医用物理基础整理

合集下载

医用物理学总结

医用物理学总结

第二章 物体的弹性应力 应变弹性模量扭转角δ与母线的倾斜角φ之间的关系: ϕδl r =当圆杆被扭转时,其横截面每一点均承受切应力作用,切应力的数值与该点到中心轴的距离成正比。

第三章 流体的运动1.流量:流管截面积与该处流速的乘积或单位时间内,流过任意截面的体积。

tVSv Q == Q V t =2.连续性方程(质量流量守恒定律):=Sv ρ常量 当流体不可压缩时Sv =常量(体积流量守恒定律) 3.伯努利方程:常量212=++v gh P ρρ 4.汾丘里流量计(水平)2222112121ρυρυ+=+P P5.流速计(皮托管)gh v P P C D )-(212ρρρ'==-其中ρ:待测流速的流体的密度ρ':U 型管中工作液体的密度正应力(σ) 切应力(τ)体应力(p )张应力 压应力 线应变(ε) 切应变(γ)体应变(θ) 杨氏模量(Y ) 切变模量(G )体变模量(K )S 1v 1=S 2v 2222121222A A hg A A v A Q -∆⋅=⋅= ρρρghv )-(2'=6. 牛顿黏滞定律⎪⎭⎫ ⎝⎛=dr dv S f η其中η:流体的黏度(取决于流体的性质,与温度有关。

一般,液体的η值随温度升高而减小,气体的η值随温度升高而增大。

)η的单位是N ·s ·m-2 或 Pa ·s ,有时也用 P(泊),1 P = 0.1 Pa ·s 。

7.雷诺数ηρvrR =e Re<1000,层流;1000<Re<1500,过渡流动,流动状态不稳定;Re>1500,湍流8.黏性流体的伯努利方程E v h g P v h g P B B B A A A ∆+⋅+⋅⋅+=⋅+⋅⋅+)21(2122ρρρρ其中 E ∆:单位体积流体因黏性力的存在而引起的能量损耗 如果流体在水平均匀细管中稳定流动,则E P P B A ∆+= 如果流体在开放的粗细均匀的管道中维持稳定流动E gh gh B A ∆=ρρ-9.泊肃叶定律:在等截面...水平细圆管内作层流..的黏性流体,其体积流量为 LPR Q ηπ84∆=其中:R 是管子的半径,η为流体粘度,L 为管长 ① 速度分布:)(4)(2221r R lP P v --=η ② 流量 f R P Q ∆=,其中48rlR f πη=(f R 称为流阻或外周阻力)10.斯托克司定律球形物体在黏性流体中作层流运动,则球体所受的阻力为:R v f ηπ6=第四章 振动1.简谐振动kx txm F -==22d d (1)令2mk =ω,则(1)式变为 0d d 222=+x t x ω (2)(2)式的解可表示为 ) ( cos ϕω+=t A x)sin(ϕωω+-=t A v )cos(2ϕωω+-=t A a2.简谐振动的初始条件2020⎪⎭⎫⎝⎛+=ωv x Aϕtg 0x v ω-=3.简谐振动的能量)(sin 21212222ϕωω+==t A m mv E k)(cos 21)(cos 2121222222ϕωωϕω+=+==t A m t kA kx E p2222121kA A m E E E p k ==+=∴ω4.单摆θθθmg mg dtd ml -=-=sin 22令lg =2ω得0222=+θωθdtd )cos(0ϕωθθ+=t 221mv E k =2)(21dt d l m θ=)(sin 2122202ϕωωθ+=t mL mgh E P =)cos 1(θ-=mgl )(cos 21220ϕωθ+=t mgl202221θωml E E E p k =+=∴5.阻尼振动阻尼振动应用:高级电表中使用阻尼常量接近临界值 6.共振(1)应用:① 收音机共振选台② 共振腔提高乐器音响效果 ③ 研究避免共振破坏的措施(2)避免共振破坏的方法: ① 破坏强迫力周期性 ② 改变系统固有频率 ③ 改变外力的频率 ④ 增大系统阻尼7.简谐振动的合成(1)两个振向、同频率简谐振动的合成合振动还是简谐振动 ) ( cos 111ϕω+=t A x) ( cos 222ϕω+=t A x注意:① 若相位差 2Δ12πϕϕϕk ±=-=时,合振幅最大(同相); ② 若相位差πϕϕϕ)12(Δ12+±=-=k 时,合振幅最小(反相); ③ 若相位差取其他值,2121A A A A A ->>+(2)两个振向、不同频率简谐振动的合成合振动不再是简谐振动,但仍然是周期性振动,而且合振动的频率与分振动中的最低频率相等。

大一医用物理知识点总结

大一医用物理知识点总结

大一医用物理知识点总结在医学领域,物理学知识的应用十分广泛。

作为医学生,掌握一定的医用物理知识非常重要。

本文将从医用物理的基本概念、物理仪器应用、辐射防护等方面进行总结。

一、医用物理基本概念1.1 医用物理的定义:医用物理是将物理学的原理和方法应用于医学领域,以改善人类健康及医疗技术的学科。

1.2 物理测量与仪器:医用物理主要涉及到测量与仪器的应用,如电子设备、超声波技术、核磁共振等。

1.3 光学应用:医学中常用的光学应用有显微镜、光导纤维、激光等,用于研究细胞、组织和病变的诊断。

二、物理仪器应用2.1 X射线:X射线是最常见的医学成像技术,广泛用于骨折检查、肺部影像等。

了解X射线的生成原理及安全操作十分重要。

2.2 CT扫描:CT扫描利用X射线与计算机技术结合,能够提供更为清晰的切片图像,用于检查非常精细的结构,如脑部、心脏等。

2.3 核磁共振:核磁共振成像是一种无辐射的成像技术,常用于观察软组织结构和器官功能,如脑部、关节等。

2.4 超声波:超声波成像技术使用声波的频率超过人类听觉范围,可用于监测胎儿发育、检查脏器、肿瘤等。

2.5 放射治疗:放射治疗利用高能射线杀死癌细胞,对肿瘤治疗起到重要作用,但也要注意辐射防护。

三、辐射防护3.1 辐射的危害:长期接触辐射会对人体健康产生不良影响,如致癌、细胞变异等。

因此,在医疗过程中需要进行辐射防护。

3.2 防护措施:在进行X射线检查时,医生和患者应佩戴防护服、戴上护目镜等,减少辐射对人体的损害。

3.3 辐射监测与管理:医疗机构应定期对工作场所进行辐射监测,确保医护人员和患者的安全。

总结:医用物理是医学领域中不可或缺的一部分。

医学生需要掌握基本的医用物理知识,了解物理仪器的应用及安全性,并熟悉辐射防护的措施。

通过学习和应用医用物理知识,可以提升医学领域的诊断和治疗水平,为患者提供更好的医疗服务。

第一章医用物理

第一章医用物理

(2)A<0时,外力对物体作负功,物体的动能减少。
三、势能
• 重力势能:从高处落下的重物能够作功,说明处 在高处的重物具有能量,称为重力势能。 • 弹性势能:被拉伸或受压缩的弹簧,在恢复原状 的过程中,也能作功。说明处于弹性形变状态的 物体也具有能量,称为弹性势能。 • 势能:凡是由物体之间的相互作用和相对位置决 定的能量统称为势能。 由于势能既和物体之间的相互作用力有关, 又和物体之间的相对位置有关,所以势能属于相 互作用着的物体所组成的系统,而不是属于某一 个物体。重力势能属于重物和地球组成的重力系 统,弹性势能则属于弹性体组成的弹性系统。
J mi ri 2
i 1
1 1 n 2 2 E k mi i ( mi ri ) 2 2 i 1 i 1 2
n
n
其中: 则
1 E k J 2 2
2. 刚体的转动惯量 当物体是由无数个质点紧密相连而形成的连续体时 J r 2 dm r 2 dV 其中dm称为质量元,表示一个密度为的小体积元dV 的质量。r为该体积元到转轴的距离。在国际单位制中 转动惯量的单位是 kg· 2。 m 求解转动惯量的常用方法 平行轴定理 垂直轴定理
三、动量
1、动量:把物体的质量和速度的乘积,称为该物体的 动量 d( mv) dp p=mv F dt dt 2、动量定理:在运动过程中,物体所受合外力的冲量, 等于其动量的增量。

t2
t1
Fdt dp p2 p1
p1
p2
I Fdt p2 p1 mv2 mv1
速度是各分速度之矢量和
v vx i v y j vz k
dx dy dz v i j k dt dt dt

医用物理知识点总结

医用物理知识点总结

医用物理知识点总结一、放射生物学放射生物学是研究放射线对生物体的影响和辐射损伤的发生、发展和修复过程的一门学科。

其主要研究内容包括辐射对细胞和组织的损伤效应、辐射生物剂量效应关系、放射生物学特异性和防护治疗等。

在医学领域,放射生物学对于理解放射诊断和治疗对人体的影响和监测其辐射剂量具有重要意义。

二、辐射防护辐射防护是保护人类和环境免受不必要辐射损害的一系列措施。

医用物理学家在医疗设备的安全使用和环境监测中发挥着重要作用。

辐射防护的知识点包括辐射剂量的控制、辐射防护装置的设计和使用、辐射监测和控制措施等。

在医学领域,医用物理学家要做好各种放射设备的辐射防护措施,确保辐射对医护人员和患者的安全。

三、医学成像医学成像是医学诊断和治疗中一项非常重要的技术手段。

医用物理学家在医学成像领域主要负责质量控制和技术支持工作。

医学成像的知识点包括X射线成像、核医学成像、超声成像、磁共振成像和计算机断层成像等。

在医学成像中,医用物理学家要做好设备的调试和质量控制工作,确保成像质量和辐射剂量的安全。

四、医用放射治疗医用放射治疗是一种利用放射线来杀灭肿瘤细胞或减少其生长的治疗手段。

医用物理学家在放射治疗中负责计划和监测辐射剂量,确保患者能够获得安全有效的治疗。

医用放射治疗的知识点包括放射治疗计划制定、辐射剂量测量、治疗计划验算和治疗过程监测等。

医用物理学家必须熟悉放射治疗设备的使用方法和治疗流程,确保治疗的安全和有效性。

五、医用核医学医用核医学是利用放射性同位素来进行诊断和治疗的医学技术。

医用物理学家在核医学中负责同位素的制备和使用工作,以及设备的质量控制和辐射剂量监测。

医用核医学的知识点包括同位素的选择和应用、辐射治疗的监测和计划等。

医用物理学家在核医学中要确保同位素的使用安全和辐射剂量的合理控制,保障患者和医护人员的安全。

总之,医用物理是医学与物理学的交叉学科,涉及的知识点非常广泛。

医用物理学家在医疗保健系统中扮演着重要的角色,他们需要了解并掌握放射生物学、辐射防护、医学成像、医用放射治疗和医用核医学等领域的知识和技术,从而确保医疗设备的安全使用以及医学成像和治疗的质量和效果。

医用物理学知识点总结大一

医用物理学知识点总结大一

医用物理学知识点总结大一医用物理学知识点总结一、概述医用物理学是指将物理学原理与医学相结合,研究并应用于医学领域的学科。

它涉及到多个方面,包括医学成像技术、辐射治疗、生物物理学等。

本文将对医用物理学的一些知识点进行总结。

二、医学成像技术1. X线成像X线成像是最常见的医学成像技术之一。

通过将人体暴露于X射线下,利用人体内部组织对X射线的衰减程度来获得影像信息。

常见的应用包括X线摄影、CT扫描等。

2. 核磁共振成像(MRI)MRI利用原子核在外磁场作用下的共振现象,通过测量不同组织的核磁共振信号来生成影像。

由于其对软组织有更好的分辨率,常用于脑部、骨骼等部位的检查。

3. 超声成像超声成像利用声波的传播特性,通过检测声波在人体内部的反射与散射来产生图像。

它具有实时性、无辐射等优点,广泛应用于妇产科、心脏等领域。

三、辐射治疗1. 放射疗法放射疗法是利用高能辐射杀灭癌细胞或控制其生长的一种治疗方法。

常见的放射疗法包括传统的外照射和内照射。

2. 重离子治疗重离子治疗是一种新兴的放射疗法,其利用重离子束的强穿透能力治疗肿瘤。

与传统的光子疗法相比,重离子治疗具有更好的空间剂量分布,能够减少对正常组织的伤害。

四、生物物理学1. 生物电物理学生物电物理学研究生物体内部的电信号产生和传导,包括神经电信号、心电信号等。

它在生物医学工程领域有重要应用,如脑机接口、心脏起搏器等。

2. 生物热物理学生物热物理学研究生物体内的热传导、热平衡等现象。

它在热疗、组织冷冻等方面有重要应用。

五、其他知识点1. 辐射剂量测量辐射剂量测量是评估人体暴露于辐射的程度,用于保护患者和医务工作者的安全。

常见的测量方法包括个人剂量计、环境剂量监测等。

2. 核医学核医学是利用放射性同位素来进行诊断和治疗的医学领域。

包括核素扫描、正电子发射断层扫描(PET-CT)等。

六、总结医用物理学作为物理学和医学的交叉学科,对于现代医学的发展起到了重要的作用。

大一医用物理学必背知识点

大一医用物理学必背知识点

大一医用物理学必背知识点医用物理学是医学专业的一门重要学科,它研究的是物理在医学中的应用。

作为大一医学生,了解和掌握医用物理学的基本知识点非常重要。

下面将为您介绍大一医用物理学必背的知识点。

一、医用物理学的基本概念和原理1. 医用物理学的定义:医用物理学是研究物理学在医学中的应用,以及医学设备和技术的物理原理的学科。

2. X射线的生成和基本特性:X射线是通过高速电子的冲击撞击金属靶产生的一种电磁辐射,具有穿透性和吸收性。

3. 红外线的应用:红外线在医学中的应用包括体温测量、照明等。

4. 激光的原理和应用:激光是一种高强度、单色、相干的光,广泛应用于医学诊断、治疗和手术等领域。

二、医用物理学在医学影像学中的应用1. X射线摄影的基本原理:介绍X射线摄影的原理、设备和常见的影像学检查方法。

2. CT扫描的原理和应用:介绍CT扫描的原理、设备和临床应用。

3. 核磁共振成像(MRI)的原理和应用:介绍MRI的原理、设备和常见的临床应用。

4. 超声波成像的原理和应用:介绍超声波成像的原理、设备和在妇产科、心脏病学等领域的应用。

三、医用物理学在医学治疗中的应用1. 放射治疗的基本原理:介绍放射治疗的原理、设备和在肿瘤治疗中的应用。

2. 激光治疗的原理和应用:介绍激光在皮肤病治疗、眼科手术等领域的应用。

3. 超声波治疗的原理和应用:介绍超声波在肌肉骨骼疾病治疗、体育损伤康复等领域的应用。

四、医用物理学在医学工程中的应用1. 医用电子学的基本原理:介绍医用电子学的基本概念和在医学设备中的应用。

2. 医用光学的原理和应用:介绍医用光学在眼科手术、显微手术中的应用。

3. 医用图像处理和分析的原理和应用:介绍图像处理和分析在医学图像学中的应用。

五、医用物理学的安全性和质量控制1. 辐射防护的基本原则和措施:介绍辐射防护的概念、原则和在医学实践中的应用。

2. 医学设备的质量控制:介绍医学设备质量控制的重要性和常用的质量控制方法。

大一医用物理学知识点

大一医用物理学知识点

大一医用物理学知识点医用物理学是医学领域中一个重要的学科,它研究与应用物理学原理和方法在医学中的应用。

作为大一医学专业的学生,了解和掌握医用物理学的基本知识点对于日后从事医学工作至关重要。

本文将介绍大一医用物理学的一些基础知识点。

1. 医学成像技术医学成像技术是医学领域中常用的一种检查方法,它利用物理学原理获取人体内部结构、器官或病变的图像信息。

医学成像技术包括X射线成像、超声波成像、核磁共振成像等。

了解这些技术的原理和应用可以帮助医学学生理解临床检查的原理和意义。

2. 辐射防护辐射防护是医用物理学中的一个重要内容,它主要研究如何保护医务人员和患者免受辐射的危害。

大一医学生需要了解不同类型的辐射(如X射线辐射、γ射线辐射等)对人体的影响,学习如何正确使用和佩戴辐射防护装备,以及如何合理控制辐射的剂量。

3. 医用超声技术医用超声技术是以超声波为工具研究和诊断人体内部疾病的一种方法。

大一医学生需要学习超声波的产生、传播和接收原理,了解超声波在医学图像中的应用,掌握超声波的基本操作技巧和临床应用。

4. 核医学核医学是利用放射性核素进行医学诊断和治疗的一种技术。

大一医学生需要了解放射性核素的特性和应用,学习核素的制备和使用方法,以及核医学在诊断和治疗中的应用。

5. 医疗仪器设备医用物理学还研究和应用各种医疗仪器设备,如电生理监护设备、心电图机、血压计等。

大一医学生需要了解这些设备的基本原理和使用方法,能够正确地操作和维护这些设备。

6. 生物电学生物电学是研究生物体内电信号产生、传导和应用的学科。

大一医学生需要了解人体内的生物电信号,学习心电图的基本原理和分析方法,掌握如何正确测量和解读心电图。

7. 医用激光医用激光是一种在医学中广泛应用的技术,它可以用于手术切割、组织焊接、照射治疗等。

大一医学生需要了解激光的基本原理和分类,学习激光在医学中的应用和安全使用方法。

总结:医用物理学是医学专业中的重要学科,它与临床医学密切相关。

医用物理学复习提要(药学药分卫检)-2023年个人用心整理

医用物理学复习提要(药学药分卫检)-2023年个人用心整理

医用物理学复习提要第1章 物体的弹性1. 掌握物体弹性的基本概念:形变、应变、应力、模量线应变:0l l ∆=ε 正应力:S F =σ 杨氏模量:εσ=Y 切应变:d x ∆=γ 切应力:S F=τ 切变模量:γτ=G2. 理解应力与应变的关系1)了解低碳钢拉伸形变的阶段:弹性、屈服、硬化、紧缩 2)熟悉弯曲、扭转形变的应力分布特点 ☆人体骨骼的常见受力载荷?☆请从弯曲和扭转的角度来解释为什么人的四肢长骨是中空的?☆低碳钢材料,其正应力与线应变关系曲线的各段代表的物理意义。

延展性好是何含义?第2章 流体的运动1.熟悉理想流体、稳定流体、流线、流管概念 2.掌握并熟练应用流体连续性方程2211v S v S Q ==该方程反映理想流体作稳定流动遵守流量守恒,即流管不同截面的流量相等3.掌握并熟练应用伯努利方程222212112121gh v P gh v P ρ+ρ+=ρ+ρ+即单位体积中压强、动能、势能之和恒定 熟悉应用,掌握计算方法 4. 阐释体位对血压的影响5.熟悉层流、湍流、牛顿流体、流阻概念6.掌握牛顿粘滞定律的涵义dx dv s F η=7.掌握泊肃叶公式的涵义L PR Q η∆π=84流阻 48R LR f πη=8.了解雷诺数,粘滞流体的伯努利方程及斯托克斯公式 9.了解血压在血管中分布情况大气压: Pa P 510013.1⨯= 水的密度: 3kg/m 1000=ρ☆若两只船平行前进时靠的很近,则容易发生碰撞,试用连续性方程和伯努利方程解释原因。

☆利用伯努利方程简单说一说:人体从平躺到站立情况下的血压变化。

☆如果躯体中血液流经一段血管的流动作层流,血管截面上的流速分布大致是怎样的?☆简述黏性流体的两种流动形式有什么区别,并说明在圆管中决定流体流动形式的因素。

☆用落球法测量黏度,影响实验结果的精确度的因素主要有哪些?☆黏度差别大的液体,为什么要用不同的测量方法? ☆如果用如图所示金属丝框测量表面张力系数,结果会怎样?为什么?第5章5.5节 液体的表面现象1. 表面张力 表面能 表面活性物质2. 附加压强3. 润湿与不润湿 接触角 毛细现象 重要公式1. 表面张力 S∆α=α=W LT2. 附加压强 )(4)(2双液面、液膜单液面Rp Rp α=∆α=∆ 3. 毛细现象 gr cos h ρθα=2注意的问题1. 表面张力产生原因2. 气体栓塞3. 连通器两端大、小泡的变化4. 水对玻璃完全润湿,接触角为零☆位于表面层和液体内部的液体分子有何不同?简述表面张力系数α的单位“N.m -1”和“J.m -2”分别代表的物理意义。

医用物理学复习资料(知识点精心整理).docx

医用物理学复习资料(知识点精心整理).docx

3 *泊肃叶定律4牛顿粘滞定律 三、重要结果及结论1小孔流速问题 2测速、测流量问题帀4(片一〈)8 ?7/v = J2 g'h(皮托管,汾丘里管)AE 12 =(p )+2妙:+pg 曾)一(°2 +2 妙;+Pg 〃2)4雷诺数及判据四、注意的问题空气中有大气压水的密度 空吸与虹吸现象流体的流动—、基本概念1理想液体 2 稳定流动 3层流与湍流流量二、基本定律及定理1 *连续性方程流阻粘度2 *柏努利方程sv = QS" =p + ypv 2 + pgh = EP\+ Pghi = Pi 讶 +Pg 〃2NPF = sr/dvdxRe 二业P 。

= 1.013 x 10 5 Pap - 1000 kg/m 3实际流体的能量损耗振动和波、基本概念v n tg(p =——-COX Q波的强度公式 球面波 惠更斯原理三、注意的问题已知初始条件及振动系统性质,求振动方程 (求°二?)己知振动方程,求波动方程(确定时间上是落后还是超前两振动、波动叠加时,相位差的计算声波一、基本概念1 2 3 4 5 67振动 振幅 波速振动的合成(同方向、同频率) 相位差同相反相波动波动方程的物理意义 简谐振动 谐振动的矢量表示初相位圆频率周期 波长频率 u = Av 波的叠加原理二、基本规律及重要公式*简谐振动方程x = A cos( cot 七 cp)谐振动能量 £=>2*简谐波的波动力程y = A cos|1 =—m 2co (r ------- ) + cpu*波的T •涉2 = 02 -0 -乎(卩干涉加强2兀 \(p =(p 2-(p { ----------- (r 2 -人)2k7T干涉减弱\(p =(p 2-(p } -乎(G - 人)(2« + 1)龙1、+-?) u1声速“2振动速度声压声特性阻抗Z =:PH’S = A a ),v nf = .Pm~ zI = 1 2=—pu A 2co 2 =-= 2Pe3 *声强声强级响度响度级22ZJzL :二 10 lg —(dB )4 *听阈痛阈听阈区域二、重要公式yX = A cos| CD (t — —)] up = A cop u cos[ co {t - —) + —] u 2正负号的确定:当匕、匕工耐,根据相互靠近还是远离来确定 三、注意的问题1两非相干的声波叠加时,声强可简单相加,而声强级不能简单相加 2 标准声强;()=10 _12 w / m分子动理论一、基本概念 1物质的微观理论物质是由大量的分子、原子所组成,是不连续的 分子是在作无规则的运动——热运动 分子之间有相互作用 2 表面张力表面能表面活性物质表面吸附 3 附加压强4润湿与不润湿接触角 毛细现象三、重要公式F =(J L1 *表面张力AE =(7AS p = ^(单液面)RP =匹(双液面)1声波方程2 *多普勒效应公式2 *附加压强一. 基本概念1电场强度 q2电通量<1\ = jj Eds cos 0 3电势能8叱.=Ag =q (J Edl cos 。

大一医用物理学知识点总结

大一医用物理学知识点总结

大一医用物理学知识点总结医用物理学(Medical Physics)是一门关于医学中的物理学原理和技术应用的学科,旨在提供物理学知识和技术支持,用于诊断治疗疾病,保障医疗安全。

以下是大一医用物理学的知识点总结:一、医学成像技术1. X射线成像:X射线通过身体组织时会发生吸收、散射和透射等现象,通过记录和分析这些现象,可以得到人体内部的结构信息。

2. CT扫描:计算机断层扫描利用X射线对身体进行旋转扫描,通过计算机重构技术将多个切面图像组合成三维图像,提供更详细的结构信息。

3. MRI成像:核磁共振成像利用核磁共振原理,通过检测人体组织中的氢原子信号,得到横断面或纵断面的图像。

4. 超声成像:利用超声波的特性,通过声波在组织中的反射和散射,生成图像来观察人体内部结构。

二、医学放射学1. 放射治疗:利用高能射线(如X射线、γ射线)杀死癌细胞或抑制其生长,用于癌症的治疗。

2. 核医学:包括放射性同位素的选择、标记和应用,如放射性核素示踪技术、闪烁探测器等,常用于心血管疾病、肿瘤等的诊断和治疗。

三、生物医学光子学1. 激光治疗:利用激光光束对人体进行物理、化学和生物效应,应用于眼科、皮肤科等领域。

2. 光谱分析:通过分析组织或细胞对光的吸收、散射或荧光的特性,实现对组织或细胞成分、状态等的检测和分析。

四、放射防护1. 辐射剂量学:研究辐射对人体的影响以及辐射剂量的计量和评估。

2. 辐射防护:对医学人员和患者采取合理的防护措施,减少放射性辐射对人体的危害。

三、医学超声学1. 超声诊断:通过超声波的反射来检测人体内脏器官的结构和功能,用于疾病的诊断和监测。

2. 超声治疗:利用超声波的热效应、机械效应等特性,对病灶进行治疗。

四、医学电子学1. 医学电子学:研究与医学有关的电子技术应用,包括生物仪器、医学影像设备、医学电子治疗设备等。

2. 医学信号处理:对医学信号进行采集、滤波、放大、分析等处理,提取和识别有用信息。

医用物理学知识点归纳

医用物理学知识点归纳

医用物理学知识点归纳篇一:医用物理学是物理学的一个分支,主要研究人体的物理现象和力学问题,涉及到许多知识点。

以下是一些常见的医用物理学知识点归纳:1. 医用物理学基础物理学知识:包括力学、热力学、电磁学等。

这些知识对于理解人体结构和功能、疾病诊断和治疗非常重要。

2. 振动和噪声:振动和噪声是许多疾病的原因之一。

例如,长期接触噪声会增加听力损伤的风险,而振动可能会引起腰间盘突出等疾病。

3. 光学:医用光学主要研究光线在人体内的成像和传播。

例如,医用 X 射线摄影技术就是基于光线在人体内的成像原理。

4. 电学:医用电学主要研究人体中的电生理现象和电疗技术。

例如,心电图监测是人体电学的一个重要应用,而电疗技术则常用于治疗疼痛和疾病。

5. 热学:热学在疾病诊断和治疗中也有重要应用。

例如,红外线辐射可以用于加热身体部位,以达到治疗目的。

6. 分子生物学:分子生物学是近年来医学发展的重要方向之一。

医用物理学提供了理解分子生物学的基础,有助于我们更好地了解疾病的发生和发展。

7. 空间物理学:医用空间物理学主要研究人体空间结构和功能的关系。

例如,MRI(磁共振成像) 技术就是基于人体中磁场和无线电波的相互作用来生成图像的。

以上是一些常见的医用物理学知识点归纳。

随着医学技术的发展,医用物理学也在不断发展和扩展。

篇二:标题:医用物理学知识点归纳正文:医用物理学是医学领域中不可或缺的一部分,涉及到许多物理学基础知识和技术应用。

以下是一些医用物理学的知识点归纳:1. 光速和光的特性光速是宇宙中最快的速度,约为每秒 299,792,458 米。

光在真空中传播的速度是恒定的,与介质的性质无关。

光具有波动性和粒子性,可以通过量子力学来解释。

2. 波动力学和经典力学波动力学是描述流体力学中波的形成和传播的物理学分支。

经典力学是研究质点运动和力的作用的物理学分支。

这些知识对于理解人体结构和运动具有重要意义。

3. 电磁学电磁学是研究电场、磁场和电磁场作用的物理学分支。

医用物理学复习总结

医用物理学复习总结

dN
2)v1-v2区间的面积:v2 v1
f
(v)dv

v1
N
Nv1v2 N
表示分子在速率v1-v2速率区间出现的 概率。

dN
表3)示曲分线子下在的全总部速面率积区:间出0 f现(v)的dv概 率0 N。
N N
1
归一化
四、三种速率
vp
2kT m
2RT 1.41 RT
t1
t1
作用于质点上的力对某一点的冲量矩等于质点对该点的 角动量的增量。
14.质点的角动量守恒定律 若质点所受力矩为零,即 M 0
则 dL 0, L 恒矢量。 dt
刚体力学
1.转动惯量 J miri2, J r2dm i 2.转动动能
3.力对轴的力矩 4.刚体转动定律 5.力矩的功
非完全弹性碰撞(0<e<1):总动量守恒;机械能不守恒
11.力矩 M r F, M rF sin
12.角动量(动量矩) L r (mv ) r P,
13.角动量定理
M dL dt
力矩等于质点角动量对时间的变化率。
t2
t2
G Mdt dL L2 L1
2
2
分子的平均动能:
1 (t r)kT i kT
2
2
三、麦克斯韦速率分布率
速率分布函数f(v):
f (v) dN Ndv
表示分子在速率v附近单位速率区间出现的概率。
速率分布函数f(v)曲线的物理意义:
1)宽度为dv的窄条面积:f
(v)dv

dN N
表示分子在速率v附近dv速率区间出现的概率。 v2

医用物理学第九版知识点总结

医用物理学第九版知识点总结

《医学物理学》知识点
第一章质点力学基础
1、描述质点运动的四个基本物理量:F(t)=x(t)i+y(t)j、
2、圆周运动:F=sr<v=vr∗、a=anr+anB=dvdt:v2ra;
3、牛顿第二定律:F→=d(mv)dt。

4、动量定理及动量守恒定律:I=∫112Fdt=p2→−p1→,当系统所受合外力为零时,ZP,=恒矢量。

5、做功:A=∫F⋅dF=∫Fxdx+∫Fydy
6、动能定理:外力做功和内力做功之和等于动能的变化量。

7、保守力和势能:做功与路径无关,只与初始和终点位置有关、势能的增量等于保守力做功的负值。

B、功能关系和机械能守恒定律:外力做功和非保守内力做功之和等于机械能的增量、在只有保守内力做功的情况下,系统的机械能守恒。

大一笔记医用物理知识点

大一笔记医用物理知识点

大一笔记医用物理知识点一、医用物理概述医用物理是应用物理学在医学领域的应用,其中包括了生物物理学、影像学、放射物理学等相关知识。

医用物理对于现代医学的发展起到了不可替代的重要作用。

二、影像学相关知识点1. X射线的产生与应用X射线是通过高速电子撞击金属靶产生的一种电磁辐射。

在医学中,X射线被广泛用于影像诊断,如X射线透视、CT扫描、X 射线摄影等。

2. 超声波成像超声波成像是利用超声波的高频振动产生图像的技术。

它在医学中应用广泛,如妇产科的B超检查、心脏超声检查等。

三、生物物理学相关知识点1. 生物体的组成与结构生物体主要由细胞组成,细胞又是由各种细胞器构成的。

了解细胞的结构和组成对于理解生物物理学的相关知识至关重要。

2. 生物体的生物电现象生物体内存在着各种生物电现象,如神经传导、心脏电生理等。

生物电现象的研究对于医学的诊断和治疗具有重要影响。

四、放射物理学相关知识点1. 放射性物质与辐射放射性物质是指具有放射性的物质,它会通过放射性衰变释放出辐射。

放射性物质在医学中被广泛应用,如肿瘤治疗中的放射治疗。

2. 辐射的剂量与防护在应用放射性物质和进行放射治疗时,需要了解辐射的剂量与防护。

这对于保护医务人员和患者的健康起到了至关重要的作用。

五、医用物理在临床应用中的意义医用物理在临床应用中具有重要的意义,它可以为医学诊断提供关键的技术支持,同时也为治疗和康复提供了有效的手段。

六、医用物理的发展趋势随着科技的不断进步和医学的发展,医用物理在临床应用中的地位将愈发重要。

未来,医用物理将更加注重个体化医疗和精准治疗。

七、总结医用物理是一门重要的学科,它与医学紧密相关。

对于医学生来说,学习医用物理知识对于日后的临床实践具有重要的价值。

加强对医用物理知识点的学习,可以提升对医学的理解,进而提高临床工作的水平。

医用物理学知识点总结 -回复

医用物理学知识点总结 -回复

医用物理学知识点总结 -回复医用物理学是研究与医学领域有关的物理现象和技术应用的学科。

以下是医用物理学的一些基本知识点总结:1. 医学成像技术:医学成像技术使用射线、声波、磁场等物理手段生成人体内部的影像,常见的包括X射线成像、计算机断层扫描(CT)、核磁共振成像(MRI)、超声成像等。

2. 辐射生物学:辐射生物学研究射线对生物体的作用和损伤机制。

射线可分为电离辐射和非电离辐射,电离辐射对细胞DNA有直接或间接的损伤作用,也可用于癌症治疗。

3. 放射治疗:放射治疗是利用放射性同位素或外部射线源来治疗癌症和其他疾病。

它可以通过杀死异常细胞或抑制其生长来治疗病变。

4. 医学物理测量:医学物理测量技术用于测量和评估人体和医学设备的物理性质。

常见的测量包括辐射剂量测量、血液压力测量、心电图测量等。

5. 非经典成像技术:非经典成像技术是一类新兴的医学物理技术,如光学相干断层扫描(OCT)、磁共振弹性成像(MRE)、热成像等,它们通过探测和测量声波、光学、电磁等信号来提供关于组织结构和功能的信息。

6. 医学物理学在医疗设备质量控制中的应用:医学物理学在医疗设备的质量控制和安全性评估中起着重要作用,通过定期检测和校准医学设备,确保其性能和准确度。

7. 粒子治疗:粒子治疗是一种新型的癌症治疗方法,利用高能量的粒子束(如质子或其他离子束)来杀死肿瘤细胞,它具备更精确的剂量分布和更小的副作用。

8. 医学影像剂:医学影像剂是用于提高医学成像技术的对比度和可视化能力的物质。

常见的医学影像剂包括造影剂、核素药物等。

这些是医用物理学的一些基本知识点,它们在医学诊断、治疗和研究中起着重要作用,为提高人类健康水平和医学科学的发展做出了贡献。

医学物理学基础知识总结

医学物理学基础知识总结

医学物理学基础知识总结医学物理学是一门将物理学原理和方法应用于医学领域的交叉学科,它对于理解人体的生理和病理过程、诊断和治疗疾病都具有重要的意义。

下面我们来详细了解一下医学物理学的一些基础知识。

一、医学影像物理学医学影像在疾病的诊断和治疗中起着至关重要的作用。

1、 X 射线成像X 射线具有很强的穿透能力,不同组织对 X 射线的吸收程度不同。

当 X 射线穿过人体时,在胶片或探测器上形成明暗不同的影像,从而显示出人体内部的结构。

例如,在胸部 X 光片中,可以清晰地看到肺部、心脏和骨骼的形态。

2、磁共振成像(MRI)利用磁场和射频脉冲使人体组织中的氢原子核发生共振,然后接收共振信号并进行处理,得到组织的图像。

MRI 对软组织的分辨能力较高,能够清晰地显示大脑、脊髓、关节等部位的结构。

3、计算机断层扫描(CT)通过围绕人体旋转的 X 射线源和探测器,获取多个角度的 X 射线投影数据,然后通过计算机重建出断层图像。

CT 对于检测骨骼、肺部和腹部等部位的病变具有很高的准确性。

4、超声成像利用超声波在人体组织中的传播和反射特性来成像。

它具有无创、实时、便携等优点,常用于妇产科、心血管科等领域的检查。

二、核医学物理学核医学利用放射性核素进行诊断和治疗。

1、放射性核素显像将放射性药物引入人体,通过探测放射性核素发出的射线,获得器官或组织的功能和代谢信息。

例如,甲状腺显像可以评估甲状腺的功能和形态。

2、放射性核素治疗利用放射性核素释放的射线对病变组织进行照射,达到治疗的目的。

如碘-131 治疗甲状腺功能亢进症和甲状腺癌。

三、放疗物理学放疗是治疗肿瘤的重要手段之一。

1、放射源包括 X 射线机、钴-60 治疗机和直线加速器等。

不同的放射源具有不同的能量和剂量分布特点。

2、剂量学准确计算肿瘤和正常组织所接受的剂量,以确保治疗效果并减少副作用。

这涉及到辐射场的测量、剂量计算算法等。

3、治疗计划设计根据患者的肿瘤位置、形状和大小,以及周围正常组织的情况,制定最优的放疗方案,使肿瘤接受足够的剂量,同时保护正常组织。

医用物理学知识点归纳

医用物理学知识点归纳

医用物理学知识点归纳篇一:医用物理学是医学领域中不可或缺的一部分,涉及到许多物理学原理和应用。

本文将归纳医用物理学中的一些知识点,并提供一些拓展信息。

1. 光速与光波光速是宇宙中最快的速度,约为每秒 299,792,458 米。

光波是电磁波的一种,其频率和波长取决于光源的性质。

在医学领域中,光波和光速的应用广泛,例如在 X 射线成像中,光波被用于产生影像。

2. 磁场与电磁感应磁场是物理学中的重要概念,在医学领域中也有广泛的应用。

例如,在MRI(磁共振成像) 中,强大的磁场被用来产生影像。

电磁感应是磁场和电流之间的相互作用,也是医学领域中一些成像技术的基础,如 CT 和 X 射线成像。

3. 流体力学与血液循环流体力学是医学领域中一个重要的分支,涉及到血液循环、流体力学和心脏疾病等方面。

在血液循环中,流体力学的原理被用来研究心脏的泵血功能和心血管系统的工作原理。

4. 光学与医学成像光学是医学成像中的重要分支,其中包括 X 射线成像、MRI 和 CT 等。

光学的原理被用来开发这些成像技术,并且用于诊断和治疗疾病。

此外,光学还被用来研究生物体内的细胞和组织,以及它们在生理学和病理学方面的变化。

5. 热力学与疾病诊断热力学是医学领域中另一个重要的分支,涉及到疾病诊断、药物开发和物理治疗等方面。

在疾病诊断中,热力学的原理被用来检测和分析体温、血液温度和皮肤温度等,以帮助医生诊断病情。

以上仅是医用物理学中的一些知识点,还有许多其他的内容。

在医学领域中,物理学原理的应用帮助医生更好地理解疾病和进行治疗。

未来的医学物理学研究有望进一步拓展,为医生提供更好的诊断和治疗方案。

篇二:医用物理学是物理学的一个分支,主要研究生命过程中的物理现象,以及物理学方法在医学中的应用。

以下是一些医用物理学的重要知识点:1. 波动物理学与医学波动物理学是研究波动在介质中传播的学科,其应用于医学中可用于研究声波在组织中的传播、超声波成像技术等。

医用物理学知识点归纳

医用物理学知识点归纳

医用物理学知识点归纳篇一:医用物理学是医学领域中不可或缺的一部分,涉及到物理学的基础知识和应用,用于解释和说明人体的生理和病理现象。

以下是一些医用物理学的知识点归纳:1. 物理学基础概念:医用物理学需要掌握一些物理学基础概念,如力、量、热、光、电、磁等,以及它们与医学的关系。

2. 力学在医学中的应用:力学是医用物理学的基础,用于解释人体结构和运动的规律。

在医学中,力学广泛应用于诊断、治疗和康复等方面,如用重力加速度来解释排便不畅的原因,用牛顿力学来解释骨折的愈合过程等。

3. 热学在医学中的应用:热学在医学中用于解释体温调节和疾病发作的原因。

例如,体温调节是人体抵御疾病的重要机制之一,热力学原理可以用来解释这一过程。

4. 光学在医学中的应用:光学在医学中广泛应用于诊断和成像技术,如 X 射线、CT、MRI 等。

这些技术利用光线的传播和成像原理,帮助医生对人体内部结构进行可视化分析。

5. 电学在医学中的应用:电学在医学中用于解释人体神经和肌肉的电活动,以及用于诊断和治疗疾病。

例如,心电图机用于检测心脏的电活动,电子显微镜用于观察微小的肌肉和神经纤维。

6. 磁学在医学中的应用:磁学在医学中用于解释磁场对人体的影响,以及用于诊断和治疗疾病。

例如,磁共振成像 (MRI) 技术利用磁场和无线电波对人体进行成像,帮助医生诊断疾病。

除了上述知识点,医用物理学还涉及到其他领域,如分子生物学、生物化学、生物医学工程等。

这些领域综合运用物理学和其他科学知识,为医生提供更好的诊断和治疗方案,帮助患者恢复健康。

篇二:标题:医用物理学知识点归纳正文:医用物理学是医学领域中不可或缺的一部分,涉及到许多物理学原理和应用。

以下是一些医用物理学的知识点归纳:1. 牛顿定律:物体的运动状态取决于其质量、速度和加速度。

在医学中,牛顿定律可以用来描述血液流动、心脏泵血和骨骼肌肉运动等情况。

2. 电磁学:电磁学是物理学中的重要分支,涉及到电、磁、电荷、电流等方面。

医学物理学知识点汇总知识讲解

医学物理学知识点汇总知识讲解

Thank you !
2024/7/19
结束语
谢谢大家聆听!!!
16
第九章 静电场
p 电场强度、电势的含义、关系及计算。 p 电通量与电场强度的关系。 p 高斯定理的物理意义及其应用。 p 保守力场的特点。 p 均匀带电球面的电场和电势。 p 均匀带电圆环的电场和电势。
第十章 直流电
传导电流产生的条件。 电流密度的含义。 欧姆定律的微分形式。 基尔霍夫定律解题及符号规则。 理解动作电位及其产生过程。
第十一章 稳恒磁场
磁场的性质及各量的方向判断。 磁通量与磁场的关系。 电流的磁场及解题。 磁场的生物效应。
第十三章 波动光学
杨氏双缝干涉 夫琅禾费衍射 光栅衍射的基本原理和公式 偏振的有关概念及马斯定律。 光程、光程差、半波损失 物质的旋光性
第十四章 几何光学
单球面折射计算与符号规则。 焦度的含义及单位。 逐次成像法。 非正视眼的形成原因及矫正。
第一章 力学基本定律
• 位移、速度、加速度的关系。 • 切向加速度与法向加速度。 • 惯性系与非惯性系。 • 国际单位制和量纲。 • 转动惯量、理解刚体转动规律。 • 角动量守恒定律的应用(定性)。
第四章 振 动
• 简谐振动的特点及判断。 • 简谐振动方程及特征量的名称与含义。 • 同方向、同频率简谐振动的合成。
况下动能的表达式。 • 自由度 • 输运过程包括几种,各为什么的输运。 • 表面张力系数的含义。 • 曲面下附加压强的理解、气体栓塞的解释。
第八章 热力学基础
• 热力学系统的分类。 • 作功与传热的异同;内能的含义。 热力学第一定律的
含义与计算。 • 热力学第一定律在热力学过程中的应用(定性) • 热机效率(国际单位) • 热力学第二定律的表述及统计意义、熵增加原理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、医学物理学的概念:是医学和物理学两大学科的融合(1)阐明生理,病疾机理即基础研究(2)物理学用于实践2、工程学的概念:物理学的应用领域3、医学物理学的一般方法分为:模型法和测量法。

模型法:物理模型、数学模型、生物模型正反馈:当样品中的某个量改变时,若反馈使生产发生同方向的变化。

正反馈是不稳定的控制。

负反馈:当某量增加,反馈使这个量这个量减少,反之当这个量减少时,反馈使其增加。

负反馈是稳定的控制举例:如果钙含量降到大低,人体就从骨中适当一些钙以增加血中的钙含量。

如果释放的钙大多,则经过人体肾脏排出一些钙来降低血中的含钙量。

4、测量:分为重复过程的测量和非重复过程的测量。

重复过程的测量通常包括每秒、每分、每小时等重复的次数。

准确度:涉及一个给定的测量接近公认的标准到什么程度。

精密度:涉及到测量的可重复性,不必与测量的准确度有关。

5、假阳性:被诊断有病其实没病(误诊)假阴性:被诊断没病其实有病(漏诊)原因:①如果某种检测指标或检测仪器太过敏感,即灵敏高,则易出现假阳性②当某种检测项目的灵敏度过低时,就出现假阴性避免方法(应对):发展新的临床检验方法,以制造更好的仪器。

同时小心谨慎进行测量,多次重复测量,使用可靠的仪器并且适当校准这些仪器。

第三章1、温度:表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度2、定标:定标把温度和物理性质联系起来温标:华氏温标(°F):水在32°F时凝固,212°F时沸腾,98.6°F为人体正常温度,以0℉作为人们那时所能产生的最低温度(冰水混合物)。

摄氏温标(°C):水在0C时凝固,100°C时沸腾,37°C为人体正常温度凯调氏温标(°K):水在273.15°K时凝固,373.15°K时沸腾,310°K为人体正常温度。

°K(绝对零度)为-273.15°K3、热像仪(了解)4、热疗法(三种方法):传导加热(热水浴、热水袋、电热垫以及偶尔用热蜡接触皮肤):用两个温度不同的物体接触时,热通过传导从热物体到冷物体。

传导式的热转移只导致局部表面受热,因为循环的血液能带走渗入到较深部位的热。

适用于:关节炎、神经炎、扭伤、挫伤、窦炎和背脊痛。

辐射加热(红外线,激光):用来给物体表面加热。

人工热源是灼热的金属线圈和250瓦的白炽灯,所用的红外线波长在0.8和40微米之间。

过度照射会使皮肤发热(红疹),有时会肿。

长时间会使皮肤变褐色或硬化。

治疗与传导加热相同的疾病,效果一般更好。

透热疗法:利用高频电(短波:电磁感应)、微波、超声波加热方法热效应治疗方法传导加热:接触局部,表层加热关节炎、神经、扭伤、挫伤、鼻窦炎、腰痛辐射加热:远距离体表,有一定距离关节炎、神经、扭伤、挫伤、鼻窦炎、腰痛体内加热骨骼炎症,肌肉筋挛、脊椎病透热疗法:远距离非接触第四章1、热量单位卡的定义:一千卡相当于在一个标准大气压下,将一公斤的开水温度升高一度所需能量。

梅特定义:每小时,每平方米体积表面消耗50千卡1千卡=4186焦耳1梅特=50千卡/米/小时=58瓦/平方米2、基础代谢率:当完全静止时,能量消耗的最低速率是在静止状态下完成人体最低限度的功能所需的能量。

影响因素:甲状腺的功能(影响最大,甲状腺是影响的器官)、体表面积、身体质量。

与进食热量无关,与食物种类有关。

3、代谢率(氧化率):以氧化的形式代谢能量而被释放出来。

计算耗氧量:T=X公斤脂肪的能量/每天缺少的能量PS:书上22页的推导减重:会出计算题(P24)4、人体的散热系统:书上4-3图散热中枢:下丘脑外周:心、肺、皮肤、汗腺、小动脉5、散热方式:辐射、对流、蒸发(出汗)、呼吸6、影响人体散热的因素:周围的温度、空气的温度、温度和运动;身体的体力活动;人体暴露的情况;人体上的绝热程度(衣服和油脂)7、风冷因素:由于空气流动而感觉到的等效温度,由实际温度和风速来决定8、柯劳:关于衣服的单位,相当于维持人在室温21℃、风速0.1米/秒、空气湿度小于50%的房间内舒适的静坐所需要的衣服的绝热值1柯劳等于一件轻量的工作服的绝热值。

第五章1、电流的感知级:两手各连一个电极,让频率60Hz的电流通过身体。

当电流从零增加到刚刚能够感觉到的电流时,就达到了感知级2、微电击:电流不经过皮肤电阻或只有一段经过皮肤电阻进入人体引起的电击,又叫体内电击。

3、60Hz的电击时,人体对电流的忍耐能力为116/(根号t)(t是电击持续时间s)4、流电皮肤反应GSR:出汗的变化(汗腺活动)与皮肤电阻有关,由于心理变化或外来刺激而引起的皮肤电阻偏离其正常(或基础)值的现象5、电睡眠:把频率100HZ平均电流1毫安的电信号,通过放在每一只眼睛和每一乳突的电极,能有效产生点睡眠。

6、高频电:频率为10000Hz的电流短波透热疗法机理:短波透热疗法应用电容法和电感法两种方法把电磁能输入人体。

在这两种方法中,人体部分也是构成的电路结构中的一部分。

一个简单的谐振由电容器和电感线圈组成,电路电源共给的电能在电容器和电感线两者之前往返运动,形成一个交变的电场。

微波透热疗法机理:在微波透热疗法中,组织是吸收辐射到其上的电磁波。

该辐射是由叫做磁控管的特殊高频管产生的。

磁控管输出,被送到天线再由天线辐射微波。

微波在表面处可被投射、反射或折射,也能被媒质所吸收。

在微波透热疗法中有几种标准天线设置,是利用反射将辐射射到组织,一部分为该组织反射,一部分则被透射。

该被投射的辐射能为身体吸收并产生热。

第六章1、可见光线:能引起视网膜光感的辐射线,波长范围为400nm~700nm,不同波长可见光线的光子能量不等。

可见光应用:内窥镜、直肠镜红外线:波长为200nm~400nm以上,【分短波与长波两种,小于1.5μm为短波红外线,大于1.5μm为长波红外线。

】→书上真心没找到,不知道学长哪里弄出来的。

应用:波长为1000~2000nm红外线的热灯经常用于物理治疗,可更好地加热深部组织。

反射型和发射型的红外照相术用于医学。

发射型又称热象图术。

可用于检查静脉图像。

紫外线:波长约为100~400nm,分为长波紫外线(320~400nm),中波紫外线(280~320nm),短波紫外线(180~280nm)和超短波紫外线(100~180nm)。

太阳紫外线是皮肤癌的主要起因紫外线对眼睛的伤害:因晶状体吸收了大量的紫外线光而引起白内障;电光性眼炎;日光性角膜炎应用:①波长在290纳米以下的紫外线有杀菌作用,用于医疗器械消毒②促进维生素D的生成,预防佝偻病、软骨病③改变皮肤的黑色素,把皮肤晒黑。

(躲在树荫下无用)激光:基于受激辐射放大原理而产生的一种高强度的相关光。

物理特性:①具有反射、折射、衍射、干涉、偏振、聚焦、散焦等性能②单色性好、方向性好、相干性好、高能量、高亮度第七章1、耳中与听力形成有关的结构:耳廓、外耳道、鼓膜、听小骨、内耳(耳蜗)如何影响听觉:耳廓:一般可以增益6~8分贝外耳道:增加耳对3k-4kHz声音的灵敏度,10~17分贝鼓膜:把空气中的振动耦合到中耳的听小骨中听小骨:分为锤骨、砧骨、镫骨锤骨柄与砧骨长脚长度差(1.3:1)起杠杆作用,鼓膜与镫骨底板的面积差(15:1)起活塞作用。

所以声压传导的比率约为22倍,即约27分贝。

耳蜗:把声音转换为神经信号2、声阻抗:声波在传播过程中,振动能量引起介质分子位移时所遇到的抵抗。

3、声音的衡量:吩、分贝、等响曲线4、听力矫正:助听器听阈值范围,不能把听力完全恢复正常,只能帮助补偿听力衰减第八章1、眼睛的有关结构和物理特性,对光的作用:角膜和晶状体:均产生折射。

晶状体是无血管的透明组织,形状可以变化,起微调作用,它有聚焦不同距离物体的本领。

角膜无色透明的膜,聚焦作用大约占了三分之二,有自愈功能,有固定焦点。

巩膜:韧性、白色、不透光的覆盖物,它覆盖除角膜外的全部眼球。

玻璃体:透明无色的凝胶状物质,它使眼睛固定并使其形状基本上下变水状液:在晶状体和角膜之间,这种液体基本是水。

同时包含血液的许多成分,给角膜和晶状体供给营养。

瞳孔:控制进入眼内光线的量视网膜:眼睛的光探测器,上有两种光感受器:锥状细胞和柱状细胞。

锥状细胞:用于日光和明视的感觉,看清细节和分别不同的颜色。

柱状细胞用于暗视觉和外周视觉2、视觉形成:光线→角膜→瞳孔→晶状体(折射光线)→玻璃体(固定眼球)→视网膜(形成物像,成像为倒像)→视神经(传导视觉信息)→大脑视觉中枢(形成视觉)。

书上的太复杂了。

3、明适应和暗适应:明适应:暗处→明处→看不清→恢复明视觉机制:是视紫红质分解的过程。

视紫红质在暗处大量蓄积,对光的敏感度强,到明亮处被迅速大量分解,产生和传入大量视觉冲动,从而出现耀眼的光感。

暗视觉:明处→暗处→看不清→恢复暗视觉机制:是视紫红质的含量在暗处合成恢复的过程。

4、盲点:视网膜上在13°到18°的地方,没有柱状细胞和锥状细胞,没有视觉,在视野中是生理盲点。

5、屈光度:焦距的倒数称为焦度,即为屈光度,它可为正,也可为负,凸透镜的屈光度为正,凹透镜的屈光度为负。

屈光度异常(屈光不正):近视眼:长眼球或角膜大弯曲,物体在视网膜前方即汇成焦点,这些光线发散在视网膜上成为模糊的象矫正:凹透镜远视眼:短眼球或角膜不够弯曲,物体在视网膜后方汇成焦点矫正:凸透镜。

相关文档
最新文档