电子科技大学图论第二章习题答案

合集下载

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。

则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。

图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。

解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。

六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。

解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。

图论及其应用第2章

图论及其应用第2章
解 设 T 有x 片树叶,则T的点数为:
故T的边数为:
x+n2+n3+…+nk
x+n2+n3+…+nk-1 又由握手定理得:
x+2n2+3n3+…+ knk = 2(x+n2+n3+…+nk-1) 解得 x 为:
nx1 2 n3 2n4 (k 2)nk
§2.2树的中心和形心
定义1 设 G = (V, E) 是一连通图, v∈V,令 e(v) = max {d(u,v) | u∈V }
则称 e(v)为顶点 v 的离心率;又令 r(G) = min {e(v) | v∈V }
称 r(G) 为图 G 的半径。
比较图的直径与离心率的定义可知,图G 的直径是 G 的最大离心率;e(v) = r(G) 的点 v ,称为 G 的一个 中心点, G 中全体中心点的集合称为G 的中心。
(1)G 是树。 (2)G 中任意两个不同点之间存在唯一的路。 (3)G 连通,删去任一边便不连通。 (4)G 连通,且 n = m+1。 (5)G 无圈,且 n= m+1。 (6)G 无圈,添加任一条边可得唯一的圈。
推论1 由k棵树组成的森林满足:m = n-k。其中n为G的 顶点数,m为G的边数。
定理5 连通图的生成树必存在。
证明 给定连通图G,若G 无圈,则G就是自己的生 成树。若G有圈,则任取G中一个圈C,记删去C中 一条边后所得之图为H1。显然在H1中,圈C 已不存 在,但仍连通。
若H1中还有圈,重复以上过程,直至得到一个无 圈的连通图H。H 便是 G 的生成树。
定理5的证明方法也是求生成树的一种方法,称 为“破圈法”。

图论及其应用答案电子科大

图论及其应用答案电子科大

习题三:证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e .证明:充分性: e是G的割边,故G −e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ∀∈∀∈,因为G中的u ,v不连通,而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。

必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G −e中不存在从u与到v的路,这表明G不连通,所以e 是割边。

3.设G 是阶大于2的连通图,证明下列命题等价: (1)G 是块 (2)G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。

(1)→(2):G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。

(2)→(3):G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。

(3)→(1):G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。

7.证明:若v 是简单图G 的一个割点,则v 不是补图G ̅的割点。

证明:v是单图G的割点,则G −v有两个连通分支。

现任取x ,y ∈V (G −v ), 如果x ,y 不在G −v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G −v的补图中连通。

电子科技大学-图论第二次作业

电子科技大学-图论第二次作业

复杂性分析:在第 k 次循环里,找到点 u0 与 v0,要做如下运算: (a) 找出所 有不邻接点对----需要 n(n-1)/2 次比较运算;(b) 计算不邻接点对度和----需要做 n(n-1)/2-m(G)次加法运算;(c ),选出度和最大的不邻接点对----需要 n(n-1)/2-m(G)次
2) 若 ek 不在 Ck 中,令 Gk-1=Gk-ek, Ck-1=Ck; 否则转 3); 3) 设 ek=u0v0 ∈Ck, 令 Gk-1=Gk-ek; 求 Ck 中两个相邻点 u 与 v 使得 u0,v0,u,v 依序 排列在 Ck 上,且有:uu0,vv0 ∈E(Gk-1),令:
Ck1 Ck u0v0,uvuu0,vv0
如果在
中有 H 圈
如下: Ck1 (u0 , v0 , v1,..., vn2 , u0 )
我们有如下断言: 在Ck1上,vi , vi1, 使得u0vi , v0vi1 E(Gk )
若不然,设
那么在 Gk 中,至少有 r 个顶点与 v0 不邻接,则
≦(n-1)-r < n-r, 这样与 u0,v0 在 Gk 中度和大于等于 n 矛盾!
图的闭包算法:
1) 令 =G ,k=0;
2) 在 中求顶点 与 ,使得:
dGk (u0 ) dGk (v0 ) max dGk (u) dGk (v) uv E(Gk )
3) 如果 此时得到 G 的闭包;
dGk (u0 ) dGk (v0 ) n
则转 4);否则,停止,
4) 令
,
,转 2).
则 是非 Hamilton 图
(2)因为 是具有二分类 的偶图,又因为
,在这里假设
,则有
,也就是说:对于

图论习题答案2

图论习题答案2

第四次作业
四(13).设M是二分图G的最大匹配,则 | M || X | max| S | | N ( S )| ,
SX
证明: | X | max| S | | N ( S )| min(| X | | S |) | N ( S )| ,而(X - S ) N ( S )是G的一个覆盖,则 min(| X | | S |) | N ( S )|是G的最小覆盖,
第七次作业
• 五(28).设sn是满足下列条件的最小整数,把 {1,2,...,sn}任划分成n个子集后,总有一个子集 中含有x+y=z的根,求s1,s2,s3是多少? • 解:n=1,枚举得s1=2; • s2=5 • s3=14
第七次作业
五(34).求证r(k, l) = r(l, k) 证明:若G含有K k 子图,则G c 含有k个顶点的独立集;若G含有 l个顶点的独立集,则G c 含有K l 子图。则命题成立。
五 (13).若 是单图 G 顶的最小次数,证明; 若 1则存在 1边着色, 使与每顶关联的边种有 1种颜色。 反证法:假设在 v1处无 i 0色 设 C (E 1 , E 2 ,..., E 1 )为 G 的( 1) 最佳边着色 第一步:构造点列: v1 , v 2 ,..., v h , v h 1 ,....., vl ,.... v1处无 i 0色, v j v j 1着 i j色,且在 v j点处 i j 色重复出现,可知在 v j1处仅一 个 i j色;证明如下: 用反证法证明,假设在 v j1处 i j色重复出现,将 v j v j 1改成 v j 所关联的边 没有的颜色 im,则可以对图 G 的找色进行改善。与 C 是最佳边着色矛盾, 假设不成立。 又 是单图 G 顶的最小次数,则必存 在最小整数 h使得 i h i l 第二步:着色调整: v j v j 1着 i j-1色 ( j 1,2,..., h ),所得新着色为 C ' 在 C '中, v1处多了个 i 0色, v h 1处少了个 i h 色,其他点的边着色数 不变, 所以 C ' 还是 1最佳边着色

第二篇 图论习题

第二篇  图论习题

习题课 2
例10 若G是一个恰有两个奇度顶点u和v的无向图,则 (1)顶点u与v连通;(2)G连通G+uv连通。 例1 设G为p阶简单无向图,p>2且p为奇数,G和G的 补图GC 中度数为奇数的顶点的个数是否一定相等? 试证明你的结论。 例2 设V={v1,v2,…,vp},计算以V为顶点集的无向图 的个数是多少?(KP有多少个生成子图) 例3 设V={v1,v2,…,vp},q≤p(p-1)/2,计算以V为顶 点集具有q条边的无向图的个数是多少? 例4 设G是(p,q)图,r≤q,则具有r条边的G的生成 子图有多少? 答案: 2p(p-1)/2 ,Cqp(p-1)/2 ,Crq。
习题课 2
1. 说明图中所示图(1)(2)是否是非平面图? 2.证明:彼得森图不是平面图。 (1) 收缩法;(2) 欧拉公式法;(3)收缩到K3,3。 3.设G是无向图,p<8,则G与Gc中至少有一个是平面图。 4.设平面图G的顶点数p=7,边数q=15,证明G是连通的。
习 题 课 3
1.判断下面命题是否正确,并说明理由。 任意平面图G的对偶图G*的对偶图G**与G同构。 2. 设G*是平面图G的对偶图,证明:p*=f,q*=q, f*=p-k+1。其中k(k≥1)为G的连通分支数。 3. 证明:若G是自对偶的平面图,则q=2p-2。其中p 和q是G的边与顶点数。 4.把平面分成p个区域,每两个区域都相邻,问p最 大为多少? 5.证明:不存在具有5个面,每两个面都共享一条公 共边的平面图G。
例7 设G是有个p顶点,q条边的无向图,各顶点的度 数均为3。则 (1)若q=3p-6,证明:G在同构意义下唯一,并求p,q。 (2)若p=6,证明:G在同构的意义下不唯一。 例8 已知p阶(简单)无向图中有q条边,各顶点的度数 均为3,又2p=q+3,试画出满足条件的所有不同 构的G。 例9 9个学生,每个学生向其他学生中的3个学生各送 一张贺年卡。确定能否使每个学生收到的卡均来自 其送过卡的相同人?为什么? 解:否,不存在9(奇数)个顶点的3-正则图。

图论及其应用 第二章答案

图论及其应用 第二章答案

)3( 题属中国邮路问题除第欧拉图与哈密尔顿图<1.>给定一个由16条线段构成的图形(见下图).证明:不能引一条折线与每一线段恰好相交一次(折线可以是不封闭的和自由相交的,但他的顶点不在给定的线段上)证明:建立一个图G :顶点i v 代表图形的区域(1,2,3,4,5,6)i X i ,顶点i v 与j v 之间连接的边数等于区域i X 与j X 公共线段的数目.于是,将上图的区域和边可转化成下图:由顶点度数知不存在欧拉路,从1X 到6X 只能相交于外面的两条线段.<2.>下列图形中哪些能一笔画成.解:只需考虑该图是否有欧拉路(即有两个奇点或者无奇点),故第一个和第三个可以一笔画成,第二个不能一笔画成.<4.>下图是某个展览馆的平面图,其中每个相邻的展览室有门相通.证明:不存在一条从A 进入,经过每个展览室恰好一次再从A 处出来的参观路线.证:用顶点代表展览室,两顶点相邻当且仅当这两点所对应的展览室有门相通,则可得一个连通简单图G (见下图).因此,只要证明G 中不存在H —回路即可.具体理由如下:令}{1216,,,S y y y = ,则显然S 是G 的真子集,而()1816G S S ω-=>=(x 共18个,y 共16个),故由讲义中定理2.3知不存在H —回路.<5.>某次会议有20人参加,其中每个人都至少有10个朋友.这20人围一桌入座,要想使与每个人相邻的两位都是朋友是否可能?解:用顶点代表人,两人是朋友时相应顶点间连一边,得到一个无向图(,)G V E =.只要证明G 中存在H —回路即可. G 是10阶连通图,对于20n =,且()10,()10G G d u d v ≥≥,可得:()()20G G d u d v n +≥=,故由讲义中定理2.4知G 中存在H —回路.<6.>已知,,,,,,a b c d e f g 七个人中,a 会讲英语,b 会讲英语和汉语,c 会讲英语、意大利语和俄语,d 会讲汉语和日语,e 会讲意大利语和德语,f 会讲俄语、日语和法语,g 会讲德语和法语.能否将他们的座位安排在圆桌旁,使得每个人都能与他身边的人交谈.解:用七个顶点表示这七个人.若两人能交谈(会讲同一种语言),就在这两顶点之间连一条边,得到图G .只要证明图G 中存在H -回路即可. 具体结果如下:c e g f d b a c 意大利语德语法语日语汉语英语英语 .<7.>设G 是分划为,X Y 的二部图,且X Y ≠,则G 一定不是H —图。

电子科技大学-图论第二次作业

电子科技大学-图论第二次作业

习题四:3. (1)画一个有Euler闭迹和Hamilton圈的图;(2) 画一个有Euler闭迹但没有Hamilton圈的图;(3) 画一个有Hamilton圈但没有Euler闭迹的图;(4) 画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler闭迹和Hamilton圈的图;(2)—个有Euler闭迹但没有Hamilton圈的图;⑶一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.4. 设n阶无向简单图G有m条边,证明:若2 ) * ',则G是血加此"图。

证明:G是H图。

若不然,因为G是无向简单图,则n芝3,由定理%若G是n芝3的非单图,则G、一 ...C …度弱丁某个阵".于是有:- - 1 2 E(G)| E(C m,n ) - m (n 2m)(n m 1) m(m 1)1.这与条件矛盾!所以G 是H 图若G 有个奇点,则存在k 条边不重的迹Q1・Q 矿心,使得 E(G) = E(Q 】)U E(Q J U E(Q 3) U …U E(Q k ) 证明:不失一般性,只就 G 是连通图进行证明。

设 G=(n, m)是连通图。

令 虬 V 2,…,v,V k+1,…,v 是G 的所有奇度点。

在V i与v i+k 问连新边e i 得图G* (1三隹k). 则G*是欧拉图,因此,由Fleury 算法得欧拉环游C 在C 中删去e i (1m M k).得 k 条边不重的迹Qi (1 MiMk):E(G) E(Q1^E(Q2^^E(Qk)10. 证明:若:(1) G 不是二连通图,或者(2) G 是具有二分类|(X,Y)的偶图,这里|X” |Y|则G 是非Hamilton 图。

证明:(1) G|不是二连通图,则G 不连通或者存在割点v ,俨任-v) >2 ,由丁课本 上的相关定理:若G 是Hamilton 图,则对丁*勇)的任意非空顶点集S,有: w(G- S) <|S|,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则G 是非Hamilton 图(2)因为是具有二分类(XI)的偶图,乂因为|X|丰1丫1,在这里假设|X| < |Y|,则有 w(G-X) = |Y|>|X|,也就是说:对北(G)|的非空顶点集S,有:w(G-S)>||S|成 立,则可以得出则G 是非Hamilton 图。

电子科大图论 第二次作业(4、5章) 答案

电子科大图论 第二次作业(4、5章) 答案

习题四3.(1)画一个有Euler 闭迹和Hamilton圈的图;(2)画一个有Euler 闭迹但没有Hamilton圈的图;(3)画一个有Hamilton圈但没有Euler闭迹的图;(4)画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler 闭迹和Hamilton圈的图;(2)一个有Euler闭迹但没有Hamilton圈的图;(3) 一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.7. 将G中的孤立点去掉后的图为G1,则G1也是没有奇度点的,且G1的最小度大于等于2.则G1存在一个圈S1,在G1 –S1中去除孤立的点,得到一个新的图G2,显然G2也没有奇度的点,且G2的最小度大于等于2.这样G2中也存在一个圈S2,这样一直下去,指导Gm中有圈Sm,且Gm-Sm都是孤立的点。

这样E(G) = E(G1)并E(G2)…并E(Gm).命题得证。

10.证明:若:(1)不是二连通图,或者(2)是具有二分类的偶图,这里,则是非Hamilton图。

证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本上的相关定理:若是Hamilton图,则对于的任意非空顶点集,有:,则该定理的逆否命题也成立,所以可以得出:若不是二连通图,则是非Hamilton图(2)因为是具有二分类的偶图,又因为,在这里假设,则有,也就是说:对于的非空顶点集,有:成立,则可以得出则是非Hamilton图。

习题五1.(1)证明:每个k方体都有完美匹配(k大于等于2)(2) 求K2n和K n,n中不同的完美匹配的个数。

证明一:证明每个k方体都是k正则偶图。

事实上,由k方体的构造:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。

如果我们划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。

图论及其应用1-3章习题答案(电子科大) (1)

图论及其应用1-3章习题答案(电子科大) (1)

学号:201321010808 姓名:马涛习题14.证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。

6.设G 是具有m 条边的n 阶简单图。

证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。

证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。

9.证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。

(a)v 1v 2 v 3 v 4v 5 v 6v 7v 8 v 9v 10 u 1 u 2u 3u 4u 5 u 6 u 7 u 8 u 9 u 10 (b)证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。

12.证明:若δ≥2,则G 包含圈。

证明 只就连通图证明即可。

设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。

若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ⋯v in v ik 构成一个圈 。

17.证明:若G 不连通,则G 连通。

证明 对)(,_G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_G 中连通,因此,u 与v 在_G 中连通。

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。

则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。

图G图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )A Bb c123A B 3CDAD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解:四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。

A B DC123A B DC解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k(G).解:用公式)()()(e G P G P e G P k k k •+=-,可得G 的色多项式:)3)(2()1()()(3)()(2345---=++=k k k k k k k G P k 。

六.(10分) 一棵树有n 2个顶点的度数为2,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。

电路理论习题答案 第二章

电路理论习题答案 第二章

习题22.1选择题(1)C (2)D (3)A (4)C (5)B (6)C2.2简答题(1)因为P 1=100W I s2=-4A所以U s2=50VI 1=10A I r2=5AI A =2-(10-4+5)=-9A(2)11101020111136152020R =+=+=++ 所以i=6020=3 i 1+i 2=330 i 1=15i 2i 2=2i 1i 1=1 i 2 =2i 1’=i 2’i 1’=(60-30)/20=1.5i 1+I=i 1’所以I=0.5A(3) ①有三个电容组成一个网络时有SCU(s)+SCU 1(s)=SC ’U(s)得 C ’=3/2C依次 可得如图所示输入端电容Ci=(n+1)/2(n 为电容所组成的网孔数) ②同理可得 Ri =2/(n+1) (n 为电阻所组成的网孔数)(4) L=L 11+L 22+2 M =16H(5) 设放大器副端电压为U 3 电流为i 2 正端为i 1 从R 1,R 2端流出得电流为i 则有图可得U 3=0, i 1=i 2=001212+=fU U U i R R R =- 所以01212ff R R U U U R R =--R f /R 1=4 R f /R 2=7由此得R 1=2.5K Ω,R 2=10/7(K Ω)(6)设理想变压器输入端线圈电压为U1,输出端线圈电压为U2 有n 1/u 1= n 2/u 2得 u 1=(n 1/n 2)×u 2=3u 2n 1i 1+n 2i 2=0得 i 1=-(1/3)i 2Ri =U/i 1=4i 1+U 1=4+(3U 2)/(-1/3 i 2)=4-9×(-23/3)=73 K Ω2.3(1)LTI ,双向、单调、有源电阻(2)非线性、时变、单调、有源电阻(3)非线性时不变、单调、单向、有源电容(4)非线性、时不变、单向、流控、有源电感(5)非线性、时不变、有向、有源电感、单调(6)非线性、时不变、单调、单向、有源电阻(7)非线性、时不变、压控、单向、无源电(电流)(8)非线性、时不变、单调、单向、有源电容(9)非线性、时不变、单调、有源电阻(10)非线性、时不变、单调、流控、有源电阻(11)非线性、时不变、荷控、有源电容(12)非线性、时不变、单调、有源电阻2.4①2121U ()U ()1 ()()2t t L di t di t dt dt=== ∴元件1 为电感 ②又2L C 1(0)(0)(0)25(0)252C W W W CU =+=+= 故Uc(0)=0,i 1(0)=i 1(t)t =0= -10A.设元件2 为电阻,则(0)(0) 1.5(0)C L U U R i --==Ω ③元件3 为电容,2111()(0)()(1010)0t t C C t U t U i d e e C Cττ--==-+⎰ 由KVL 又可得:Uc(t)=-U L (t)-U R (t)= -10e-t+10e-2t比较两式系数得C=1F .2.52.6(a )P R =34 (w),P v =32 (w),P 1= -2(w ),消耗功率来源于电流源。

电子科大研究生图论——第1,2章基本概念,树

电子科大研究生图论——第1,2章基本概念,树
完全偶图:是指具有二分类(X, Y)的简单偶 图,其中 X的每个顶点与 Y 的每个顶点相连, 若 |X|=m,|Y|=n,则这样的偶图记为 Km,n
精品课件

G1
G2
K1,3
四个图均为偶图;
K 3,3
K1,3 , K3,3为完全偶图
精品课件

偶图
不是偶图
简单图G 的补图: 设 G =(V, E),则图 H =(V,E1\E) 称为G 的补图,记为 H G , 其中集合
例1 设 V ={v1, v2, v3, v4},E ={v1v2 , v1v2, v2v3 },则 G = (V, E) 是一个4阶图。
v1
v4
若用小圆点代
表点,连线代表边
,则可将一个图用
“图形”来表示,
如例精品课件
v3
注: 也可记边 uv 为e ,即 e = uv。
例2 设V = {v1,v2,v3,v4},E = {e1,e2,e3,e4,e5},其中 e1= v1v2, e2 = v2v3, e3 = v2v3, e4 = v3v4, e5
2. Hamilton 周游世界问题
1859年 Hamilton 提出这样一个 问题:一个正十二面体有20个顶点,它 们代表世界上20个重要城市。正十二面 体的每个面均为五边形,若两个顶点之 间有边相连,则表示相应的城市之间有 航线相通。 Hamilton 提出 “能否从某 城市出发经过每个城市一次且仅一次然 后返回出发点?”
精品课件
定理5 设有非负整数组Π = (d1, d2,…, dn),且
n
di 2m
i 1
是一个偶数,n-1≥d1≥d2≥…≥dn, Π是可图的充要条件为
( d 2 1 , d 3 1 , , d d 1 1 1 , d d 1 2 , , d n )

电子科大图论-第二次作业(4、5章)-答案

电子科大图论-第二次作业(4、5章)-答案
(2) 我们用归纳法求 K2n 和 Kn,n 中不同的完美匹配的个数。 K2n 的任意一个顶点有 2n-1 种不同的方法被匹配。所以 K2n 的不同完美匹配个 数等于(2n-1)K2n-2,如此推下去,可以归纳出 K2n 的不同完美匹配个数为:(2n-1)!! 同样的推导方法可归纳出 K n, n 的不同完美匹配个数为:n!
习题四
3.(1)画一个有 Euler 闭迹和 Hamilton 圈的图;
(2)画一个有 Euler 闭迹但没有 Hamilton 圈的图; (3)画一个有 Hamilton 圈但没有 Euler 闭迹的图; (4)画一个即没有 Hamilton 圈也没有 Euler 闭迹的图; 解:找到的图如下: (1) 一个有 Euler 闭迹和 Hamilton 圈的图;
(2) 一个有 Euler 闭迹但没有 Hamilton 圈的图;
(3) 一个有 Hamilton 圈但没有 Euler 闭迹的图;
(4)一个即没有 Hamilton 圈也没有 Euler 闭迹的图.
7. 将 G 中的孤立点去掉后的图为 G1,则 G1 也是没有奇度点的,且 G1 的最小
度大于等于 2.则 G1 存在一个圈 S1,在 G1 –S1 中去除孤立的点,得到一个新的 图 G2,显然 G2 也没有奇度的点,且 G2 的最小度大于等于 2.这样 G2 中也存在 的点。这 样 E(G) = E(G1)并 E(G2)…并 E(Gm).命题得证。
则 是非 Hamilton 图
(2)因为 是具有二分类 的偶图,又因为
,在这里假设
,则有
,也就是说:对于
的非空顶点集 ,有:

立,则可以得出则 是非 Hamilton 图。
习题五
1. (1)证明:每个 k 方体都有完美匹配(k 大于等于 2)

图论 (2)

图论 (2)
2013-7-10 143-7
电子科技大学离散数学课程组——国家精品课程
例9.2.12
求右图中所有结点的度数、出度 和入度,指出悬挂结点和为悬挂 边。 解 deg(v1) = 1,deg+(v
1)
v1 v4 v2
1)
v5
=
0,deg-(v
= 1
v3
deg(v2) = 4,deg+(v2) = 3,deg-(v2) = 1
2013-7-10
143-22
电子科技大学离散数学课程组——国家精品课程
例9.3.1
判 断 下 图 G1 中 的 回 路 v3e5v4e7v1e4v3e3v2e1v1e4v3 、 v3e3v2e2v2e1v1e4v3 、v3e3v2e1v1e4v3 是否是简单回路、 基本回路?图G2 中的通路v1e1v2e6v5e7v3e2v2e6 v5e8v4 、 v1e5v5e7v3e2v2e6v5e8v4 、 v1e1v2e6v5e7v3e3v4 是否是简单通路、基本通路?并求其长度。
对于同构,形象地说,若图的结点可以任意挪 动位置,而边是完全弹性的,只要在不拉断的条件 下,一个图可以变形为另一个图,那么这两个图是 同构的。
2013-7-10 143-15
电子科技大学离散数学课程组——国家精品课程
两个图同构的必要条件
(1)结点数目相同;
(2)边数相同;
(3)度数相同的结点数相同。
9.3.1 通路与回路
通路与回路是图论中两个重要的基本概念。本 小节所述定义一般来说既适合有向图,也适合无向 图,否则,将加以说明或分开定义。
2013-7-10
143-20
电子科技大学离散数学课程组——国家精品课程

图论及其应用第2章答案(电子科大版)

图论及其应用第2章答案(电子科大版)

图论及其应用第2章答案(电子科大版)
习题二(yangchun):
7.证明:非平凡树的最长路的起点和终点均是1度的。

证明设是非平凡树T中一条最长路,若则与在中的邻接点只能有一个,否则,若与除了中顶点之外的其他顶点相连,则可以继续延长,这与是最长路是相矛盾的。

若与上的某顶点相连,则就构成了圈,这与数相矛盾,推出不是最长路。

即说明与是树叶,则与均是一
度的。

所以非平凡树的最长路的起点和终点均是度的。

9.证明:顶点度数为偶数的连通图本身可构成一个包含所有边的闭迹。

证明:证明:由于是连通非平凡的且每个顶点度数为偶数,所以中至少
存在圈,从中去掉中的边,得到的生成子图,若没有边,则的边集合能划分为圈。

否则,的每个度数均为偶数的连通图,反复这样抽取,最终划分为若干圈。

设是的边划分中的一个圈。

若仅由此圈组成,则显然是闭迹。

否则,由于连通,所以,必然存有公共顶点。

于是,是一条含有与的边的迹,如此拼接下去,得到包含的所有边的一条闭迹.
16.Kruskal算法能否用来求:
(1)赋权连通图中的最大权的树?
(2)赋权图中的最小权的最大森林?如果可以,怎样实现?
答:1、不能,由Kruskal算法得到的任何生成树一定是最小生成树。

2、能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档