工程力学-第三章
工程力学I-第3章 力矩与平面力偶系
D
x
§3-2 关于力偶的概念
力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。
力偶臂:两个力作用
线之间的垂直距离d。
F’
F
力偶的作用面:两个 力作用线所决定的平 面
§3-2 关于力偶的概念
F F
d
d
F
d
F
F
F
转动游戏方向盘
拧水龙头
扳手拧螺母
§3-2 关于力偶的概念
Q AABD AABC 显然, 并注意到力偶矩的转向也相同, 则有M ( F , F ) M ( P, P) P
M (P 1, P 1 ) M ( P, P ) 显然, 1, P 1) 从而有M ,( F , F ) M ( P
P1
力偶等效
M ( F , F ) M ( P 1, P 1)
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算
合力矩定理:
y Fy
(3)将力P和P’沿各自的作用 线移至任意点A’,B’,根 据力的可传性原理,有 (P,P’) =(P1,P1’) 。
§3-2 关于力偶的概念
(4) A′
P1′ b F′ A A F B Q′ D P′ B′ C
M (F , F ) AB BD 2 AABD ,
M(P, P') AB BC 2 AABC
工程力学 第3章 力偶系
M 2 F2 , F2'
M F1'
r1
F F1 F2 F ' F1' F2'
F2' MR F, F '
F2
F1 F
M2
MR r F ' r (F1'F2 ') r F1'r F2 '
M1 M2
结论:两个力偶的合成仍然为力偶,且
第三章 力偶系
§1 力对点之矩矢 一、 平面力对点之矩(回顾)
力使物体绕某点转动的力学效应,称为力对该点之矩。 例如扳手旋转螺母。
BF
dA L
O
力F对O点之矩定义为: Mo(F)=±Fd
通常规定:力使物体绕矩心逆时针方向转动时,力矩 为正,反之为负。
第三章 力偶系
二、力对点之矩矢量 1、空间力矩三个要素:
一、力偶 在日常生活和工程实际中经常见到物体受动两个大小相等、 方向相反,但不在同一直线上的两个平行力作用的情况。例如
第三章 力偶系
B d
F’
F A
M
B
F
rBA
F’ d A
1. 定义:在力学中把这样一对等值、反向而不共线的平行力 称为力偶,用符号 ( F , F′)表示。
两个力作用线之间的垂直距离 d 称为力偶臂, 两个力作用线所决定的平面称为力偶的作用面。
x (F ) y (F )
yFz zFx
zFy xFz
M
z
(F
)
xFy
yFx
力对点之矩在各坐标轴上的投影
MO z
O xr
《工程力学》第三章 平面一般力系
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力
工程力学(第三章)
MR
y
MR Mz cos MR
§3-6
力偶系的平衡条件
M 0
平衡: 力偶系平衡的充要条件是 其合力偶矩矢为零。
即:力偶系平衡
一、平面力偶系的平衡条件
M R M(代数和) i
M 0
平面力偶系的平衡方程
§3-6
力偶系的平衡条件
M 0
平衡: 力偶系平衡的充要条件是 其合力偶矩矢为零。
力对点之矩矢
作用: 用来度量力使物体绕某点转动效应的量。
(代数量) 一、平面中力对点之矩(力矩)
F
O
h
定义:M O
F Fh
正负号规定: 力使物体绕矩心逆转为正,顺转为负。
作用: 用来度量力使物体绕某点转动效应的量。 1、平面问题
(代数量) 力矩作用面
矩心 O h
力臂
定义: M O F Fh
A
O x
y
Fx
z
y
Fy
x
A x, y, z ,
F Fx , Fy , Fz
(一)、力对点的矩
1、平面问题
MO
F Fh
MO F
O
h
z
F
F
2、空间问题
MO F r F
x
(二)、力对轴的矩
空间: 力偶对空间任一点的矩矢恒等于力偶矩矢, 而与矩心位置无关。
性质二 力偶可在其作用面内任意移转,或移到另
一平行平面,而不改变对刚体的作用效应。
= =
F
F
F
F
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
工程力学第三章力矩与平面力偶系
位置无关,因此力偶对刚体的效
应用力偶 矩度量。
F
A B
d
F'
x
O
mO ( F ) mO ( F ') F ( x d ) F 'x F d
4.力偶的表示方法
用力和力偶臂表示,或用带箭头的弧线表示,箭头表示 力偶的转向,M表示力偶的大小。
第三章力矩与平面力偶系
湖南工业大学土木工程学院
y
Fx
x
则
r cos x, r sin y
mo ( F ) xFy yFx
湖南工业大学土木工程学院
( )
a
第三章力矩与平面力偶系
§3-1力矩的概念和计算
mo (F ) xFy yFx
若作用在
( )
a
y
Fy
F
F2 、 A 点上的是一个汇交力系( F1 、 则可将每个力对 o 点之矩相加,有 Fn ), o
r
d
,
x
A
y
Fx
m (F ) x F
o
y
y Fx
(b)
x
由式( a ),该汇交力系的合力 R 它对矩心的矩
F
m0 (R) xRy yRx x Fy y Fx ( c )
比较( b )、( c )两式有
mo (R) M o (F )
第三章力矩与平面力偶系 湖南工业大学土木工程学院
l
A
o
第三章力矩与平面力偶系 湖南工业大学土木工程学院
d
F
力矩计算
简支刚架如图所示,荷载F=15kN,α=45 ,尺寸如图。试分别计 算F对A、B两点之矩。
工程力学:第三章 空间问题的受力分析
。CDB平面与水平
面间的夹角
,物重
。如起重杆的重量不计,试求
起重杆所受的压力和绳子的拉力。
解:取起重杆AB与 重物为研究对象。
取坐标轴如图所示。 由已知条件知:
列平衡方程 解得
§3-3 力对轴的矩 力F对z轴的矩就是分力Fxy 对点O的矩, 即
力对轴的矩是力使刚体绕该 轴转动效果的度量、是一个 代数量。
空间力偶系平衡的必要和充分条件是:该力偶系的合力偶矩等 于零,亦即所有力偶矩矢的矢量和等于零,即
由上式,有 欲使上式成立,必须同时满足
空间力偶系未知量)
空间力偶系平衡的必要和充分条件为:该力偶系中所有各力偶 矩矢在三个坐标轴上投影的代数和分别等于零。
§3-5 空间任意力系的平衡方程
可将上述条件写成空间任意力系的平衡方程
注:1.与平面力系相同,空间力系的平衡方程也有其它的形式。 2.六个独立的平衡方程,求解六个未知量。 3.可以从空间任意力系的普遍平衡规律中导出特殊情况的 平衡规律,例如空间平行力系、空间汇交力系和平面任意 力系等平衡方程。
例:设物体受一空间平行力系作用。 令z轴与这些力平行,则
绝对值: 该力在垂直于该轴的平面上的投影对于 这个平面与该轴的交点的矩的大小。
正负号: 从z轴正端来看,若力的这个投影使物体绕该轴 按逆时针转向转动,则取正号,反之取负号。
也可按右手螺旋规则来确定其正负号,如图所 示,姆指指向与z轴一致为正,反之为负。
当力与轴在同一平面时,力对该轴的矩等于零:
(1)当力与轴相交时 (此时h=0);
(三个方程,可 求解三个未知量)
空间汇交力系平衡的必要和充分条件为:该力系中所有各力 在三个坐标轴上的投影的代数和分别等于零。
工程力学第3章(力偶系)
Engineering Mechanics
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第三章 力偶系 §3-1 力对点之矩矢
力偶臂d 力偶臂 1=200mm, ,
,力偶臂d , F2 = F2' = 120N,力偶臂 2=300mm , F3 = F3' = 80 N,
M 1 = 100 × 0.2 = 20
N.m N.m
M 2 = 120 × 0.3 = 36
M 3 = 80 × 0.18 = 14.4 N.m
M Rx M Ry = ∑ M y = M 1 = 20 N.m
二、力对轴之矩的 解析表达式
M x ( F ) = M x ( Fy ) + M x ( Fz ) = -zFy + yFz M y ( F ) = M y ( Fz ) + M y ( Fx ) = -xFz + zFx M z ( F ) = M z ( Fx ) + M z ( Fy ) = -yFx + xFy
M R = M1 + M 2 + ⋅ ⋅ ⋅ + M n = ∑ M
M R = M1 + M 2 + ⋅ ⋅ ⋅ + M n = ∑ M
合力偶矩矢的大小 M R = ( ∑ M x ) 2 + ( ∑ M y )2 + ( ∑ M z )2 合力偶矩矢的方向
R
∑M cos( M ,i ) =
cos( M R,j ) = MR
工程力学第三章-力系的平衡
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
工程力学第三章静力平衡问题
平面一般力系平衡方程还可表达为下列二种形式:
M
Fx A(F )
0
0
M B (F ) 0
M M
A B
(F (F
) )
0 0
MC (F ) 0
二力矩式
三力矩式
(AB不垂直于x轴) (A、B、C三点不共线)
注意:平衡方程中,投影轴和矩心可任意选取,可 写出无数个平衡方程。但只要满足了其中一组,其 余方程均应自动满足,故独立平衡方程只有三个。
矩心取在二未知力交点A 解处:,1力)矩画方整程体中受只力有图一。个未 知量F注C,意可B直C为接二求力解杆。。 2)取坐标,列平衡方程。
Fx=FAx-FCcos30=0
Fy=FAy+FCsin30-F-Fq=0
MA(F)=FCL/2-1.5F-FqL/2=0
FC
y
C
Fq=2q=1 kN
FAy
x
FAx 30
26
讨论:判断下述分析的正误。
FACy FAy
FACx
2a
M
3a
P
F
aA
MA
FAyFAx
FAx
B
B FABy
FABx
C
CP
A
FAx FAy
P
A
FFABAyy
A
FFAABxxFFAACyy
FACxx
FAx =F ; FAy =P ;
MA = M ?
MA = M+Fa-2Pa
固定铰的约束力作用于销钉上。 多杆用同一销钉连接,讨论某杆时, 须考虑各杆与销钉间作用的不同。
5
平面力系的平衡条件
平面一般力系处于平衡,充分和必要条件为力系
《工程力学第三章》PPT课件
FA= y - l- l xFW+F2Q
h
15
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
FTB=FWlxs+ iF nQ2l=2FlWxFQ
解: 3.讨论 由结果可以看出,当x=l,即电动机移动到吊车大梁 右端B点处时,钢索所受拉力最大。钢索拉力最大值为
因此,力系平衡的必要与充分条件是力系的主矢和对任意一 点的主矩同时等于零。这一条件简称为平衡条件
满足平衡条件的力系称为平衡力系。 本章主要介绍构件在平面力系作用下的平衡问题。
h
8
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程
对于平面力系,根据第2章中所得到的主矢和主矩 的表达式,力系的平衡条件可以写成
吊 车 大 梁 AB 上 既 有 未 知 的 A 处 约 束力和钢索的拉力,又作用有已知的 电动机和重物的重力以及大梁的重力。 所以选择吊车大梁AB作为研究对象。 将吊车大梁从吊车中隔离出来。
h
12
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
平面一般力系的平衡条件与平衡方程-例题 1
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q2 l- F W xF T Blsi= n0
FTB=FWlxs+ inFQ2l=2FlWxFQ
FAxFTBco= s0
Fy=0
F A= x 2F W x lF Q l co= s3 3 0 F lW xF 2 Q
工程力学 第3章 力系的平衡
6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
工程力学第3章
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
工程力学第三章平面一般力系
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Wednesday, May 26, 2021May 21Wednesday, May 26, 20215/26/2021
α=4°4°30ˊ
知识拓展
二、槽面摩擦
滑块与导槽的槽面接触
平带传动与V带传动
槽面接触
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.6.2521.6.2 509:01:4809:01 :48Jun e 25, 2021
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年6月 25日星 期五上 午9时1 分48秒 09:01:4 821.6.2 5
17、儿童是中心,教育的措施便围绕 他们而 组织起 来。上 午9时1 分48秒 上午9时 1分09:01:4821 .6.25
June 2021
ቤተ መጻሕፍቲ ባይዱ
1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist)
各力在任意两个相互垂直的坐标轴上的分量的代数和均为零且力系中各力对平面内任意点的力矩的代数和也等于形式基本形式二力矩式三力矩式方程说明两个方程投影式方程一个力矩式方程一个投影式方程两个力矩式方程使用条件
第三章 平面一般力系
§3-1 平面一般力系的简化 §3-2 平面一般力系的平衡和应用 *知识拓展
工程力学第3章空间力系的平衡
计算量大,需要较高的数学水平。
几何法求解空间力系平衡问题
几何法
通过几何图形来描述物体的运动状态和受力 情况,通过观察和计算几何关系得到物体的 运动轨迹和受力情况。
优点
直观易懂,适用于简单运动和受力情况。
缺点
精度低,容易受到主观因素的影响。
代数法求解空间力系平衡问题
1 2
代数法
通过代数方程来描述物体的运动状态和受力情况, 通过解代数方程得到物体的运动轨迹和受力情况。
平衡方程形式
空间力系的平衡方程为三个平衡方程,分别表示力在x、y、z轴上 的平衡。
空间力系的平衡方程应用
解决实际问题
利用空间力系的平衡方程,可以 解决实际工程中的受力分析问题, 如梁的受力分析、结构的稳定性 分析等。
简化问题
通过将复杂的问题简化为简单的 空间力系问题,可以更方便地求 解问题。
验证实验结果
优点
适用范围广,可以用于解决各种复杂问题。
3
缺点
计算量大,需要较高的数学水平。
04
空间力系平衡问题的实例分 析
平面力系的平衡问题实例分析
总结词
平面力系平衡问题实例分析主要涉及二维空间中的受力分析,通过力的合成与分解,确定物体在平面内的平衡状 态。
详细描述
在平面力系中,物体受到的力可以分解为水平和垂直方向的分力。通过分析这些分力的合成与平衡,可以确定物 体在平面内的稳定状态。例如,在桥梁设计中,需要分析桥墩受到的水平风力和垂直压力,以确保桥墩的稳定性。
平衡条件
物体在空间力系作用下,满足力矩平衡、力矢平衡和 力平衡三个条件。
空间力系的简化
01
02
03
力矩
描述力对物体转动效应的 量,由力的大小、与力臂 的乘积决定。
工程力学第三章力矩力偶系
M ( F ) r F sin O
定理:如果力系存在合力,则合力对某一点的矩等于力 系中各分力对同一点的矩的矢量和。
即:若作用在刚体上 { F , F , , F } { F } 1 2 n R
则:
M ( F ) M ( F O R O i)
i 1
n
例 水平梁 AB 受按三角形分布的载荷作用。载荷的最 大值为 q ,梁长为 l 。试求合力作用线的位置。
0
将 Q 和 q(x) 的数值代入可得
xC
2 l 3
§3-2 力偶理论
一.力偶和力偶矩
1、力偶 · 力偶的作用 效果 ·力偶的第一性质
力偶的定义:由大小相等,方 向相反且不共线的两个平行力 所组成的力系,称为力偶。记 之为: ( F, F ' )
F
hபைடு நூலகம்
F
'
h——力偶臂
力与力偶的作用效果比较:
FA
第三章 力矩 力偶系理论
§3-1 力对点之矩(力矩) 力对刚体的移动效应用力矢量来度量 力对刚体的转动效应用力矩来度量 一、力对点之矩
B F O
定义:
r
h
A
M r F oF
矢量积形式
M r F oF
二、 合力矩定理
大小: r F F h 2 OAB 方向: 由右手定则判定
25 N 0.4 m
M=10 Nm
25 N
§3-3 力偶系的合成与平衡
力偶系合成的结果为一合力偶
{ M , M , , M } { M } 1 2 n R
n
即:
M R Mi
i 1
力偶平衡的充分必要条件:
工程力学 第三章 平面任意力系
M O FR d
合力矩定理:
M o ( FR ) M O M O ( Fi )
3.1.5 平面任意力系的简化结果分析 ⑶平衡的情形
FR 0 M O 0
平衡
与简化中心的位置无关
例3-1 已知作用在梁AB上的 两力a=3m,求合力大小及作 用线位置。 解:
⑴大小: FR=30KN ⑵方向: 铅垂向下 ⑶作用线位置: A
Fy 0 F1 sin F2 sin F3 sin 0
平面平行力系的方程为两个,有两种形式:
Fy 0 M A 0
各力不得与投影轴垂直
M A 0 M B 0
两点连线不得与各力平行
例3-10已知: P 700kN, P2 200kN, AB=4m; 1
3.2.1 平面任意力系的平衡条件 平面任意力系平衡的充要条件是:
力系的主矢和对任意点的主矩都等于零
FR 0 M O 0
3.2.2 平面任意力系的平衡方程
FR ( Fx ) ( Fy )
2
2
M O M O ( Fi )
Fx 0 Fy 0 M O 0
d.方程要标准
例3-4 已知: AC=CB= l,P=10kN;求:铰链A和DC杆 受力。
解:取AB梁,画受力图.
Fx 0 FAx FC cos 45 0 Fy 0 FAy FC sin 45 P 0 M A 0 FC cos 45 l P 2l 0 解得: FC 28.28kN, FAx 20kN, FAy 10kN
例 3-5 已知: 1 4kN, P2 10kN, 尺寸如图; P 求:BC杆受力及铰链A受力。
工程力学第三章剪切
剪切应力
剪切应力的定义
01
剪切应力是指物体在剪切力作用下产生的应力,其大小与剪切
力和剪切面积有关。
剪切应力的计算
02
剪切应力的大小可以通过公式sigma = F / A计算,其中sigma
是剪切应力,F是剪切力,A是剪切面积。
剪切应力的作用
03
剪切应力是工程结构中需要考虑的重要因素之一,过大的剪切
剪切技术的创新应用
随着新材料和新工艺的发展,剪切技术在工程领域的应用将更加广泛。
剪切技术将与智能材料和结构相结合,实现自适应和智能化的剪切行为,以满足复 杂工程结构的性能要求。
剪切技术将在新能源、环保、医疗等领域得到应用,如利用剪切原理实现高效能量 转换和利用,以及在医疗领域中实现精准的手术操作等。
物体抵抗剪切破坏的最大能力称为剪切强度。
剪切的分类
纯剪切
在纯剪切状态下,物体仅在剪切力的作用下产生 相对位移,而没有发生弯曲或拉伸。
弯曲剪切
在弯曲剪切状态下,物体不仅在剪切力的作用下 产生相对位移,同时还受到弯曲力的作用。
拉伸剪切
在拉伸剪切状态下,物体在剪切力的作用下产生 相对位移,同时还受到拉伸力的作用。
剪切强度的影响因素
材料的剪切强度受到多种因素的影响,如材料的种类、显微组织、热处理状态、加载条件等。了解和掌 握这些因素对于提高材料的剪切强度和优化结构设计具有重要意义。
03 剪切的实验研究
实验目的
验证剪切理论
通过实验验证工程力学中剪切理论的正确性。
探索剪切现象
通过实验观察和分析剪切现象,深入理解剪 切行为的本质。
工程力学第三章剪切
contents
目录
• 剪切概述 • 剪切的力学分析 • 剪切的实验研究 • 剪切的工程应用 • 剪切的未来发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FCx´= FBx´= -FP
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
最后的受力图
l
l
FP
A
l
C
B
D FP A
B
D
M=FP l
FP B'
FP
M=FP l
C
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方 程
关于平衡对象的选择
PPT文档演模板
工程力学-第三章
第3章 力系的平衡条件与平衡方程
简单的刚体系统平衡问题
PPT文档演模板
返回首页
工程力学-第三章
简单的刚体系统平衡问题
实际工程结构大都由两个或两个以上构件通过一定约束 方式连接起来的系统,因为在工程静力学中构件的模型都是 刚 体 , 所 以 , 这 种 系 统 称 为 刚 体 系 统 (system of rigidity bodies)。
过A、B点的一个合力FR。同
样如果第二、三式也同时被满 足,则这一合力也必须通过B、 C两点。
但是由于A、B、C三点不 共线,所以力系也不可能简化 为一合力。因此,满足上述方 程的平面力系只可能是一平衡 力系。
工程力学-第三章
平面力系的平衡条件与平衡方程
例题5
PPT文档演模板
A
l
C
l
l
B
D
M=FP l
平面力系的平衡条件与平衡方程
于是,平面力系平衡
方程的一般形式为:
O
y
z
Fx = 0,
Fy = 0,
MO= 0
其中矩心O为力系作用面 内的任意点。 通常将上述平衡方程中的第1、2两式称为力的平衡 方程;第3式称为力矩平衡方程。 上述平衡方程表明,平面力系平衡的必要与充分条
件是:力系中所有的力在直角坐标系Oxy的各坐标轴上
C
PPT文档演模板
工程力学-第三章
PPT文档演模板
平面力系的平衡条件与平衡方程
建立平衡方程求解未知量
FAy
FAx A
l
B
ld
FBC
C
l FP MB ( F ) = 0 :
D FAy l - FP l = 0 FAy= - FP
工程力学-第三章
平面力系的平衡条件与平衡方程
建立平衡方程求解未知量
代替,但所选的投影轴与取矩点之间
应满足一定的条件。于是,可以得到
平面力系平衡方程的其他形式。
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
PPT文档演模板
Fx = 0 , MA = 0 , MB = 0 。
B
FR
A
x
A、B 连线
不垂直于x 轴
这是因为,当上述3个方程中 的第二式和第三式同时满足时,力 系不可能简化为一力偶,只可能简 化为通过AB两点的一合力或者是平 衡力系。
但是,当第一式同时成立时, 而且AB与x轴不垂直,力系便不可 能简化为一合力FR,否则,力系中 所有的力在x轴上投影的代数和不可 能等于零。因此原力系必然为平衡 力系。
工程力学-第三章
平面力系的平衡条件与平衡方
程
例题3
PPT文档演模板
l
l FP
A
B
l
C
图示结构 ,若 F P 和 l 已知,确定A、B、C
FAy
FAx A
l
B
ld
FBC
C
l FP Fx = 0 :
D FAx+FBCcos = 0
FAx=-2FP
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程 例题4
PPT文档演模板
l
l
A
l
C
B
D
M=FP l
图示结构 ,若 F P 和 l 已知,确定A、B、C
三处约束力
工程力学-第三章
平面力系的平衡条件与平衡方程
的投影的代数和以及所有的力对任意点之矩的代数和同
时等于零。
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
例题1
悬臂式吊车结构中AB为吊 车 大 梁 , BC 为 钢 索 , A 处 为 固 定铰链支座,B处为铰链约束。 已知起重电动机E与重物的总重 力为FP(因为两滑轮之间的距离 很小,FP可视为集中力作用在 大梁上),梁的重力为FQ。已知 角度θ=30º。
对于平面力系,根据第2章中所得到 的主矢和主矩的表达式,力系的平衡条 件可以写成
PPT文档演模板
FR—主矢; MO —对任意点的主矩
工程力学-第三章
平面力系的平衡条件与平衡方 程
对于作用在刚体或刚体系统上的 任意力系,平衡条件的投影形式为
z F2
M2 F1
M1
O
y
Mn
x
Fn
PPT文档演模板
工程力学-第三章
PPT文档演模板
工程力学-第三章
第三章 力系的平衡条件与平衡方程
“平衡”不仅是本章的重要概念。 对于一个系统,如果整体是平衡的,则 组成这一系统的每一个构件也平衡的。 对于单个构件,如果是平衡的,则构件 的每一个局部也是平衡的。这就是整体 平衡与局部平衡的概念。
PPT文档演模板
工程力学-第三章
第三章 力系的平衡条件与平衡方程
FBx= -FAx
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
考察BC杆 的平衡
FBx´ B'
FCy´ FCx´ C
FBy´
M=FP l
Fx = 0 : FBx´- FCx´=0 FCx´= FBx´= FBx
Fy = 0 : FBy´- FCy´=0 FCy´= FBy´ =FBy=0
Байду номын сангаас
MA ( F ) = 0 :
FA A
l
l
l FP
FCx l -FP 2l = 0
B
D
MC ( F ) = 0 : -FA l - FP 2l = 0
C FCx
FCy
E
ME ( F ) = 0 : -FCy 2l -FA l = 0
FCx= 2FP , FCy= FP , FA= -2FP
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方 程
因此,力系平衡的必要与充分条件是力 系的主矢和对任意一点的主矩同时等于零。 这一条件简称为平衡条件。
满足平衡条件的力系称为平衡力系。 本章主要介绍构件在平面力系作用下的 平衡问题。
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方 程
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
例题6
PPT文档演模板
l
l FP
A
l
C
B
D
图示结构 ,若 F P 和 l 已知,确定A、
C二处约束力
工程力学-第三章
平面力系的平衡条件与平衡方程
PPT文档演模板
l
FA
l FP
A
l
B
D
C
FCx FCy
工程力学-第三章
平面力系的平衡条件与平衡方程
工程力学-第三章
PPT文档演模板
2020/11/12
工程力学-第三章
第三章 力系的平衡条件与平衡方程
受力分析的最终的任务是确定作用在构 件上的所有未知力,作为对工程构件进行强 度设计、刚度设计与稳定性设计的基础。
本章将在平面力系简化的基础上,建立 平衡力系的平衡条件和平衡方程。并应用平 衡条件和平衡方程求解单个构件以及由几个 构件所组成的系统的平衡问题,确定作用在 构件上的全部未知力。
图示结构 ,若 F P 和 l 已知,确定A、
C二处约束力
工程力学-第三章
平面力系的平衡条件与平衡方程
PPT文档演模板
FA A
l
FC C
l
l
B
D
M=FP l
工程力学-第三章
平面力系的平衡条件与平衡方程
FA A
l
FC C
l
l
B
D
M=FP l
MC(F) = 0 : FA×l +M=0 FA= FC = FP
平面力系的平衡条件与平衡方 程
解: 2.建立平衡方程:
因 为 A 点 是 力 FAx 和 FAy 的汇交点,故先以A点为
矩心,建立力矩平衡方程,
由此求出一个未知力FTB 。
然后,再应用力的平衡方
程投影形式求出约束力FAx 和FAy 。
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方 程
解: 2.建立平衡方程
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
解: 3.讨论 由结果可以看出,当x=l,即电动机
移动到吊车大梁右端B点处时,钢索所受 拉力最大。钢索拉力最大值为
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
例题2
A端固定的悬臂梁AB受力如图示。梁的全 长上作用有集度为q的均布载荷;自由端B处承
受一集中力和一力偶M的作用。已知FP=ql,
M=ql2;l为梁的长度。试求固定端处的约束力。
PPT文档演模板
工程力学-第三章
平面力系的平衡条件与平衡方程
ql
PPT文档演模板
解: 1.研究对象、隔离体与受力图 本例中只有梁一个构件,以梁AB为研究对象,解