关。

室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去在同一位置室内测量的信号平均场强,用公式表示为:()()1111N Moutside inside i ji i P P PN M===-∑∑P 为穿透损耗(单位:dB ),j P 是在室内所测的每一点的功率(单位:dBuv ),共M 个点,i P 是在室外所测的每一点的功率(单位:dBuv ),共N 个点。

北邮电磁场与电磁波实验总结概要

北邮电磁场与电磁波实验总结概要

北京邮电大学电磁场与微波测量实验报告班级:姓名:学号:第一部分实验建议实验已经做完,在这个过程中我收获很多,但我认为也有一些不足之处,提出以下建议。

1)希望增加部分器材,实验过程中很多东西不够用,大家要相互借用,有时要等到其他组做完,比较影响实验进度。

2)实验室太小,实验互相干扰严重,部分实验会有误差。

希望扩大场地。

第二部分从“用谐振腔微扰法测量介电常数实验”提出新实验——谐振腔体积对测量结果准确性的研究实验提出依据:该实验的提出是建立在对“用谐振腔微扰法测量介电常数”实验的研究基础之上,原实验中要求介质棒体积Vs 远小于谐振腔体积V0,此时可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,从而可把样品看成一个微扰,则样品中的电场和外电场相等。

而原实验中的谐振腔体积是否真的满足这个条件呢,改变谐振腔的体积对测量结果的准确性有何影响呢?本实验将对此做进一步的探究。

一、 实验目的1. 了解谐振腔的基本知识。

2. 学习用谐振腔法测量介质特性的原理和方法。

3. 对实验结果做进一步的验证。

二、 实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL 由下式确定:210f f f Q L -=式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q 值越高,谐振曲线越窄,因此Q 值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

图1 反射式谐振腔谐振曲线 图2 微找法TE10n 模式矩形腔示意图电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tan δ可由下列关系式表示:εεε''-'=j , εεδ'''=tan ,其中:ε,和ε,,分别表示ε的实部和虚部。

最新北邮电磁场与电磁波演示实验

最新北邮电磁场与电磁波演示实验

频谱特性测量演示实验1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz2.ESPI 测试接收机的RF输入端口最大射频信号: +30dbm,最大直流:50v3.是否直观的观测到电磁波的存在?(回答是/否)否4.演示实验可以测到的空间信号有哪些,频段分别为:广播:531K~1602KHzGSM900:上行:890~915 MHz 下行:935~960 MHzGSM1800:上行:1710~1755 MHz 下行:1805~1850 MHzWCDMA:上行:1920~1980MHz 下行:2110~2170MHzCDMA2000:上行:1920~1980MHz 下行:2110~2170MHzTD-SCDMA:2010~2025MHz5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。

模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。

数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。

6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:GSM900下行:CDMA下行:3G下行:7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率)可以该频谱仪能检测的频谱范围为9KHz—3GHz所以,能够观察到:WIFI:2.4G电磁炉:20KHz—30KHz蓝牙:2.4G网络参量测量演示实验1矢量网络分析仪所测频段:300KHz—3GHz2端口最大射频信号: 10DBM3矢量网络分析仪为何要校准:首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。

北邮电磁场与电磁波测量实验报告7

北邮电磁场与电磁波测量实验报告7

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波天线方向图测试实验学院:电子工程学院班级:2010211203班学号:10210863姓名:张俊鹏2013年5月23日一、实验目的微波天线是微波通信设备中一个重要的组成部分,微波信息的质量与天线性能密切相关。

通常,微波天线都为面式天线,验证这类天线的性能,首先是通过测量来实现的。

本次实验的主要目的就是研究天线发射微波信号后接受的状况,并通过矢量网络分析仪来分析接受电磁波的特点,给出矢量分析图形,直观的得到各方向的长枪分布特点,从而进一步研究微波天线的通信状况。

二、微波天线的主要技术参数1.方向性(1)方向性图天线的基本功能是将馈线传输的电磁波变为自由空间传播的电磁波,天线的方向图是表征天线辐射时电磁波能量(或场强)在空间各点分布的情况,它是描述天线的主要传输之一。

天线的方向性图是一个立体图形。

它的特性可以用两个互相垂直的平面(E平面和H平面)内方向性图来描述。

如下图1所示。

图1 天线方向性图天线方向性图能直观地反映出天线辐射能量集中程度、方向性图越尖锐,表示辐射能量越集中,相反则能量分散。

若天线将电磁能量均匀地向四周辐射,方向性图就变成一球面,称作无方向性,这就是一理想点源在空中辐射场。

天线方向性图可通过测试来绘制,如测得的是功率,即可绘出功率方向性图,如测得的是场强,则绘出场强方向性图,但两者图形形状是完全一样的。

通常图形方向性图有多个叶瓣,其中最大辐射方向的是叶瓣,称主瓣,其余称副瓣(或旁瓣)。

在方向性图中主瓣信息是我们最关心的。

●方向性图主瓣宽度方向性图主瓣宽度是指半功率点(功率下降为最大辐射方向功率一半之点)之间宽度,它是由主瓣最大值“1”下降到“0.5”处两点与零点连接形成的夹角,用2θ0.5来表示,如图2所示。

图2 方向性图主瓣副瓣示意●方向性图主瓣零点角如图2所示,方向性图零点角是指主瓣两侧零辐射方向之间夹角,用2θ0来表示。

北邮电磁场实验报告(反射折射)

北邮电磁场实验报告(反射折射)

北京邮电大学电磁场与微波测量实验学院:电子工程学院班级: 2012211206组员:陈佳熠(2012210970),宋周锐(2012210971),王健恒(2012210972)2015年3月21日实验一电磁波反射和折射实验一、实验内容1.1实验目的(1)、熟悉S426型分光仪的使用方法。

(2)、掌握分光仪验证电磁波反射定律的方法。

(3)、掌握分光仪验证电磁波折射定律的方法。

1.2实验设备S426型分光仪。

图1 反射实验仪器的布置1.3实验步骤1.熟悉分光仪的结构和调整方法。

2.连接仪器,调整系统。

仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。

3.测量入射角和反射角。

反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。

而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。

这是小平台上的0刻度就与金属板的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。

如果此时表头指示太大或太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接近满量程。

做此项实验,入射角最好取30至65度之间。

因为入射角太大接受喇叭有可能直接接受入射波。

做这项实验时应注意系统的调整和周围环境的影响。

二、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

电磁波斜入射到两种不同介质分界面上时会发生反射和折射两种现象,同时,分界面对电磁波的反射和折射现象与入射波的极化方向有关。

北邮电磁场与电磁波测量实验报告信号源 波导波长

北邮电磁场与电磁波测量实验报告信号源 波导波长

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。

由开槽波导、不调谐探头和滑架组成。

在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。

线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。

微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。

一、实验目的1.了解谐振腔的基本知识。

2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。

选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。

假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。

2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。

这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。

北邮电磁场与电磁波实验天线部分实验报告一

北邮电磁场与电磁波实验天线部分实验报告一

电磁场与微波实验天线部分实验报告班级:2011211104姓名:序号:学号:指导老师:陈文成实验二网络分析仪测试八木天线方向图一.实验目的1. 掌握网络分析仪辅助测试方法;2. 学习测量八木天线方向图方法;3. 研究在不同频率下的八木天线方向图特性。

注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等;二.实验原理:实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可)引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。

此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。

反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。

发射状态作用过程亦然。

三.实验步骤:1. 调整分析仪到轨迹(方向图)模式;2. 调整云台起点位置270°;3. 寻找归一化点(最大值点);4. 旋转云台一周并读取图形参数;5. 坐标变换、变换频率(f=600Mhz、900MHz、1200MHz),分析八木天线方向图特性;四.实验测量及数据1.频率为600MHz:(1)测量图(百分比):(2)测量数据:网络分析仪测得最大值:36.8最大值点:最大值对称:方位幅度方位(Max) 幅度(Max) 宽度(3db)279度 1 274度 1 95度方位幅度方位(Max) 幅度(Max) 宽度(3db)99度 1 274度 1 95度半功率点(1):半功率点(2):零点(1):零点(2):2.频率为900MHz: (1)测量图(百分比):方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 36度 0.497274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 176度 0.499274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 38度 0.405274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 183度 0.407274度195度(2)测量数据:网络分析仪测得最大值:100.2最大值点:最大值对称:半功率点(1):半功率点(2):零点(1):零点(2):2.频率为1200MHz: (1)测量图(百分比):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 75度0.99319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 255度0.27319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 2度0.49019度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 133度0.49919度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 327度0.16119度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 162度0.01619度1117度(2)测量数据:网络分析仪测得最大值:37.8最大值点:最大值对称:半功率点(1):半功率点(2):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 295度1270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 115度0.706270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 14度0.448270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 198度0.510270度198度零点(1):零点(2):五.实验结果分析:实验数据对比:由以上实验数据及对比可以看出:900MHz 时的天线主瓣宽度较大,侧瓣和后瓣均很小,而600MHz 和1200MHz 时的天线的方向性很不明显,后瓣和侧瓣很大。

北京邮电大学_电磁场与电磁波实验微波接收系统的测量

北京邮电大学_电磁场与电磁波实验微波接收系统的测量

北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:报告撰写人:微波收发机的系统调测微波TV收系统的基本原理一、实验原理基本无线通信系统一般由发信机、收信机及其天线(含馈线)构成。

如图1所示。

天馈信源信宿图1 无线通信系统的组成1.发信机发信机的主要作用是将需要传输的信源信号进行处理并发送出去。

首先通过调制器用信源信号对高频正弦载波进行调制形成中频已调制载波,中频已调制载波经过变频器和滤波器转换成射频已调制载波,射频已调制载波送至射频放大器进行功率放大,最后送至发射天线,转换成辐射形式的电磁波发射到空间。

一个典型的无线发信机的组成框图,如图2所示。

图2 无线发信机的组成框图2.收信机收信机的主要作用是将天线接收下来的射频载波还原成要传输的信源信号。

收信机的工作过程实际上是发信机的逆过程,首先对来自接收天线的射频载波信号进行低噪声放大,然后经过下变频器、中频滤波器中频放大器变换称为满足解调电平要求的中频已调制载波,最后经过解调器还原出原始的信源信号。

一个典型的无线收信机的组成框图,如图3所示。

输出信号图3 无线收信机的组成框图3.天线天线是无线通信系统不可缺少的重要组成部分之一。

天线的主要作用是把发信机送来的射频载波变换成空间电磁波并辐射出去(发射端)或者把收到的空间电磁波变换成射频载波并送给收信机(接收端)。

本实验将对使用的额微波收发系统(SD3200)微波电路实验训练系统的各个参数进行测量,实验者能完整、透彻的了解微波射频系统,掌握微波收发系统的基础知识。

SD3200R/T微波TV收发系统由发射机系统和接收机系统两个试验箱组成。

该微波TV收发系统是一套工作在900MHz微波频段的无线通信实训系统,可以进行图像和话音业务的无线传输实验,同时可以进行滤波器,放大器,滤波放大器等电路的相关实验。

微波TV收发系统主要由TV发射机系统和TV 接收机系统两部分组成。

微波发射机和接收机组成方框图如下图所示微波TV收发系统可以提供6个无线信道,信道间隔8MHz,频率设置如二、实验内容及步骤1、发射机的输出频谱测量(1)连接测试系统(频谱分析仪街道功率放大器的输出端)。

北邮电磁场与电磁波实验报告

北邮电磁场与电磁波实验报告

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究指导老师:日期:一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4 、建筑物的穿透损耗的定义 (3)三、实验容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (4)3、数据录入 (5)4 、数据处理 (6)五、实验结果与分析 (6)1 、磁场强度地理分布 (6)2 、磁场强度统计分布 (8)3、建筑物的穿透损耗 (10)六、问题分析与解决 (10)1、测量误差分析 (10)2、场强分布的研究 (10)七、分工安排 (11)八、心得体会 (11)九、附录:数据处理过程 (13)、实验目的1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法;2. 研究校园各种不同环境下阴影衰落的分布规律;3. 掌握在室环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5. 研究建筑物穿透损耗与建筑材料的关系。

二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。

北邮电磁场与微波试验报告

北邮电磁场与微波试验报告

信息与通信工程学院电磁场与微波实验报告实验题目:微波器件设计与仿真班级:___________________________ 姓名:___________________________ 学号:___________________________日期:______________ 2016.5.18 ________实验二分支线匹配器一、实验目的1.掌握支节匹配器的工作原理2.掌握微带线的基本概念和元件模型3.掌握微带分支线匹配器的设计与仿真二、实验原理1.支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线并联适当的电纳 (或串联适当的电抗) ,用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

此电纳或电抗元件常用一终端短路或开路段构成。

2.微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。

微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

三、实验内容已知:输入阻抗Zin=75 Q负载阻抗Zl= (64+j75 )Q特性阻抗Z0=75 Q介质基片面性 c r=2.55 ,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=入/4,两分支线之间的距离为d2=X /8。

画出几种可能的电路图并且比较输入端反射系数幅值从 1.8GHz至2.2GHz的变化。

北京邮电大学电磁场与电磁波实验报告

北京邮电大学电磁场与电磁波实验报告

电磁场与电磁波实验报告无线信号场强特性的研究2013/5/13一、实验目的:1、掌握在移动环境下阴影衰落的概念以及正确的测试方法;2、研究国家体育馆——鸟巢周围各种不同环境下阴影衰落的分布规律;3、掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4、通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、研究建筑物穿透损耗与建筑材料的关系。

二、实验内容:利用DS1131场强仪,实地测量信号场强(单位:dBmW)。

1、研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何。

2、研究在国家体育馆鸟巢周围电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何。

三、实验步骤:1、实验内容与研究对象的选择:我们想要研究学校外的建筑物的衰落现象,经过讨论,我们选择了国家体育馆鸟巢作为实验场所。

测量时,我们按照地图上逆时针方向沿着鸟巢边缘测量,具体路线见以下分布图:2、在选频方面,由于中央三套信号比较强,所以我们决定采用之,其图像信号的频率为487.25MHz,伴音信号的频率为493.75MHz,此时的波长约为0.616m,于是我们大约1m(也即2步左右)读取一个数据。

3、将测量得到的数据录入Excel表格,得到12个表格文件:即以每个入口之间测量段的字母来分类,如上图所示,共有:A、B、C、D、E、F、G、H、J、K、L、M等12个测量段。

文件截图如下:4、D文件里的数据截图:5、 数据处理过程:采集到的数据有512多组,需要对数据进行细致的处理以便得到明确的结论。

下图所示为数据处理的流程图。

四、 实验结果:1、 空间场强大小分析:图1是用Matlab 画的所有数据的大小起伏,虽然有大有小,但是难以确定空间场强的大小分布,所以再使用Mathematica 进行改进绘图,如图3、4:图1以下是图3是场强大小的图像分量空间分布图,扇形区域的半径表示大小。

图4是伴音信号大小的分布图,测量数据是按照六块区域划分的,具体划分图可以见图2;图2、所有数据研究区域划分图注:图中数字表示区域名,字母表示入口,命名方式如:AB入口,BC入口……图3、图像信号强弱的空间分布表3、图像信号强弱的空间分布根据上述结果,可以发现6区的图像信号最强,均值为-29dBmW,而3区最弱,为-40dBmW;我们组分析了原因,认为原因如下:1)6区附近比较开阔,所以信号受到的阻挡更小,衰减小,而2、3区附近面临闹市,所以受到干扰大;2)信号源在6区的方向,因为6区朝向信号源,所以6、1区的信号最强,而其他区域,由于信号要穿过鸟巢建筑有穿透损耗,因此衰减比较大。

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验北邮电磁场与微波测量实验报告实验五极化实验学院:电子工程学院班号:2011211204组员:执笔人:学号:**********一、实验目的1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理二、实验设备S426型分光仪三、实验原理平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。

如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。

在光学中也叫偏振波。

偏振波电磁场沿某一方向的能量有一定关系。

这就是光学中的马吕斯定律:20cos I I θ=式中I 为偏振波的强度,θ为I 与I0间的夹角。

DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。

四、实验步骤1.设计利用S426型分光仪验证电磁波马吕斯定律的方案;根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。

2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。

实验仪器布置通过调节,使A1取一较大值,方便实验进行。

然后,再利用前面推导出的θ,将仪器按下图布置。

A1五、实验数据I(uA )0 10 20 30 40 50 60 70 80 90 θ°理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 -1、数据分析:由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许范围内,所以可以认为马吕斯定律得到了验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:实验一微波测量系统的使用和信号源波长功率的测量一、实验目的:(1)学习微波的基本知识;(2)了解微波在波导中传播的特点,掌握微波基本测量技术;(3)学习用微波作为观测手段来研究物理现象。

二、实验原理:本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。

该系统由以下九个部分组成:1.波导测量线装置2.晶体检波器微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流I来读数的。

3.波导管本实验所使用的波导管型号为BJ-100。

4.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

5.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

6.谐振式频率计(波长表)电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

7.匹配负载波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

8.环形器它是使微波能量按一定顺序传输的铁氧体器件。

主要结构为波导Y型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外面有“U”形永磁铁,它提供恒定磁场H0。

9.单螺调配器插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配状态。

调匹配过程的实质,就是使调配器产生一个反射波,其幅度和失配元件产生的反射波幅度相等而相位相反,从而抵消失配元件在系统中引起的反射而达到匹配。

10.微波源提供所需微波信号,频率范围在8.6-9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。

11.选频放大器用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检测。

三、实验方法和步骤:1.观察测量系统的微波仪器连接装置,衰减器,波长计,波导测量线的结构形式。

2.熟悉信号源的使用先将信号源的工作方式选为:等幅位置,将衰减至于较大位置,输出端接相应指示器,观察输出;再将信号源的工作方式选为:方波位置,将衰减至于较大位置,输出端接相应指示器,观察输出;3.熟悉选聘放大器的使用;4.熟悉谐振腔波长计的使用方法;微波的频率测量是微波测量的基本内容之一。

其测量方法有两种:(1)谐振腔法;(2)频率比较法。

本实验采用谐振腔法。

由于波长和平率直接满足关系,所以频率和波长的测量是等效的。

吸收式波长计的谐振腔,其只有一个输入端和能量传输线路相连,调谐过程可以从能量传输线路接收端指示器读数的降低可以判断出来;本实验采用了吸收式波长计测量信号源频率从,为了确定谐振频率,用波长表测出微波信号源的频率。

具体做法是:旋转波长表的测微头,当波长表与被测频率谐振时,将出现波峰。

反映在建波指示器上的指示是一跌落点,此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率;5.按实验书框图连接微波实验系统;6.微调单旋调配器,事腔偏离匹配状态(出于匹配状态时,电流会达到一个最小值),检波电流计上有一定示数(大于最小值);7.调节波长计使检波电流计再次出现最小值的时候,读出此处波长计的刻度值;8.按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到对应的信号源频率值;9.改变信号频率,从8.6G开始测到9.6G,每隔0.1G测量一次,记录在数据表格中。

四、实验结果与分析:表格数据结果如下图所示:误差分析:1.f0为信号源频率值;f1为查表得到频率;f=|f0-f1|为信号源误差。

的误差很小在可控范围0.003~0.018内,所以认为实验成功。

2.产生误差原因:①仪器测量自身老旧产生的误差;②人为误差:在读数据时需要几个人的配合,调节波长表的测微头,观察电流表指针变化是两个人,会使导致数据出现误差,加之在读数上也会有不可避免的人为误差;五、心得与体会:本次实验为电磁场与微波测量实验的第一个实验:微波测量系统的使用,这个实验较为简单,主要误差还是出现在读数阶段,本实验我们用到了新的仪器,因而在对仪器的了解与掌握上花了一点时间,不过经过努力,我们完成了实验目标,达到了实验目的,同时对新的实验仪器也有了更好的掌握。

总之,这次实验我们受益良多。

实验三 电磁波的双缝干涉实验一、实验目的掌握来自双缝的两束中央衍射波相互干涉的影响。

二、实验设备S426型分光仪三、实验原理干涉加强的角度为:⎪⎭⎫ ⎝⎛+•=-b a K Sin λϕ1,式中K=l 、2、……;干涉减弱的角度为:⎪⎭⎫ ⎝⎛+•+=-b a K Sin λϕ2121式中K=l 、2、……。

四、 实验内容及步骤1、 如图3.2连接仪器;图3.1 双缝干涉如图3.1所示,当一平面波垂直入射到一金属板的两条狭缝,则每一条狭键就是次级波波源。

由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。

当然,光通过每个缝也有衍射现象,因此实验将是衍射和干涉两者结合的结果。

为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,需令双缝的缝宽a 接近λ,例如:mm a mm 40,32==λ,这时单缝的一级极小接近530。

因此取较大的b ,则干涉强度受缝衍射的影响小,当b 较小时,干涉强度受单缝衍射影响大。

图3.2 双缝干涉实验系统2、调节双缝板,使缝的宽度为合适值。

3、将双缝安装到支座上,使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。

4、转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。

5、按信号源操作规程接通电源,调节衰减器使信号电平读数指示接近满度。

6、从衍射角00开始,在双缝的两侧使衍射角每改变10读取一次表头读数,并记录下来(注:由于衍射板横向尺寸小,所以当b取得较大时,为了避免接收喇叭直接收到发射喇叭的发射波或通过板的边缘过来的波,活动臂的转动角度应小些。

)7、实验结束,关闭电源,将衰减器的衰减调至最大。

五、实验结果及分析(1)双缝干涉实验:角度(º)左侧干涉强度()右侧干涉强度()0 96 961 85 952 80 903 65 794 55 635 31 406 20 227 10 118 2 59 2 410 5 711 18 1512 23 1613 34 3814 42 4615 44 4416 40 6017 55 6218 60 7019 63 6820 65 6621 40 4222 21 2523 20 1624 13 1025 5 926 8 927 10 1128 9 1029 8 1030 6 631 4 432 3 433 3 634 4 12由以上数据可知,实验测得一级极大干涉角在20º附近,一级极小干涉角在29º附近。

,代入公式得理论值一级极大干涉角,一级极小干涉角。

干涉曲线如理论极大实际极大理论极小实际极小左侧15.47 20 23.58 25右侧15.47 18 23.58 24 (2)双缝干涉实验:角度(º)左侧干涉强度()右侧干涉强度()08282 16480 25878 34250 44436 52020 6810 723 801 900 1001 1144 12811 131620 142134 152744 163650 174850 185260 195062 204562214251223235232423241011254326112710280029003011311232123312343335811由以上数据可知,实验测量得一级极大干涉角在20º附近,一级极小干涉角在34º附近。

若用理论值计算,代入公式得理论值一级极大干涉角,一级极小干涉角。

干涉曲线如下图所示:理论极大实际极大理论极小实际极小左侧18.66 18 28.69 28右侧18.66 20 28.69 28(3)双缝干涉实验:角度(º)左侧干涉强度()右侧干涉强度()0 90 901 88 882 80 863 72 824 68 845 64 806 48 827 30 788 12 609 5 4010 1 1411 1 312 2 113 6 014 10 015 18 116 30 217 38 818 50 2419 62 4420 60 5821 58 6222 63 6623 52 7024 44 6825 36 6226 32 5027 32 4128 37 3229 37 3030 40 3131 44 3832 42 5033 34 5834 20 5635 6 5036 1 3837 0 2038 0 839 2 240 4 341 2 442 0 343 0 1由以上数据可知,实验测量得一级极大干涉角在23º附近,一级极小干涉角在38º附近。

若用理论值计算,代入公式得理论值一级极大干涉角,一级极小干涉角。

干涉曲线如下图所示理论极大实际极大理论极小实际极小左侧23.58 22 36.87 37右侧23.58 23 36.87 39一、误差分析由实验值与理论值比较可得,第一次实验一级极大与一级极小实验值与理论值都有较大差距,但第二次实验与第三次实验一级极大与一级极小实验值与理论值差距不大,基本吻合。

原因可能是实验过程中隔壁组实验仪器的干扰,周围人员的走动都会对实验结果造成影响,测量造成的误差对实验结果的影响更是不容忽视。

思考题(1)试阐述a、b变化对干涉产生的影响。

答:<1>当缝的大小a很大时光线直接穿过双狭缝,出现在屏上的是一亮斑而不是干涉条纹,随着缝的大小a减小,屏上开始慢慢出现了干涉条纹,当缝的大小继续减小时,屏上的图像不单只是干涉图样,还出现了另一种光的相干叠加现象——衍射。

<2>在单色光照射时,在保持其他参数不变的条件下,只改变双缝间距b,随着 b依次增大时,干涉条纹的缝宽应变窄,条纹变密.(2)假设b趋近于0,实验结果的变化趋势如何?答:若b趋近于0,则干涉现象越来越不明显,如果缝宽足够小,则类似于单缝衍射实验。

相关文档
最新文档