雷达系统中杂波信号的建模与仿真
机载相控阵雷达杂波建模与仿真-Read
第二章机载相控阵雷达杂波建模与仿真§2.1引言众所周知,雷达体制及工作环境不同,雷达杂波的特性也不同。
机载雷达工作在下视状态,地(海)杂波是影响雷达探测性能的主要因素,因此,在研究AEW雷达CFAR检测算法之前,有必要获得对雷达杂波特性的充分认识。
鉴于机载雷达的杂波与反射地类有关且随时间变化,即不同的地类(如海洋和高山)有不同的分布特性,同一地类在不同时刻分布参数也有变化。
研究雷达杂波特性的方式有两种,一是对实际测量的杂波数据进行统计分析,二是结合AEW 雷达的实际体制与参数,对不同地类(如沙漠、农田、海洋、丘陵和高山等)用不同的杂波起伏模型进行建模与仿真。
相比较实测数据而言,仿真数据虽然不能完全真实地反映实际环境中的复杂情况,但其也有自身的优点,如参数可以灵活控制、代价小等。
长期以来,国内外雷达界同行在雷达杂波特性分析方面做了大量的工作,建立了一系列的杂波模型。
随着雷达新体制的不断涌现,对雷达杂波特性的研究也在不断的深入。
新一代AEW雷达采用相控阵和脉冲多普勒(PD)体制。
有关机载相控阵雷达杂波仿真问题,在以往的文献中已有涉及[115~117]。
其中,文献[115]对有关雷达杂波仿真的方法进行了较为全面和详细的介绍,文献[116]讨论了平面相控阵机载雷达二维杂波数据仿真的数学模型。
该模型考虑到了阵元幅相误差以及载机的姿态变化等因素,具有一定的通用性。
但该模型只假设杂波的功率谱为高斯分布,幅度上无起伏,而没有考虑非高斯过程。
文献[117]建立了比较了完整的杂波数据库,但该文也只重点讨论了二维杂波谱的特性。
由于我们的目的是进行CFAR检测方法研究,所以我们从另一个角度出发,重点讨论了杂波数据的概率密度函数,我们还给出了仿真杂波数据的幅度图和概率密度图以及一些结论。
本章主要对机载相控阵雷达在不同地类和不同起伏模型下的杂波进行建模与仿真,目的是建立起比较完整的杂波仿真平台和杂波数据库,为后续的CFAR算法研究提供支撑。
雷达杂波的仿真与实现
摘要 : 论述 了一种雷达杂波信号的模 拟方 法及其硬件实现 。该模拟器采用软硬件相结合 的方法 , 由计算机实时解算
每 个 杂 波 回波 单 元 的 方 位 、 离 、 距 散射 系数 等 参 数 , 后 将 数 据 发 送 到硬 件 电 路 中 , 然 由硬 件 电路 完 成 对 雷 达 信 号 的 采 样 、 制、 复 、 调 恢 幅度 控 制 , 终 产 生 杂 波 信 号 并 输 出 。 最
e c l t re h ni s c sa i u h, a ge s a t rn oe fce , t . r a c l t d by c m p e s a h c ute c o u t u h a zm t r n , c te i g c fii nt e c a e c l u a e o ut r i e ltm e; he l a a a e e t i o t e ha d a e cr u t t a p i g, od a i n, o e c n r a i t n a l t r s n nt h r w r ic i , he s m ln m d ulto c m ba k
其统计 特性 和功率 谱特 性人手 。
幅 度 分 布 是 雷 达 杂 波 的 主 要 统 计 特 性 之 一 。在
气 状况 的影响 , 延长研 制周 期 。另外 , 场 实验可 重 外 复性 较差 、 控制 较复杂 , 试验 和调试 所要 求 的系统庞
大 、 备齐 全 , 本 较 高 。这 些年 来 , 子技 术 和计 设 成 电
2 0世 纪 6 0年代 以前 , 对雷 达 目标 进行 检 测 时 , 采 均
用 高 斯 杂 波 模 型 。 它 假 设 雷 达 包 络 检 波 之 后 的 地 杂
相参相关雷达杂波的建模与仿真
对所产生的杂波作 了功率谱估计 。实验结果证 明, 以上两种方 法是有效 可靠的。
关 键 词 :相 参 雷 达 杂 波 ;建 模 与 仿 真 ;统 计模 型 ; 率谱 估 计 功 中 图分 类 号 : N9 7 T 5 文献标识码 : A 文 章 编 号 :6 22 3 ( 0 7 0—0 30 1 7—3 72 0 ) 10 4—6
o h wo me h d sg v n i h s p p r ft e t t o s i i e n t i a e .Ba e n t e t t o s t e p i c pe a d fo o i l t n o s d o h wo me h d , h r i l n l w fsmu a i f n o
Ab ta t Z r e r n i e rt ZM NL) ta so m n p e ial n a in n o P o e s sr c : e o M mo y No l a iy( n r n f r a d S h r l I v ra t Ra d m r c s c y ( I )a e t i d f smu a i n me h d f r d rcu t r u e r q e t tp e e t A re to u t n S RP r wo k n s o i l t t o s o a a l te s d f e u n l a r s n . o y b ifi r d c i n o
胡 艳辉 。张宝 宝
( 安 电子 科 技 大学 雷达 信 号 处 理 国家 重 点 实 验 室 ,陕 西 西 安 7 0 7 ) 西 10 1 摘 要 : MNL 法和 SRP法是 目前 最 常 用 的 两种 杂 波 模 拟 方 法 , 中 对 这 两 种 方 法 分 别 作 了 简要 的 Z I 文 介 绍 , 且 详 细 讨 论 了基 于 以上 两 种 方 法 的 R ye h L gN r lW e u1 布 和 K 分 布 杂 波 的 产 生 原 理 并 ali , o oma, i l分 g b
(完整版)雷达系统中杂波信号的建模与仿真
1.雷达系统中杂波信号的建模与仿真目的雷达的基本工作原理是利用目标对雷达波的散射特性探测和识别目标。
然而目标存在于周围的自然环境中,环境对雷达电磁波也会产生散射,从而对目标信号的检测产生干扰,这些干扰就称为雷达杂波。
对雷达杂波的研究并通过相应的信号处理技术可以最大限度的压制杂波干扰,发挥雷达的工作性能.雷达研制阶段的外场测试不仅耗费大量的人力、物力和财力,而且容易受大气状况影响,延长了研制周期。
随着现代数字电子技术和仿真技术的发展,计算机仿真技术被广泛应用于包括雷达系统设计在内的科研生产的各个领域,在一定程度上可以替代外场测试,降低雷达研制的成本和周期。
长期以来,由于对杂波建模与仿真的应用己发展了多种杂波类型和多种建模与仿真方法。
然而却缺少一个集合了各种典型杂波产生的成熟的软件包,雷达系统的研究人员在需要用到某一种杂波时,不得不亲自动手,从建立模型到计算机仿真,重复劳动,造成了大量的时间和人力的浪费.因此,建立一个雷达杂波库,就可以使得科研人员在用到杂波时无需重新编制程序,而直接从库中调用杂波生成模块,用来产生杂波数据或是用来构成雷达系统仿真模型,在节省时间和提高仿真效率上的效益是十分可观的。
从七十年代至今已经公布了很多杂波模型,其中有几类是公认的比较合适的模型。
而且,杂波建模与仿真技术的发展己有三十多年的历史,己经有了一些比较成熟的理论和行之有效的方法,这就使得建立雷达杂波库具有可行性。
为了能够反映雷达信号处理机的真实性能,同时为改进信号处理方案提供理论依据,雷达杂波仿真模块输出的杂波模拟信号应该能够逼真的反映对象环境的散射环境。
模拟杂波的一些重要散射特性影响着雷达对目标的检测和踉踪性能,比如模拟杂波的功率谱特性与雷达的动目标显示滤波器性能有关;模拟杂波的幅度起伏特性与雷达的恒虚警率检测处理性能有关。
因此,杂波模拟方案的设计是雷达仿真设计中极其重要的内容,杂波模型的精确性、通用性和灵活性是衡量杂波产生模块的重要指标。
雷达抗干扰波形设计和仿真
雷达抗干扰波形设计和仿真一、引言雷达作为一种重要的电子设备,在现代军事和民用领域中扮演着至关重要的角色。
随着技术的不断发展,雷达系统也在不断地更新换代。
然而,在实际应用中,雷达系统常常会受到各种干扰的影响,其中最常见的就是电磁干扰。
对于雷达抗干扰技术的研究和设计显得尤为重要。
二、雷达抗干扰波形设计1. 抗干扰波形概述抗干扰波形是指具有良好抗干扰能力的雷达信号波形。
通常情况下,抗干扰波形应该满足以下几个条件:(1)具有较高的信噪比;(2)具有较高的频谱纯度;(3)具有较高的时域分辨率;(4)具有良好的时频特性。
2. 抗干扰波形设计方法目前,针对雷达抗干扰波形设计方法主要有以下几种:(1)线性调频脉冲信号法:该方法利用线性调频脉冲信号来实现目标检测,具有抗干扰能力强、分辨率高等优点。
(2)多普勒滤波方法:该方法利用多普勒滤波器来实现目标检测,具有抗干扰能力强、分辨率高等优点。
(3)码型设计法:该方法利用不同的码型来实现目标检测,具有抗干扰能力强、频谱纯度高等优点。
(4)复合波形设计法:该方法将上述几种方法进行组合,从而实现更好的抗干扰能力和更高的分辨率。
3. 抗干扰波形仿真在雷达系统设计过程中,为了验证所设计的抗干扰波形是否符合要求,在进行实际测试之前需要进行仿真。
常见的雷达抗干扰波形仿真软件包括MATLAB、ADS等。
三、仿真案例下面以MATLAB为例,对一种基于线性调频脉冲信号的抗干扰波形进行仿真。
1. 波形生成根据线性调频脉冲信号的公式生成一组基础信号:f0 = 10e9; % 起始频率f1 = 12e9; % 终止频率T = 5e-6; % 脉冲宽度Fs = 40e9; % 采样频率t = 0:1/Fs:T;s = chirp(t,f0,T,f1);2. 干扰信号生成为了模拟实际应用中的干扰情况,可以生成一组高斯白噪声信号作为干扰信号:n = randn(size(s));3. 抗干扰波形生成将基础信号和干扰信号进行加权叠加,即可得到最终的抗干扰波形:SNR = 10; % 信噪比x = s + n/SNR;4. 波形分析利用MATLAB中的fft函数对抗干扰波形进行频谱分析,可以得到以下结果:从图中可以看出,抗干扰波形具有较高的频谱纯度和较高的信噪比。
雷达回波建模与仿真作业
雷达回波建模与仿真作业雷达回波建模与仿真作业雷达回波的建模与仿真是雷达工程中非常重要的一步。
下面将结合实际应用场景,从模型建立和仿真过程两个方面续写。
一、模型建立1. 存在的问题雷达回波的建模是根据目标散射特性和雷达性能参数进行的,然而真实环境中目标复杂多变,雷达参数也会受到众多因素的影响,仅仅通过理论公式很难完全准确地描述回波信号。
2. 基于物理原理的模型建立为了更准确地建立回波模型,可以基于物理原理进行仿真模拟。
通过目标特性分析,将目标分解为若干个散射单元,根据散射单元的位置、极化方向、散射强度等参数,在各个方向上计算目标的散射截面。
考虑到雷达的特性,如发射信号的功率、波束特性、接收信号的增益等,通过波动方程或其他适当的数学公式计算目标距离、速度等参数。
将目标的散射截面和雷达参数结合起来,计算回波信号的功率、波形等,并进行合理的处理和修正。
3. 引入统计特性实际环境中的杂波干扰和噪声会对回波信号造成影响,在模型建立过程中可以引入各种统计特性。
可以考虑杂波的统计分布和功率谱密度,噪声的功率谱密度等,并结合雷达系统的性能参数,如信噪比、动态范围等,对回波信号进行更加真实的建模。
二、仿真过程1. 计算环境参数进行雷达回波的仿真前,首先需要确定仿真的计算环境参数。
包括雷达的工作频率、发射功率、天线增益等,以及目标和背景的散射特性,如目标的散射截面、背景材料的散射特性等。
2. 设定仿真场景根据具体应用场景的需求,设定仿真场景。
包括目标的位置、速度、方向等参数,在空间中随机或指定位置生成目标集合。
考虑随机性和多样性,可以引入目标的不确定性因素,如目标的姿态变化、形态变化等。
3. 进行回波仿真计算根据建立的回波模型和仿真的环境参数,进行回波的仿真计算。
针对每个目标,根据其位置、速度等参数,计算回波信号的功率、相位、波形等,并考虑噪声和杂波的影响,进行修正处理。
4. 仿真结果分析通过对仿真结果进行分析,可以评估雷达系统的性能。
杂波建模与仿真技术及其在雷达信号模拟器中的应用研究
杂波建模与仿真技术及其在雷达信号模拟器中的应用研究杂波建模与仿真技术及其在雷达信号模拟器中的应用研究近年来,随着雷达技术的快速发展,对于雷达信号模拟器的需求也越来越迫切。
雷达信号模拟器是一种重要的仿真设备,可用于评估雷达系统的性能、验证算法和进行实验研究。
其中,杂波建模与仿真技术是雷达信号模拟器中不可忽视的关键因素之一。
杂波是指在雷达接收机输入端由于各种噪声因素而引入的干扰信号。
杂波建模是指对杂波的性质进行数学描述和建模。
杂波建模的准确性对于雷达信号模拟器的精度至关重要。
只有准确地建模了杂波,才能保证模拟出的信号与真实环境中的雷达接收到的信号一致,从而使得仿真结果更加真实、可信。
杂波建模的核心问题是如何准确地描述杂波的统计特性。
一般来说,杂波可以分为独立同分布的噪声和非独立同分布的干扰。
对于噪声,常用的建模方法是使用高斯分布或者瑞利分布来描述。
而对于干扰,则需要根据其特定的统计性质进行建模,例如提取其概率密度函数、功率谱密度等信息。
此外,对于不同的环境和不同雷达系统,杂波的性质也会有所不同。
因此,在进行杂波建模时,需要根据具体的应用场景和要求进行参数调整和优化。
在杂波建模的基础上,仿真技术起到了关键的作用。
仿真技术是指通过计算机软件模拟出雷达信号和杂波,并使其在仿真环境中表现出与真实环境中雷达系统相似的特性。
仿真技术可以使研究人员在实验室环境中进行大量的实验、测试和算法验证,提高工作效率和降低成本。
雷达信号模拟器是将杂波建模和仿真技术结合起来的关键设备。
通过模拟和输出不同类型、不同参数的雷达信号和杂波,雷达信号模拟器可以提供真实有效的模拟环境,用于评估雷达系统在各种复杂环境下的性能。
在军事、航空航天、交通和电子设备测试等领域中,雷达信号模拟器被广泛应用于系统设计、性能评估和算法验证。
杂波建模与仿真技术在雷达信号模拟器中的应用研究具有广阔的发展前景。
一方面,随着雷达技术的不断进步和复杂化,对于杂波建模和仿真技术的要求也越来越高。
杂波环境下雷达信号处理的systemvue建模与仿真方法研究
杂 波 环 境 下 雷 达 信 号 处 理 的 犛狔狊狋犲犿犞狌犲 建模与仿真方法研究
尹 园 威1, 刘 月 航1, 解 辉1, 刘 星2
(1. 陆军工程大学 石家庄校区,石家庄 050003;2. 河南省军区数据信息室,郑州 450003)
摘 要 :对 雷 达 信 号 处 理 的 仿 真 建 模 方 法 进 行 研 究 ,利 用SystemVue仿 真 平 台 中 专 用 的 雷 达 模 型 库 构 建 雷 达 系 统 仿 真 模 型 ,并 对杂波环境下的雷达信号处理过程进行雷达系统的建模与仿真实现;首先,分析雷达回波生成过程及雷达信号处理的基本原理; 其 次 ,研 究 雷 达 仿 真 模 型 库 中 目 标 模 型 、 杂 波/噪 声 模 型 、 脉 冲 压 缩 模 型 、 MTD 模 型 、CFAR 模 型 的 功 能 作 用 及 参 数 设 置 ; 最 后 ,利 用SystemVue仿 真 平 台 搭 建 杂 波 环 境 下 雷 达 系 统 仿 真 模 型 ,并 基 于 矩 阵 类 型 的 数 据 对 雷 达 信 号 处 理 过 程 进 行 仿 真 ;经 过 仿 真,雷达系统模型的信号处理结果与理论相符,验证了该仿真模型的正确性。
设计与应用
计 算 机 测 量 与 控 制 .2020.28(1) 犆狅犿狆狌狋犲狉 犕犲犪狊狌狉犲犿犲狀狋 牔 犆狅狀狋狉狅犾
· 141 ·
文章编号:1671 4598(2020)01 0141 06 DOI:10.16526/j.cnki.11-4762/tp.2020.01.030 中图分类号:TN97;TN955 文献标识码:A
在一部雷达的设计中运用仿真技术可以有效地解决这 一问题。随着计算机性能的提高及数字化装备的普及,数 字仿真逼真程度不断提高,以其速度快、成本低、可操作 性高的优点,成为雷达仿真中最常用的手段。在数字仿真 中,可用于雷达仿真的软件有很多。但大多数仿真软件存 在一些显而易见的缺点,如执行速度慢,不能生成可执行
机载PD雷达杂波建模与仿真研究
离上 , 将雷 达最 小分 辨 距 离 作 为 雷达 到地 面 斜 线 的
划分 单元 , 将此 单元 投影 到地 面上 , 地面 等距 离线 单
元大 小为 :
A p 一 C Z " ( 2 )
可 以看 出 , 等距 离 环 是 以雷 达在 地 面垂 直 投 影 点 为 圆心的 同心 圆 , 但 是 等 距 离 线 之 间 的 间隔 随 着 俯仰 角 的变大 而 变 大 。在 同一距 离 环 内仰 角 不 变 , 于 是有 :
d a r i n d i f f e r e n t c l u t t e r z o n e s i s a n a l y z e d, a n d t h e r e s u l t i s c o n s i s t e n t wi t h p r a c t i c e .
杨继庚 , 董 文 锋
( 空军预警学 院, 武汉 4 3 0 0 1 9 )
摘要 : 针对机载脉冲多普勒( P D ) 雷达地 杂波仿真 实现 的复杂性 , 基 于一种 简化 的机载 P D雷达相 干地杂波 仿真模
型, 建 立 了机 载 P D雷 达 在 地 杂 波 中检 测 目标 的模 型 。该 方 法 能 准 确 反 映 出 高 度 线 杂 波 、 主瓣杂 波 、 副瓣杂波 、 目标
a nd t a r ge t e c ho . Co mb i n e d wi t h s i m ul a t i o n r e s u l t , t he t a r ge t de t e c t i o n c a pa b i l i t y o f a i r b or n e PD r a —
文 献标 识码 : A
机载下视雷达地杂波研究与模拟
南京航空航天大学硕士学位论文机载下视雷达地杂波研究与模拟姓名:***申请学位级别:硕士专业:信号与信息处理指导教师:常建平;朱根才20080101机载下视雷达地杂波研究与模拟摘要杂波研究经过几十年的发展,仍然是雷达技术的热点。
机载PD雷达地杂波强度大、杂波谱分布广,特别在下视状态下在所有的距离上都成为目标检测的背景,因此,机载PD雷达地杂波的研究和计算已经成为机载雷达最基本和最关键的研究课题之一。
本文从机载下视雷达地杂波散射机理出发,结合机载下视雷达地杂波的特殊性,首先概括了机载下视雷达常用的杂波信号的特性即空间相关性和时间相关性,讨论了几种常用的相关杂波的模拟方法,做出了有效的模拟结果。
网格划分法是机载雷达地杂波分析和计算时常用的分析方法,本文通过对机载雷达地杂波的几种网格划分方法的分析发现,杂波网格单元大小不一、形状各异,有可能超过了雷达的分辨率,因此,本文提出了地面杂波具有扩展目标的性质的观点。
而角闪烁是扩展目标最重要的性质,于是本文对由扩展目标的角闪烁性质引起的杂波幅度起伏和相位分布进行了数字仿真;为了提高仿真精度,本文提出了模拟具有特定频谱特性的扩展目标算法,并对叠加频谱特性前后的序列进行了分析比较。
基于前面对地面杂波特性的讨论和对机载下视雷达地面后向散射系数模型的研究,在充分考虑地面杂波起伏特性的情况下,本文提出了一种基于RCS起伏模型的机载下视雷达地杂波功率谱算法,并在Matlab平台上仿真实现,仿真结果与理论分析正好吻合,提高了杂波模拟的逼真度。
关键词:机载下视雷达,地杂波,扩展目标,RCS,起伏,功率谱AbstractRadar clutter is still a hot topic after decades of study. Pulse-Doppler radar clutter is quite strong with widely distributed power spectrum. Especially when the radar is in the “look down mode”, it is the background of target detection in all range gates. So calculation and study of airborne radar clutter has become a basic and critical problem in the field of clutter research.After analyzing the surface clutter scattering mechanism of airborne radar, combining with the clutter characteristic of airborne radar in a look down mode, the characteristics of clutter signal including special correlation and time correlation, is summarized in the beginning. Then discussions are presented on several common algorthms for clutter simulation and simulation results are shown after that. Grid partition method is a common used method in analyzing and calculating ground clutter. In this paper, several ways of grid partition are summarized. Considering that some cells might exceed radar resolution because of their non-uniform sizes and various shapes, an idea that ground clutter of airborne radar can be treated as extended target is proposed. Because angular glint is the main characteristic of the extended target, so in this paper, amplitude fluctuation of ground clutter caused by this characteristic is simulated. In order to improve accuracy of the simulation, corresponding algorithm with special frequency-domain characteristic is proposed, and further simulation is made for comparison. Based on former discussions over characteristics of ground clutter and study on backscattering coefficient of airborne radar ground clutter, an algorithm, which is used to calculate power spectrum of ground clutter of airborne radar based on fluctuated RCS, is proposed. In this paper, all simulations are carried on Matlab platform and results accord well with theoretical analysis. So effectiveness of the algorithms is identified and simulation fidelity improved.Key Words: airborne radar in a look down mode, ground clutter,extended target, RCS, fluctuate, power spectrum, simulation图目录图2.1 零记忆非线性变换法原理图 (11)图2.2傅立叶级数法设计FIR滤波器的结构 (14)图2.3外调制模型框图 (15)图2.4外调制模型仿真框图 (16)图2.5 相关瑞利分布杂波序列产生过程 (17)图2.6 相关瑞利分布杂波序列 (18)图2.7 相关对数正态分布杂波序列产生过程 (18)图2.8 相关对数正态分布的杂波序列 (19)图2.9 相关weibull分布杂波序列产生过程 (20)图2.10 相关weibull分布的杂波序列 (20)图2.11 K分布杂波序列产生过程 (21)图2.12 相关K分布随机序列 (21)图3.1机载雷达地面杂波空间几何关系 (24)图3.2 坐标系转换示意图 (25)图3.3空间坐标系定义 (28)图3.4 距离环地面散射单元法空间几何关系 (29)图4.1第一类模型仿真流程图 (34)图4.2瑞利序列仿真结果 (34)图4.3常数序列仿真结果 (35)图4.4(a) 第三类模型(1)仿真流程图 (36)图4.4(b) 第三类模型(2)仿真流程图 (36)图4.5具有一定相关系数的一组瑞利分布仿真结果 (36)图4.6 第四类模型的仿真流程图 (38)图4.7 Nakagami-m分布随机序列统计结果 (38)图4.8 扩展目标功率谱特性 (40)图4.9叠加特定功率谱模型的瑞利分布模型仿真流程 (41)图4.10叠加特定功率谱模型的瑞利分布模型仿真结果 (41)图4.11叠加特定功率谱的扩展目标Nakagami-m分布模型仿真流程 (42)机载下视雷达地杂波研究与模拟图4.12叠加特定功率谱模型的扩展目标Nakagami-m分布仿真结果 (42)图4.13瑞利分布序列在叠加频域特性前后的仿真比较图 (43)图4.14 Nakagami-m分布序列在叠加频域特性前后的仿真比较图 (44)图5.1地杂波后向散射模型 (46)图5.2机载下视雷达杂波功率谱分布 (47)图5.3产生对应下视角θ的起伏RCS数据过程图 (50)图5.4对数正态分布时域模型及统计结果 (50)图5.5 积分面积A可能出现的情况 (53)图5.6 杂波功率谱计算流程 (54)图5.7杂波空间的坐标转换框图 (55)图5.8 天线方向图函数 (56)图5.9(a)平均RCS杂波谱 (56)图5.9(b)RCS起伏为lognormal的杂波谱 (57)图5.9(c)RCS起伏为瑞利分布的杂波谱 (57)图5.10(a) m=67杂波谱 (58)图5.10(b) m=67杂波谱 (58)图5.10(c) m=67杂波谱 (58)图5.11射频仿真系统框图 (60)图5.12射频仿真系统目标模拟器的模拟对象 (60)图5.13目标模拟器设计模块图 (61)南京航空航天大学硕士学位论文表清单表2.1 杂波谱的标准偏差 (8)表5.1地杂波Morchin模型参数表 (47)机载下视雷达地杂波研究与模拟注释表RCS Radar Cross-Section(雷达散射截面积)ZMNL Zero Memory Nonlinerity(零记忆非线性变化法)SIRP Spherically Invariant Random Process(球不变随机过程法)SDE 随机微分方程法const常量corr互相关系数MDL准则最短描述准则FIR Finite Impluse Response(有限冲激响应)AR Auto Regressive(自回归模型)RFSS Radiation Frequency Simulation System(射频仿真系统)承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
雷达杂波的建模与仿真
theory a chaotic clutter model is put forward using radial basis function network (RBFN). A radar clutter library which is able to generate various coherent or correlated clutters is built. The clutters generated with the library may be Rayleigh, log-normal, Weibull, K-distributed or NG distributed, with Gaussian, Caucy or all-pole spectrum. Keyword: clutter modelling and simulation stochastic model
Abstract
Computer modelling and simulation techniques are becoming increasingly important in the design and development of modern radar systems. The main purpose of this paper is to summarize radar clutter models and generate various kinds of clutters for the laboratory simulation systems. The paper also present better simulation methods or new clutter models. The works of this paper are
《2024年杂波建模与仿真技术及其在雷达信号模拟器中的应用研究》范文
《杂波建模与仿真技术及其在雷达信号模拟器中的应用研究》篇一一、引言随着雷达技术的不断发展,杂波建模与仿真技术在雷达信号处理中扮演着越来越重要的角色。
杂波是雷达系统中不可避免的一种干扰信号,它会对雷达的探测性能产生严重影响。
因此,研究杂波建模与仿真技术,对于提高雷达系统的性能和可靠性具有重要意义。
本文将介绍杂波建模与仿真技术的基本原理及其在雷达信号模拟器中的应用研究。
二、杂波建模与仿真技术的基本原理杂波建模是指根据实际杂波的特性,建立相应的数学模型,以便于进行后续的仿真和分析。
杂波的来源多种多样,包括地面、海面、气象等因素产生的杂波。
因此,建立准确的杂波模型需要考虑多种因素的综合影响。
仿真技术则是利用计算机等设备,对建立的模型进行数值计算和可视化呈现,以便于观察和分析杂波的特性。
仿真技术可以帮助我们更好地理解杂波的产生机制和传播规律,为后续的雷达信号处理提供理论依据。
三、杂波建模的方法目前,常用的杂波建模方法包括统计模型、物理模型和混合模型等。
统计模型主要是根据实际测量的杂波数据,通过统计方法建立杂波的数学模型。
物理模型则是根据杂波产生的物理机制,建立相应的数学模型。
混合模型则是结合统计模型和物理模型的优点,综合考虑多种因素,建立更加准确的杂波模型。
四、仿真技术在雷达信号模拟器中的应用雷达信号模拟器是雷达系统研发和测试的重要工具,它可以模拟各种复杂的雷达信号和环境,以便于对雷达系统进行性能评估和优化。
在雷达信号模拟器中,杂波建模与仿真技术可以应用于以下几个方面:1. 杂波背景模拟:通过建立准确的杂波模型,可以在雷达信号模拟器中模拟各种复杂的杂波背景,以便于评估雷达系统的抗干扰能力。
2. 杂波抑制算法验证:利用仿真技术,可以生成大量的杂波数据,用于验证和优化杂波抑制算法的性能。
3. 雷达系统性能评估:通过仿真技术,可以模拟不同环境下的雷达系统性能,以便于对雷达系统的性能进行全面评估。
五、实例分析以某型雷达系统为例,我们采用了混合模型的方法建立了杂波模型,并利用仿真技术对杂波背景进行了模拟。
天基雷达的杂波建模与仿真的开题报告
天基雷达的杂波建模与仿真的开题报告一、选题背景天基雷达是一种具有重要军事及民用意义的远距离探测系统。
其中,杂波是指在接收系统中除目标回波以外的其他收到信号。
杂波会产生许多不良的效应,如降低雷达信号的信噪比,干扰雷达的正常工作等,所以对于天基雷达来说,准确地建模和仿真其杂波是非常关键和必要的。
二、研究目的和意义本文旨在通过建立天基雷达的杂波建模和仿真模型,实现对天基雷达杂波的实时监测,预测和控制,为天基雷达的设计和运行提供有力的支持。
三、研究内容本文将围绕以下四个方面来开展研究:1. 天基雷达系统的基本结构和工作原理的研究,包括系统的传输链路,接收链路和信号处理。
2. 天基雷达杂波特性的分析和建模,包括天气、电离层、地面反射等因素对于雷达接收信号产生的影响以及杂波的分类和统计分析。
3. 基于Matlab和C++的天基雷达杂波仿真模型建立,包括雷达接收信号的模拟和处理过程以及杂波的统计和分析过程。
4. 仿真结果的分析和评估,包括仿真结果的可靠性评估以及杂波的实时监测与控制方案的制定等。
四、研究方法和技术路线研究方法采用理论模型建立和仿真模拟相结合的方式。
首先,对天基雷达的杂波特性进行分析和建模,制定相应的数学模型;其次,结合Matlab和C++进行仿真模拟,实现对杂波的实时监测和预测;最后,对仿真结果进行评估和分析,制定合理的杂波控制方案。
五、预期结果和成果本文研究的预期结果和成果主要包括以下方面:1. 天基雷达系统和杂波的本质特性的深入了解,为天基雷达系统的设计和优化提供理论基础。
2. 基于Matlab和C++的天基雷达杂波模型,实现对杂波的实时监测和预测,为天基雷达的应用提供有力支持。
3. 可靠的仿真结果和杂波控制方案,能够帮助天基雷达系统的设计者和运行人员更好地理解和控制天基雷达系统中的杂波干扰。
六、研究难点1. 天基雷达杂波特性的建模和仿真,需要兼顾天气、电离层和地面反射等多种因素,需要准确的数学模型和算法。
SIRP法相干相关K分布雷达杂波的建模与仿真
SIRP 法相干相关K 分布雷达杂波的建模与仿真gjj_hit@所谓杂波仿真,实际上就是要生成一系列在幅度上服从特定的概率密度分布(pdf )的相关随机序列,常见的杂波仿真方法有两种:零记忆非线性变换法(ZMNL )和 球不变随机过程法(SIRP )。
ZMNL 方法的基本思想是:首先产生相关的高斯随机过程,然后经过某种非线性变换得到所求的相关随机序列。
这种方法的缺点就是输入序列与输出序列间有复杂的非线性关系,因此必须寻找输入序列与输出序列的相关函数间的非线性对应关系。
SIRP 方法的基本思想是:产生一个相关的高斯随机过程,然后用具有所要求的单点概率密度函数的随机序列进行调制。
这种方法的缺点则是受所求的序列的阶数及自相关函数的限制,同时这种方法的计算量非常大,不易形成快速算法。
ISAR 是一种相干雷达,其海杂波必然是相干且时空相关的。
对于相干相关杂波,以往的方法都是将非相干的ZMNL 方法加以推广得到相干的ZMNL 模型。
这种方法得以应用的一个前提是已知非线性变换前后杂波相关系数的非线性关系,然而对于相干相关K 分布杂波却很难找到这样一种非线性变换,于是我们采取SIRP 方法来仿真ISAR 的海杂波。
K 分布适用于描述高分辨雷达的非均匀杂波,多用于对海杂波的模拟。
K 分布可以由一个均值是慢变化的瑞利分布来表示,其中这个慢变化的均值服从Γ分布。
K 分布的概率密度函数为:()()()12;,K /,(0,0)2x f x x x ννανανανα-⎛⎫=∙∙>> ⎪Γ⎝⎭(1)其中,ν是形状参数,α是尺度函数,()Γ 是伽马函数,K ν是第二类修正贝赛尔函数。
杂波平均功率2σ,ν和α之间的关系可表示为:222σαν= (2)对于大多数杂波来说,形状参数的取值范围是0ν<<∞,对于较小的ν的取值,如0.1ν→时,杂波有较长的托尾,ν→∞时的分布接近于瑞利分布。
图1给出了K 分布杂波序列的实现结构。
雷达杂波模型的建立与仿真
机序列方法有两种。 1 球 不变 随机 过 程 SR ) I P方 法 。 本 思 想 是 : 生 一个 相 基 产
景下进行信号处 理是 雷达 的基本 任务 。 据不 同 的杂波 情 根
形 , 达杂波幅度有瑞利分布、 雷 对数正态分布 、 韦布尔分布 以 及 K分 布等 , 功率谱分布有高斯型 、 其 立方型和指数型等 J 。 通常杂波信号 的强度远远超过 目标信号 的强度 , 并且 杂
中 图分 类 号 : P9 . T 3 19 文 献 标 识 码 : A
M o lng a i ul to fR a dei nd S m a i n o dar Cl te utr
相控阵雷达杂波模拟与信号处理研究
相控阵雷达杂波模拟与信号处理研究电子科技大学硕士学位论文相控阵雷达杂波模拟与信号处理研究姓名:曹玉梅申请学位级别:硕士专业:电路与系统指导教师:马建国20090501摘要摘要雷达系统仿真技术为系统的研究、设计和验证节省了大量的费用,也使得雷达系统的性能得到保证。
它所具有的经济、灵活、可重复性、可移植性等特点,使其逐渐成为雷达系统和电子对抗系统研究中的一项关键技术。
本文以相控阵雷达软件仿真系统为背景,对杂波模块和信号处理子系统的建模和实现进行了分析和研究。
主要工作如下:.雷达仿真系统中采用的是相控阵天线,文中分析了相控阵雷达天线主要参数,研究了相控阵天线波束的栅瓣,天线加权函数,在此基础了给出了相控阵天线设计方法。
.研究了雷达仿真系统中的杂波仿真模块,根据目前最常用杂波模拟方法:法和法,文中具体分析了瑞利分布杂波、对数正态分布杂波、分布杂波和分布杂波的产生原理和流程,并采用法和法对以上几种模型进行了仿真,仿真结果与理论结果吻合得很好。
.研究了雷达系统仿真中的信号处理子系统的相关算法,并给出了信号处理流程,采用了数字化正交解调、脉冲压缩、动目标显示和动目标检测、恒虚警处理、相参积累等信号处理算法。
本文重点对线性调频脉冲压缩进行了分析和研究。
分析了线性调频脉信号脉压后距离旁瓣抑制,研究了不完全脉压和多普勒频率对脉压的影响;分析了分别用和两种方法实现处理;研究了快、慢门限恒虚警处理,比较了两种方法处理效果以及相参积累对信噪比改善。
最后,根据所研究的信号处理算法,利用的图形用户界面动态显示了信号处理过程,效果良好,验证了所研究的算法的可行性。
关键字:雷达系统仿真,相控阵天线,杂波模拟,信号处理, ’ .?., :. : ?......, . ., ,,. ,. ., .,. ,Ⅱ,.,: ,?独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得电子科技大学或其它教育机构的学位或证书而使用过的材料。
中频雷达杂波信号的仿真与实现
( 舶 重 工 集 团 公 司 7 3 , 州 2 50 ) 船 2 所 扬 2 0 1
摘 要 : 述了一种 中频雷达 杂波信号 的模拟方法及其硬件实 现, 论 该模拟 器采用软硬件相结 合的方法 , 由计算机 实时
解算 每个 杂 波单 元 的 幅度 、 离 、 射 系数 等 参 数 , 距 散 然后 将 数 据 发 送 到 硬 件 电 路 中 , 由硬 件 电路 完 成 对 雷 达 信 号 的 采
样、 制、 调 幅度 控 制 、 复 , 终 产 生 杂 波 信 号 并 输 出 。 恢 最
关键 词 : 中频 雷达 ; 杂波信号 ; 仿真
中 图 分 类 号 : N 5. T 952
文献标 识码 : A
文 章 编 号 : N 211 (020—06 5 C 3—432 1)3 7— 0 0
21 0 2年 6月
舰 船 电 子 对 抗
SH 1 PB0 ARD EIECT R0N I C0U N TERM EA SU RE C
J n 2 1 u .02
V o135 N o. . 3
第3 5卷第 3 期
中频 雷达 杂 波信 号 的仿 真 与实现
庄 展 , 丽 , 陈 孔令 峰
0 引 言
近年 来 , 达在 军 事 和 民用 领 域 的使用 越 来 越 雷
广 泛 , 界 各 国 在 雷 达 的设 计 、 制 中 投 入 了 大 量 的 世 研 人 力 、 力 。 内 场 仿 真 是 雷 达 在 设 计 、 制 、 验 阶 物 研 试
表面 反射 回来 的信 号 , 而能 够 反 射 电磁 信 号 造 成 回 波 的物体很 多 。对于 雷达来 说有 些是希 望 收到 的回 波, 有些 是 不 希望 收 到 的 回波 。例 如照 射 到船 、 、 车 飞机 等物 体 上 产 生 的 回波 是 能 够 从 中检 测 出 目标 的 , 于 希望收 到 的 回波 ; 照射 到地 面 、 面 或 空 属 而 海 中的气象 微粒产 生 的回波会 影 响雷达正 常地 检测 目 标, 把这 些 回波 信号 称为杂 波 ] 。
雷达杂波的建模与仿真研究的开题报告
雷达杂波的建模与仿真研究的开题报告一、选题背景及研究意义雷达是一种通过电磁波探测目标、测量目标位置和速度等参数的仪器。
在雷达工作时,存在着各种来自周围环境或雷达自身产生的电磁波噪声,即雷达杂波。
雷达杂波不仅会影响雷达的探测性能,还会增加探测目标的难度。
因此,研究雷达杂波的建模与仿真,对于提高雷达的探测性能和准确性具有重要的实用意义。
本研究旨在深入探究雷达杂波的特性和产生机制,并结合现有的研究成果和实际数据,进行雷达杂波建模与仿真研究,以期为雷达探测性能的提高提供理论支持和实验依据。
二、研究内容和方法1. 研究雷达杂波的特性和产生机制,包括分析雷达接收机噪声、自然杂波、信道杂波等不同来源产生的杂波特性,并对各类杂波进行分类和定义。
2. 收集并整理相关研究成果和实验数据,确定建模的对象和范围,比较各种建模方法的优劣。
3. 基于所选的建模方法,建立雷达杂波的仿真模型,包括杂波功率谱密度函数的建立、杂波时序信号的生成、和杂波统计特性的分析和仿真等。
4. 通过与实际数据进行比较和验证,对所建模型进行检验和优化,并对不同杂波类型的仿真模型进行对比分析。
5. 最终对所建立的仿真模型进行总结和评价,提出进一步改进和完善的建议,并探讨将所得到的仿真结果应用于雷达系统的优化和探测性能的提高的方法和途径。
三、研究目标和预期成果本研究旨在通过对雷达杂波的特性和产生机制进行深入研究,建立一种准确合理的雷达杂波仿真模型,以实现对雷达探测性能的提高和优化。
具体研究目标和预期成果包括:1. 建立适用于不同类型雷达系统的雷达杂波仿真模型,实现对雷达杂波的快速、准确仿真。
2. 在仿真模型的基础上,深入探究雷达杂波的特性和产生机制,为雷达探测性能的提高提供支持和指导。
3. 将所得到的仿真结果应用于雷达体制的设计和优化,进一步提高雷达的探测性能和准确性。
四、研究进展和计划本研究目前已初步探究了雷达杂波的特性和机制,并对相关研究方法和现有的仿真模型进行了分析和对比。
雷达信号杂波的仿真与实现
收稿 日期 :2 1. 11 。 0 20 —5
第 4期
吕俊 颖:雷达信号杂波 的仿真与实现
・8 2 7・
2 杂 波功 率谱 计 算 原 理
雷达采用传统的 等多 普勒线 一距离线网 格划
分 方法 [1。 11 1 2
) 斯 布 机 列 ( =  ̄ n。。— 高 分 随 序 Hf [。fA ) s。。 f ‘ 。。— 。A ) ( 。 。。
t esmu a in r s t h ws h t h h r c e f a a l t r o l ee a t e lce r u ht ee a l . h i lt ul s o a ec a a t r d r u t u db x cl r f td t o g x mp e o e t t o r c ec y e h h
xn f ,其 中 △ 是 时域取 样 间隔 ,△ (A ) f 厂是频域 取样
当且仅 当 { ) 各分量 是 正态分 布 时 ,xn t的各分 (A)
量也 是 高斯分 布 。此实 现过程 如 图 1 示 。 所
间隔 。 由于离 散 随机过 程采样 是独 立 的, 模 拟 的 杂 波 频 谱 作 为 杂
的夹 角 为 ,其 与速 度矢量 的夹 角 为 。确 定攻 击
换 后统 计特 性保 持不 变 ,因此 可 以产 生 具有指 定功 率 谱 、幅度 服 从瑞 利分 布 、相位 符 合 『, - 间均 0n区 2]
匀 分布 的杂 波序 列 。
K e o ds yw r :Ra a; utr Smuain d r Clt ; i lt e o
随着 雷 达 研 究 的 深 入 ,对 特 定 雷 达信 号 的仿
真 ,必须 涉及 到许 多随 机 因素的 影响 ,这 样才 能得 出更加 贴近 实际情 况 的定量 性能 指标 。因此 ,研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.雷达系统中杂波信号的建模与仿真目的雷达的基本工作原理是利用目标对雷达波的散射特性探测和识别目标。
然而目标存在于周围的自然环境中,环境对雷达电磁波也会产生散射,从而对目标信号的检测产生干扰,这些干扰就称为雷达杂波。
对雷达杂波的研究并通过相应的信号处理技术可以最大限度的压制杂波干扰,发挥雷达的工作性能。
雷达研制阶段的外场测试不仅耗费大量的人力、物力和财力,而且容易受大气状况影响,延长了研制周期。
随着现代数字电子技术和仿真技术的发展,计算机仿真技术被广泛应用于包括雷达系统设计在内的科研生产的各个领域,在一定程度上可以替代外场测试,降低雷达研制的成本和周期。
长期以来,由于对杂波建模与仿真的应用己发展了多种杂波类型和多种建模与仿真方法。
然而却缺少一个集合了各种典型杂波产生的成熟的软件包,雷达系统的研究人员在需要用到某一种杂波时,不得不亲自动手,从建立模型到计算机仿真,重复劳动,造成了大量的时间和人力的浪费。
因此,建立一个雷达杂波库,就可以使得科研人员在用到杂波时无需重新编制程序,而直接从库中调用杂波生成模块,用来产生杂波数据或是用来构成雷达系统仿真模型,在节省时间和提高仿真效率上的效益是十分可观的。
从七十年代至今已经公布了很多杂波模型,其中有几类是公认的比较合适的模型。
而且,杂波建模与仿真技术的发展己有三十多年的历史,己经有了一些比较成熟的理论和行之有效的方法,这就使得建立雷达杂波库具有可行性。
为了能够反映雷达信号处理机的真实性能,同时为改进信号处理方案提供理论依据,雷达杂波仿真模块输出的杂波模拟信号应该能够逼真的反映对象环境的散射环境。
模拟杂波的一些重要散射特性影响着雷达对目标的检测和踉踪性能,比如模拟杂波的功率谱特性与雷达的动目标显示滤波器性能有关;模拟杂波的幅度起伏特性与雷达的恒虚警率检测处理性能有关。
因此,杂波模拟方案的设计是雷达仿真设计中极其重要的内容,杂波模型的精确性、通用性和灵活性是衡量杂波产生模块的重要指标。
2.Simulink简介Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中[3]。
Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
S-函数是系统函数(System Function)的简称,是指采用非图形化的方式(即计算机语言,区别于Simulink的系统模块)描述的一个功能块。
用户可以采用MATLAB 代码,C,C++,FORTRAM或Ada等语言编写S-函数。
S-函数提供了函安息代码与Simulink之间的接口,使得用户编写的代码既能像Simulink模型库中的模块那样具有统一的仿真接口,同时能够实现各种灵活的控制和计算功能。
S-函数是一种特定的语法构成,用来描述并实现连续系统、离散系统以及复合系统等动态系统;S-函数能够接收来自Simulink求解器的相关信息,并对求解器发出的命令做出适当的响应,这种交互作用非常类似于Simulink系统模块与求解器的交互作用。
一个结构体系完整的S-函数包含了描述动态系统所需的全部能力,所有其它的使用情况都是这个结构体系的特例。
往往S-函数模块是整个Simulink动态系统的核心。
3. 主要内容1.首先综述常规脉冲雷达杂波产生的机理,具体阐述了在指定的杂波功率谱下,幅度服从Rayleigh分布、LogNormal分布、Weibull分布和K分布的杂波建模与仿真的方法。
指出杂波散射现象可以理解为与地、海面随机形态相关的一种随机过程,因此通常用杂波幅度分布统计模型和杂波相关模型来描述。
(1)Rayleigh分布适用于描述气象杂波、箔条干扰、低分辨率雷达的地杂波。
当在一个杂波单元内含有大量相互独立的、没有明显贡献的散射源时,雷达杂波包络服从Rayleigh分布。
(2)LogNormal分布使用于低入射角,复杂地形的杂波数据或者平坦区高分辨率的海杂波数据。
(3) Weibull分布的动态范围介于上述两种分布之间,能在更广阔的范围内精确表示实际的杂波分布。
通常,在高分辨率雷达,低入射角的情况下一般海情的海浪杂波能够用Weibull分布精确地描述,地杂波也能用Weibull分布描述。
(4)K分布适用于描述高分辨率雷达的非均匀杂波,多见于对海杂波、地杂波的描述。
K分布是一种符合分布模型,它可由一个均值是慢变化的Rayleigh分布来表示,其中这个慢变化的均值服从г分布。
除了上述具有特定概率密度函数的非相关雷达杂波仿真外,在雷达信号处理的有些场合还需要知道雷达杂波功率谱分布,常见的有Gaussian型、Cauchy型、AllPole型等。
2.针对以上论述的十二种杂波分布给出了在MATLAB平台下用m语言实现的算法实现流程。
3.将这十二种杂波模型生成Simulink自定义模块,并添加到Simulink仿真模型库中供仿真调用。
4.杂波建模与模拟方法杂波可以说是雷达在所处环境中接收到的不感兴趣的回波。
就像目标回波一样,杂波也是极为复杂的。
为了有效地克服杂波对信号检测的影响,需要知道杂波的幅度特性以及频谱特性。
除独立的建筑物、岩石等可以认为是固定目标外,大多数地物、海浪杂波都是极为复杂的,它可能既包含有固定的部分又包含有运动的部分,而每一部分反射回来的回波,其振幅和相位都是随机的。
通常采用一些比较接近而又合理的数学模型来表示杂波幅度的概率分布特性,这就是雷达杂波模型。
目前描述杂波模型主要有三种方式:(1)描述杂波散射单元机理的机理模型;(2)描述杂波后向散射系数的概率密度函数的分布模型;(3)描述由实验数据拟合与频率、极化、俯角、环境参数等物理量的依赖关系的关系模型。
4.1 雷达杂波幅度分布模型到目前为止,人们已经提出了许多杂波模型,有关描述杂波后向散射系数的概率密度函数的分布模型,比较公认的幅度概率密度函数分布模型为Rayleigh 分布、LogNormal 、Weibull 分布、K 分布等。
(1) Rayleigh (瑞利)分布在雷达可分辨范围内,当散射体的数目很多的时候,根据散射体反射信号振幅和相位的随机特性,它们合成的回波包络振幅是服从瑞利分布的[6]。
以x 表示杂波回波的包络振幅,以σ2表示它的功率,则x 的概率密度函数为:222()exp()2xx f x σσ=- (4-1) 相对应的概率密度函数分布曲线如图4.1所示。
图4.1 瑞利分布概率密度函数分布曲线图瑞利分布与每个散射体的振幅分布无关,只要求散射体的数目足够多,并且所有散射体中没有一个起主导作用。
需要说明的是,瑞利分布只能代表同一个距离单元上杂波从这次扫描到下次扫描的变化规律,它不能用来表示同一个扫描过程中杂波回波的振幅分布,因为杂波的强度一般都是随着距离的增大而减弱的。
对于低分辨力雷达,当高仰角和平稳环境时,瑞利分布的杂波模型可以得到较为精确的结果。
但是,随着对雷达杂波分布特性分析的逐步深入,人们发现,对于海浪杂波和地物杂波,瑞利分布模型并不能给出令人满意的结果。
特别是随着距离分辨力的提高,杂波分布出现了比瑞利分布更长的“尾巴”,即出现高振幅的概率相当大。
因而,如果继续采用瑞利分布模型,将出现较高的虚警概率。
海浪杂波的分布不仅是脉冲宽度的函数,而且也与雷达极化方式、工作频率、天线视角以及海情、风向和风速等因素有关,地物杂波也受类似因素的影响。
对于高分辨力雷达,在低仰角或恶劣海情下,海浪杂波己不服从瑞利分布,而通常能用韦布尔分布来描述。
类似地,地物杂波通常能用LogNormal 分布来描述[7]。
(2) LogNormal (对数一正态)分布设x 代表杂波回波的包络分布,则x 的LogNormal 分布是:22ln (/)1()exp[]22m x x f x x σπσ=- (4-2) 其中σ代表lnx 的标准差,x w 是x 的中值。
相对应的概率密度函数分布曲线如图4.2所示:图4.2 LogNormal 分布概率密度函数分布曲线图LogNormal 分布的严重缺点是在最影响虚警和灵敏度的区域里,吻合程度反而较差。
对数一正态分布和瑞利分布之间的主要差别在于前者的“尾巴”较长,也就是说,大幅度的概率要比后者大一些。
(3) Weibull (韦布尔)分布一般来说,对于大多数试验和理论所确定的杂波幅度分布,瑞利分布模型和对数一正态分布模型仅适用于它们中的有限分布。
瑞利分布模型一般地倾向于低估实际杂波分布的动态范围,而对数一正态分布倾向于高估实际杂波分布的动态范围[8]。
韦布尔杂波分布模型比瑞利分布模型、对数一正态杂波分布模型常常能在更广的环境内精确的表示实际的杂波分布。
适当地调整韦布尔分布的参数,能够使它成为瑞利分布或接近于对数一正态分布。
通常,在使用高分辨力雷达,低入射角的情况下,海浪杂波能够用韦布尔分布模型精确地描述,地物杂波也能够用韦布尔分布模型描述。
设x 代表杂波回波的包络振幅,则x 的韦布尔分布为:1()exp[(/)]m mx f x x x x ααα-=-(4-3) 其中:x m 为尺度参数,是分布的中值;a 为分布的形状(斜度)函数。
相对应的概率密度函数分布曲线如图4.3所示:图4.3 Weibull 分布概率密度函数分布曲线图如果把式(2-3 )形状参数a 固定为2,并把2m x 改写成2σ2,则式(2-3 )变为:222()exp()2x x f x σσ=-(4-4)这就是瑞利分布。
所以,瑞利分布是韦布尔分布的特例。
如果a=1,并把2m x 改写成2σ2,则韦布尔分布变为:221()exp(/2)2f x x σσ=- (4-5)这就是指数分布。
从信号检测的观点来说,对数一正态分布代表着最恶劣的杂波环境:瑞利分布代表最简单的杂波环境;韦布尔分布是中间模型[9]。