离散数学教案

合集下载

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件第一章:离散数学简介1.1 离散数学的定义与意义离散数学的定义离散数学在计算机科学中的应用1.2 离散数学的基本概念集合逻辑函数图论1.3 离散数学的研究方法形式化方法归纳法构造法第二章:集合与逻辑2.1 集合的基本概念与运算集合的定义与表示方法集合的运算(并、交、差、补)2.2 逻辑基本概念命题与联结词逻辑推理规则(蕴涵、逆否、德摩根定律)2.3 命题逻辑与谓词逻辑命题逻辑的形式化表示与推理谓词逻辑的形式化表示与推理第三章:函数与图论3.1 函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性3.2 图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)3.3 树的基本概念与应用树与图的关系树的结构性质与应用(二叉树、堆、平衡树)第四章:组合数学4.1 组合数学的基本概念排列组合的定义与公式组合数学的应用(计数原理、图论)4.2 组合数学的计算方法直接法、间接法、递推法、函数法4.3 组合数学在计算机科学中的应用算法设计与分析(动态规划、贪心算法)程序语言中的组合类型(类型系统、类型检查)第五章:数理逻辑与计算复杂性5.1 数理逻辑的基本概念命题逻辑的数学模型(布尔代数、逻辑函数)谓词逻辑的数学模型(一阶逻辑、描述逻辑)5.2 计算复杂性的基本概念与分类计算复杂性的定义与度量(时间复杂性、空间复杂性)计算复杂性的分类(P与NP问题、整数分解问题)5.3 离散数学在算法设计与分析中的应用算法设计与分析的基本原则离散数学在算法优化与分析中的作用第六章:关系与映射6.1 关系的基本概念关系的定义与性质关系的类型(对称性、传递性、反身性)6.2 关系的闭包与简化关系的闭包概念关系的简化与规范化6.3 函数与二元关系函数与关系的联系与区别二元组与二元关系的应用第七章:代数结构7.1 代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用7.2 群与群作用群的定义与运算群作用与群同态7.3 环与域环的定义与性质域的特殊性质与应用第八章:数理逻辑与计算理论8.1 数理逻辑的进一步应用命题逻辑与谓词逻辑的推理规则数理逻辑在计算机科学中的应用8.2 计算理论的基本概念计算模型的定义与分类计算复杂性的理论基础8.3 离散数学在计算理论中的应用计算理论中的逻辑与证明离散数学在算法设计与分析中的作用第九章:组合设计与计数原理9.1 组合设计的基本概念组合设计的定义与类型组合设计在编码理论中的应用9.2 计数原理的基本概念鸽巢原理、包含-排除原理函数的方法与应用9.3 图论与网络流图的遍历与路径问题网络流与最优化问题第十章:离散数学的综合应用10.1 离散数学在计算机科学中的应用算法设计与分析数据结构与程序语言设计10.2 离散数学在数学与应用数学中的作用组合数学在概率论与数论中的应用图论在网络科学与社会网络分析中的应用10.3 离散数学在未来科技发展中的展望量子计算与离散数学与逻辑推理重点和难点解析重点环节一:集合的基本概念与运算集合的表示方法(列举法、描述法)集合的运算(并、交、差、补)重点环节二:逻辑基本概念与推理命题与联结词(且、或、非)逻辑推理规则(蕴涵、逆否、德摩根定律)重点环节三:函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性重点环节四:图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)重点环节五:组合数学的基本概念与计数原理排列组合的定义与公式组合数学的应用(计数原理、图论)重点环节六:关系与映射关系的定义与性质关系的类型(对称性、传递性、反身性)重点环节七:代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用重点环节八:数理逻辑与计算理论数理逻辑的推理规则计算理论的基本概念(计算模型、计算复杂性)重点环节九:组合设计与计数原理组合设计的定义与类型计数原理的应用(鸽巢原理、包含-排除原理)重点环节十:离散数学的综合应用离散数学在计算机科学中的应用(算法设计与分析、数据结构与程序语言设计)离散数学在数学与应用数学中的作用(组合数学在概率论与数论中的应用、图论在网络科学与社会网络分析中的应用)全文总结和概括:本《离散数学教案》课件涵盖了离散数学的基本概念、逻辑推理、函数与图论、组合数学、数理逻辑与计算理论、组合设计与计数原理等多个重要环节。

离散数学教案

离散数学教案

离散数学教案一、教案引言离散数学作为计算机科学及相关领域的基础学科,对培养学生的逻辑思维能力和问题解决能力具有重要作用。

本教案旨在介绍离散数学课程的重点内容和教学方法,以帮助教师在教学中实现教学目标,提高学生的学习成效。

二、教学目标1. 了解离散数学的基本概念和方法,包括集合论、逻辑推理、图论等内容;2. 掌握离散数学的基本技能,包括集合的运算、证明方法、图的遍历等;3. 发展学生的逻辑思维和问题解决能力,培养学生的数学建模能力;4. 提高学生的团队合作和沟通能力,培养学生的创新意识。

三、教学内容1. 集合论1.1 集合与元素1.2 集合的运算1.3 集合的关系1.4 集合的应用2. 逻辑与证明2.1 命题与命题联结词2.2 命题的真值与命题的合取、析取、蕴含、等价关系2.3 命题逻辑的推理定律2.4 命题与谓词的等价关系2.5 谓词逻辑的推理定律3. 图论3.1 图的概念与性质3.2 图的表示方法3.3 图的遍历算法3.4 图的连通性与最小生成树3.5 图的应用四、教学方法1. 概念讲解与例题演练相结合:通过简洁清晰的讲解,引导学生理解离散数学的基本概念和方法,并通过大量的例题演练巩固学生的知识掌握能力。

2. 问题引导与探究学习:引导学生通过解决实际问题来理解和应用离散数学的原理和方法,培养学生的问题解决能力和数学建模能力。

3. 团队合作与讨论学习:组织学生进行小组活动,鼓励学生在团队合作中分享思路、互相讨论、共同解决问题,培养学生的合作意识和沟通能力。

4. 案例分析与实践应用:选取具体的案例,让学生将离散数学的知识应用于实际问题中,提升学生的学习兴趣和创新意识。

五、教学评估与反馈1. 课堂练习:通过课堂练习,检验学生对离散数学知识的掌握情况,及时发现和纠正学生的错误和不足。

2. 作业评定:通过布置作业并进行评定,评估学生对离散数学知识和方法的应用能力和问题解决能力。

3. 课后讨论与反馈:鼓励学生课后进行小组讨论,并提供及时的反馈和指导,加深学生对重点内容的理解和掌握程度。

离散数学教案

离散数学教案

p 1
q 1
p →q 1
1
0 0
0
1 0
0
1 1
说 明
p→q的逻辑关系表示q是p的必要条件。 q是p的必要条件有许多不同的叙述方式
– 只要p,就q – 因为p,所以q – p仅当q – 只有q才p – 除非q才p – 除非q,否则非p
真值为假的命题称为假命题。
命题又称为具有唯一真值的陈述句。
说 明
注意:
感叹句、祈使句、疑问句都不是命题
陈述句中的悖论以及判断结果不惟一确定的也不是命题
3
例1.1 判断下列句子是否为命题。
(1)2是素数。 (2)雪是黑色的。 (3)2+3=5 。 (4)明年10月1日是晴天。 (5)3能被2整除。 (6)这朵花多好看啊! (7)明天下午有会吗? (8)请关上门! (9)x+y>5。 (10) 地球外的星球上也有人 (11) 我正在说谎话.
p 例如:p: 3是偶数。 1 0
┐p 0 1
┐p: 3不是偶数。
8
定义1.2(合取联结词) 设p ,q为二命题,复合命题“p并且q”( 或“p与q”)称为p与q的合取式,记作 p∧q,∧称作合取联结词,并规定 p∧q为真当且仅当p与q同时为真。
p 1 1 0 0
q 1 0 1 0
p∧ q 1 0 0 0
第1章 命题逻辑
数理逻辑:是用数学方法来研究推理的形式结构和推理规律 的数学学科。 数理逻辑近年来发展特别迅速,主要原因是这门学科对于 数学其它分支如集合论、数论、代数、拓扑学等的发展有重 大的影响,特别是对新近形成的计算机科学的发展起了推动 作用。反过来,其他学科的发展也推动了数理逻辑的发展。 本书介绍了数理逻辑的两个最基本、也是最重要的部分:命 题逻辑和谓词逻辑。本章首先介绍命题逻辑。 命题逻辑是研究命题如何通过一些逻辑连接词构成更复杂的 命题以及逻辑推理的方法。

离散数学教程课程设计

离散数学教程课程设计

离散数学教程课程设计导言离散数学是数学中的一门重要学科,其主要研究离散对象以及在这些对象上的数学模型和算法。

它是计算机科学、信息技术、通信工程等领域中必不可少的基础学科之一。

本课程设计旨在针对离散数学的相关知识点,建立一个全面系统的教程,帮助学习者更好地掌握离散数学的理论和方法。

教学目标通过本次课程设计,我们的主要教学目标是:•系统介绍离散数学的相关概念与基础知识;•深入剖析离散对象及其性质,分析其数学模型和算法;•熟练掌握离散数学的各种问题的解决方法和实现技巧;•提高学生学习和应用离散数学的能力和思维水平。

教学内容与方法经过研究和深思熟虑,我们决定采用以下教学内容和方法:一、教学内容1.离散数学的基本概念及其应用–集合论–命题逻辑与谓词逻辑–关系与图论–函数、算法与复杂性2.逻辑推理和证明技巧–命题逻辑的基本概念及其推理规律–谓词逻辑的语法和语义–基本的证明方法:直接证明、间接证明、反证法3.关系与图论–关系的定义、基本性质和操作–图的定义、基本概念和分类–图的遍历、连通性和最短路径算法4.计数和离散概率–数学归纳法的应用–计数和组合数学–离散概率的基本概念和应用二、教学方法1.理论讲解:介绍离散数学的基本概念、理论体系和应用方法,注重概念解释、定理表述、推理论证方法和关键思维基础。

2.知识拓展:使用举例、难点突破、问题分析等教学方法,拓宽学生离散数学的知识面和思维深度,并深入分析和讨论相关概念和方法。

3.实践训练:通过练习题和编程实例,让学生深入理解和运用所学的离散数学知识,锻炼其计算思维和程序设计技能。

教学过程规划本课程设计的教学过程将分为三个阶段:基础阶段、进阶阶段和深化阶段。

一、基础阶段1.课程导入,介绍教学目标和课程内容;2.学习集合论的基本概念及其运算,学习命题逻辑和谓词逻辑的定义和公式,完成相关课后作业;3.学习关系和图论的基本概念和性质,了解图的基本算法,完成相关课后作业。

二、进阶阶段1.学习基本的证明方法,理解命题逻辑的重要性及应用场景,掌握反证法的使用;2.深刻理解图的连通性及最短路径,解决相关遍历问题;3.学习计数和组合数学的基本方法,了解离散概率的基本概念和用途,完成相关课后作业。

天津理工大学《离散数学》教学教案(第一章)

天津理工大学《离散数学》教学教案(第一章)

1.1.2 命题分类
根据命题的结构形式,命题分为原子命题和复合命题。 定义 1.1.2 不能被分解为更简单的陈述语句的命题称为原子命题(Simple Proposition )。 由两个或两个以上原子命题组合而成的命题称为复合命题(Compound Proposition )。 例如, 例 1.1.1 中的命题全部为原子命题, 而命题 “小王和小李都去公园。 ” 是复合命题, 是由“小王去公园。 ”与“小李去公园。 ”两个原子命题组成的。
表 1-3 联结词“ ”的定义
P 0 0 1 1
Q 0 1 0 1
PQ 0 1 1 1
显然 P P 的真值永远为真,称为永真式。 析取联结词“ ”与汉语中的“或”二者表达的意义不完全相同,汉语中的“或”可 表达“排斥或” ,也可以表达“可兼或” ,而从析取联结词的定义可看出, “ ”允许 P、Q 同时为真,因而析取联结词“ ”是可兼或。对于“排斥或”将在 1.6 中论述。 例 1.2.3 (1)小王爱打球或跑步。 (2)他身高 1.8m 或 1.85m。 (1)为可兼或, (2)为排斥或。 设 P:小王爱打球。Q:小王爱跑步。则(1)可表示为 P Q 设 P:他身高 1.8 米。Q:他身高 1.85 米。则(2)可表示为(P Q) ( P Q) 1.2.4 条件联结词 定义 1.2.4 设 P、Q 为两个命题,P 和 Q 的条件(Conditional)命题是一个复合命题,记 为 P Q(读作若 P 则 Q) ,其中 P 称为条件的前件,Q 称为条件的后件。规定当且仅当前 件 P 为 T, 后件 Q 为 F 时,P Q 为 F,否则 P Q 均为 T。 条件联结词“ ”的定义见表 1-4。
1.1.3 命题标识符

《离散数学》电子教案

《离散数学》电子教案

第一章集合论一、教学内容及要求授课学时:2教学内容1.1 集合的基本概念集合的概念及其表示;集合与集合之间的包含、真包含和相等关系的定义,数学描述及判定和证明方法;空集、全集和幂集三个特殊集合的定义、性质以及幂集的计算算法。

1.2 集合的运算集合运算的定义、性质及证明1.3 无限集可数集合和不可数集合的概念。

1.4 与集合相关的应用与集合相关的简单应用实例。

基本要求1)能正确地用枚举法或叙述法表示一个集合,会画文氏图。

2)能判定元素与集合的属于关系。

3)能利用集合与集合关系的判定与证明方法证明两个集合之间的包含、相等、和真包含的关系。

4)能熟练计算集合之间的并、交、差、补运算,掌握集合运算的定律;5)能熟练地计算P(A)。

6)理解集合的归纳法表示。

7)理解集合的对称差运算。

8)了解集合的递归指定法表示。

9)了解无限集的基本概念。

10)了解集合的简单应用。

能力培养通过课堂讲解和课后实践作业,培养学生的抽象思维和问题解决能力。

二、教学重点、难点及解决办法教学重点:集合的概念及集合间关系的证明;集合的表示方法:列举法、描述法和文氏图;集合运算及定律和幂集P(A)的计算。

教学难点:从集合与元素两个角度去分析集合;集合与集合关系的证明和无限集基数的理解。

解决办法:1)在教学过程中,为了加强学生对一个集合“双重身份”的理解,可以通过实例教学法,让学生具体体会一个集合的“双重身份”带来的问题及解决办法;2)对于新概念—幂集,让学生编程实现求一个集合的幂集,从而加深对幂集的理解。

初步建立学生的发散思维能力以及实际动手编写程序的能力。

三、教学设计从集合伦论的创始人康托尔到集合论的最终完备,让学生明白科学研究的道路是坎坷的,但为全人类做出自己的贡献是有价值和意义的,从而要树立为科学献身的精神和爱国主义情怀。

从集合的定义入手,结合高中阶段对集合的认识,指出当时定义存在的不足,提出新的定义方法;重点介绍大学阶段学习集合的主要意义和内容,关注重点概念的理解;介绍属于关系与包含关系之间的区别与联系,特别是一个集合“双重身份”的理解;强调集合的基本运算,特别是幂集的计算;集合与集合包含、真包含和相等关系的数学描述及相应的证明方法。

离散数学教学设计方案

离散数学教学设计方案

一、教学目标1. 知识目标:(1)使学生掌握离散数学的基本概念、基本原理和基本方法;(2)培养学生运用离散数学知识解决实际问题的能力;(3)提高学生的逻辑思维能力和抽象思维能力。

2. 能力目标:(1)培养学生的数学建模能力,使其能够将实际问题转化为数学模型;(2)提高学生的编程能力,使其能够运用所学知识进行程序设计;(3)增强学生的团队合作意识,使其能够在团队项目中发挥积极作用。

3. 情感目标:(1)激发学生对离散数学的兴趣,使其热爱数学;(2)培养学生严谨、求实的科学态度;(3)提高学生的自主学习能力和终身学习能力。

二、教学内容1. 离散数学的基本概念:集合、关系、函数、图论等;2. 离散数学的基本原理:逻辑推理、归纳推理、演绎推理等;3. 离散数学的基本方法:算法设计、程序设计、数学建模等;4. 离散数学在各领域的应用:计算机科学、信息技术、经济学、管理学等。

三、教学策略1. 采用启发式教学,引导学生主动探究,培养学生的自主学习能力;2. 结合实际问题,运用离散数学知识解决实际问题,提高学生的应用能力;3. 采用案例教学,让学生在具体案例中掌握离散数学知识;4. 开展小组讨论,培养学生的团队合作意识和沟通能力;5. 运用多媒体教学,丰富教学内容,提高教学效果。

四、教学过程1. 导入新课:通过提问、讨论等方式,激发学生的学习兴趣,引导学生进入学习状态;2. 讲授新课:讲解离散数学的基本概念、基本原理和基本方法,结合实际案例进行分析;3. 练习巩固:布置课后作业,让学生巩固所学知识;4. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和沟通能力;5. 课堂小结:总结本节课所学内容,回顾重点、难点,帮助学生梳理知识体系;6. 课后辅导:针对学生在学习过程中遇到的问题,进行个别辅导。

五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性,评价学生的出勤情况;2. 作业完成情况:检查学生课后作业的完成质量,评价学生的知识掌握程度;3. 小组讨论表现:评价学生在小组讨论中的表现,包括发言质量、团队合作能力等;4. 期末考试:通过考试评价学生对离散数学知识的掌握程度和综合应用能力。

离散数学教案

离散数学教案

离散数学教案一、教学目标通过本节课的学习,学生能够:1. 理解离散数学的基本概念和基础知识;2. 掌握离散数学中常用的逻辑、集合和函数等概念及其应用;3. 能够运用离散数学的方法解决实际问题。

二、教学内容1. 离散数学的概述- 离散数学的定义和特点- 离散数学在计算机科学、信息技术等领域的应用2. 逻辑与证明- 命题逻辑的基本概念- 命题逻辑的运算与推理规则- 数理逻辑的基本概念- 数理逻辑的运算与推理规则- 证明方法与常用证明技巧3. 集合与图论- 集合的基本概念- 集合的运算与关系- 图的基本概念和性质- 图的表示方法与应用4. 函数与关系- 函数的定义与性质- 函数的运算与特性- 逆函数与复合函数- 关系与关系矩阵5. 组合数学- 排列与组合的基本概念- 排列与组合的计算方法- 组合数学在密码学和编码中的应用三、教学过程1. 教师引入通过引入一个实际问题,介绍离散数学在解决问题中的重要性和应用场景。

2. 知识讲解依次讲解离散数学的概述、逻辑与证明、集合与图论、函数与关系以及组合数学等知识点,结合具体例子进行说明和展示,引导学生理解和掌握相关概念和方法。

3. 思维拓展训练给学生提供一些离散数学相关的思维拓展训练题,鼓励学生独立思考和解决问题,培养其离散数学思维能力。

4. 实践应用结合实际案例,让学生运用所学的离散数学知识,分析和解决实际问题,锻炼学生的应用能力和实践能力。

5. 总结归纳教师对本节课的内容进行总结和归纳,提醒学生重点和难点,巩固学生对离散数学的理解和掌握。

四、教学资源1. 教材:离散数学教材、相关参考书2. 多媒体教具:电脑、投影仪3. 练习题:离散数学练习题集五、教学评价1. 完成课堂练习和作业,检验学生对于离散数学知识的掌握情况;2. 参与思维拓展训练和实践应用活动,评估学生的思维能力和应用能力;3. 课堂表现和课后反馈,了解学生对于教学内容的理解和反馈,及时调整教学方法和策略。

《离散》教案完美版

《离散》教案完美版

《离散》教案完美版一、教学目标- 了解离散数学的基本概念和方法。

- 掌握离散数学在计算机科学、数学、逻辑等领域的应用。

- 培养离散思维和逻辑分析问题的能力。

- 提高学生的数学推理和证明能力。

- 培养学生的合作与沟通能力。

二、教学内容1. 离散数学基础- 集合与命题逻辑- 关系与图论- 函数与计数原理- 离散数学领域的经典问题2. 离散数学的应用- 离散数学在计算机科学中的应用- 离散数学在数学领域的应用- 离散数学在逻辑学中的应用3. 数学推理和证明技巧- 数学推理的基本原理- 基本的证明技巧- 解决离散数学问题的策略和方法三、教学方法1. 讲授法- 结合实例和案例进行讲解,引导学生理解离散数学的基本概念和方法。

- 通过解析经典问题,培养学生的离散思维能力和问题分析能力。

2. 讨论与合作- 组织小组讨论,在小组内合作解决问题,培养学生的合作与沟通能力。

- 鼓励学生提出自己的见解和思考,促进思维的多样性和创新。

3. 实践与应用- 利用计算机模拟和实验等方式,将离散数学应用于实际问题中,提升学生的实践能力。

- 组织实践项目,让学生在实际项目中应用离散数学知识,培养解决实际问题的能力。

四、教学评估1. 日常表现评估- 课堂参与和表现- 课后作业完成情况- 小组讨论参与情况2. 考试评估- 期中考试- 期末考试3. 实践评估- 实践项目报告- 实践项目表现和展示五、教学资源- 课本:《离散数学导论》- 电子资源:相关离散数学课程视频和研究资料- 计算机实验室:进行离散数学的实践项目六、教学反思与改进- 结合学生的实际情况,适时调整教学方法和内容,以提高学生的研究兴趣和研究效果。

- 加强与其他相关教师的合作,共同提升离散数学教学的质量和水平。

七、参考文献- Rosen, K. H. (2020). Discrete Mathematics and Its Applications. McGraw-Hill Education.。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义离散数学是研究离散结构及其相互关系的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用离散数学在计算机科学、信息技术、密码学等领域有广泛应用。

学习离散数学能够为编程、算法设计、数据结构等课程打下基础。

第二章:集合与逻辑2.1 集合的基本概念集合是由明确定义的元素组成的整体。

集合的表示方法:列举法、描述法、图示法等。

2.2 集合的基本运算集合的并、交、差运算。

集合的幂集、子集、真子集等概念。

2.3 逻辑基本概念命题:可以判断真假的陈述句。

逻辑联结词:与、或、非等。

逻辑等价式与蕴含式。

第三章:图论基础3.1 图的基本概念图是由点集合及连接这些点的边集合组成的数学结构。

图的表示方法:邻接矩阵、邻接表等。

3.2 图的基本运算图的邻接、关联、度等概念。

图的遍历:深度优先搜索、广度优先搜索。

3.3 图的应用图在社交网络、路径规划、网络结构等领域有广泛应用。

学习图论能够帮助我们理解和解决现实世界中的问题。

第四章:组合数学4.1 排列与组合排列:从n个不同元素中取出m个元素的有序组合。

组合:从n个不同元素中取出m个元素的无序组合。

4.2 计数原理分类计数原理、分步计数原理。

函数:求排列组合问题的有效工具。

4.3 鸽巢原理与包含-排除原理包含-排除原理:解决计数问题时,通过加减来排除某些情况。

第五章:命题逻辑与谓词逻辑5.1 命题逻辑命题逻辑关注命题及其逻辑关系。

命题逻辑的基本运算:联结词、逻辑等价式、蕴含式等。

5.2 谓词逻辑谓词逻辑是命题逻辑的推广,引入量词和谓词。

谓词逻辑的基本结构:个体、谓词、量词、逻辑运算等。

5.3 谓词逻辑的应用谓词逻辑在计算机科学中用于描述和验证程序正确性。

学习谓词逻辑能够提高对问题本质的理解和表达能力。

第六章:组合设计6.1 组合设计的基本概念组合设计是指从给定的有限集合中按照一定规则选取元素,构成满足特定条件的组合。

《离散数学教案》课件2

《离散数学教案》课件2

《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义介绍离散数学的概念和特点强调离散数学在计算机科学中的应用1.2 离散数学的重要性解释离散数学在算法设计、编程和计算机科学其他领域的应用强调离散数学对于解决问题和逻辑思维的重要性1.3 离散数学的基本概念介绍集合、图、逻辑、组合等基本概念解释这些概念在离散数学中的作用和相互关系第二章:集合论2.1 集合的基本概念定义集合、元素、集合之间的关系介绍集合的表示方法:列举法和描述法2.2 集合的运算介绍集合的并、交、差、补等基本运算解释集合运算的性质和规律2.3 集合的推理和公理化介绍集合论的基本公理和公理化体系解释集合论的公理化意义和作用第三章:逻辑与布尔代数3.1 逻辑的基本概念定义逻辑联结词、命题、真值表等基本概念介绍逻辑推理和论证的基本方法3.2 布尔代数的基本概念介绍布尔代数的基本元素和运算解释布尔代数在计算机科学中的应用3.3 逻辑与布尔代数的关系解释逻辑和布尔代数之间的联系和转化举例说明逻辑表达式和布尔代数表达式的相互转化第四章:图论4.1 图的基本概念定义图、顶点、边等基本概念介绍图的表示方法和图的类型4.2 图的运算和性质介绍图的连通性、路径、圈等基本概念解释图的运算和性质的应用和意义4.3 图的应用介绍图在计算机科学中的应用:算法设计、网络结构等举例说明图的应用实例和解决实际问题的方法第五章:组合数学5.1 组合数学的基本概念定义组合、排列、组合数等基本概念介绍组合数学的基本原理和方法5.2 组合计数原理介绍排列组合计数原理及其应用解释组合计数原理在离散数学中的重要性5.3 图着色和组合优化问题介绍图着色问题的定义和解决方案举例说明组合优化问题及其解决方法第六章:算法设计与分析6.1 算法的基本概念定义算法、输入、输出、有效性和可读性等基本概念解释算法在解决问题中的重要性6.2 算法设计技术介绍常用的算法设计技术:贪心法、分而治之、动态规划等解释每种技术的应用场景和特点6.3 算法分析与复杂性介绍算法分析和时间复杂度、空间复杂度的概念解释常用算法分析方法和评价标准第七章:数理逻辑与命题逻辑7.1 数理逻辑的基本概念介绍数理逻辑中的基本概念:命题、联结词、逻辑运算等解释数理逻辑在计算机科学中的应用7.2 命题逻辑的推理规则介绍命题逻辑中的推理规则:蕴含式、否定式、De Morgan定律等解释这些规则在逻辑推理中的应用和意义7.3 数理逻辑与计算机科学解释数理逻辑在计算机科学中的重要作用:编程语言、形式验证等举例说明数理逻辑在计算机科学中的应用实例第八章:集合论与数理逻辑的应用8.1 集合论在计算机科学中的应用介绍集合论在计算机科学中的应用:数据结构、数据库等解释集合论在计算机科学中的重要性和作用8.2 数理逻辑在计算机科学中的应用介绍数理逻辑在计算机科学中的应用:形式语言、编译原理等解释数理逻辑在计算机科学中的重要性和作用8.3 集合论和数理逻辑在其他领域的应用介绍集合论和数理逻辑在其他领域的应用:数学、哲学等解释集合论和数理逻辑在其他领域的重要性第九章:图论的应用9.1 社交网络与图论介绍社交网络中的图论应用:网络结构、关系分析等解释图论在社交网络分析中的作用和意义9.2 路径与圈的应用介绍路径和圈在图论中的应用:最短路径、环路检测等解释路径和圈在解决实际问题中的重要性9.3 网络流与匹配问题介绍网络流和匹配问题的定义和解决方案解释网络流和匹配问题在计算机科学中的应用第十章:组合数学的应用10.1 组合数学在计算机科学中的应用介绍组合数学在计算机科学中的应用:数据存储、编码理论等解释组合数学在计算机科学中的重要性和作用10.2 组合优化问题介绍组合优化问题的定义和解决方案解释组合优化问题在离散数学中的重要性和应用10.3 组合数学在其他领域的应用介绍组合数学在其他领域的应用:生物学、经济学等解释组合数学在其他领域的重要性第十一章:离散数学与计算机科学11.1 离散数学与算法强调离散数学在算法设计和分析中的作用解释如何使用离散数学工具解决算法问题11.2 离散数学与数据结构探讨离散数学在数据结构设计中的应用解释离散数学概念如何帮助优化数据结构11.3 离散数学与编程语言讨论离散数学在编程语言设计和实现中的角色举例说明离散数学在编程语言特性中的应用第十二章:离散数学与实际应用12.1 离散数学与网络科学介绍离散数学在网络科学中的应用解释图论和其他离散数学概念在网络结构和分析中的重要性12.2 离散数学与密码学探讨离散数学在密码学中的核心作用解释离散数学如何帮助设计和分析密码系统12.3 离散数学与讨论离散数学在领域的应用解释离散数学在知识表示、推理和问题解决中的作用第十三章:离散数学的实践项目13.1 离散数学项目的设计与实施介绍如何设计离散数学实践项目强调项目实施的重要性和方法13.2 离散数学项目的案例分析分析成功的离散数学项目案例从中提炼经验教训,为今后的项目提供参考13.3 离散数学项目的评价与反馈讨论离散数学项目评价的标准和方法强调项目反馈在持续改进和学习中的重要性第十四章:离散数学与数学逻辑14.1 离散数学与数理逻辑探讨离散数学与数理逻辑的紧密联系解释数理逻辑在离散数学问题求解中的作用14.2 离散数学与模型论介绍模型论及其在离散数学中的应用解释模型论在形式系统验证和解释中的重要性14.3 离散数学与计算理论讨论离散数学在计算理论中的应用强调计算理论在理解计算过程和设备中的价值第十五章:离散数学的未来发展15.1 离散数学的新兴研究领域介绍离散数学新兴研究领域和发展趋势强调跨学科合作在离散数学研究中的重要性15.2 离散数学在新技术中的应用探讨离散数学在云计算、大数据等新技术中的应用解释离散数学在未来信息技术发展中的关键作用15.3 离散数学教育的挑战与机遇讨论离散数学教育面临的挑战和机遇强调离散数学教育在培养创新人才中的重要性重点和难点解析重点:1. 离散数学的基本概念和特点2. 集合论、逻辑、图论和组合数学的核心理论和方法3. 离散数学在计算机科学中的应用,如算法设计、数据结构、网络科学、密码学等4. 离散数学实践项目的设计、实施和评价5. 离散数学教育的挑战与机遇难点:1. 集合论、逻辑、图论和组合数学的高级理论和复杂应用2. 算法设计和分析中的数学建模与优化3. 离散数学在跨学科领域中的应用,如生物学、经济学等4. 离散数学教育中的教学方法和策略设计5. 离散数学研究的前沿领域和未来发展趋势希望本文的重点和难点解析能对学习离散数学的教案有所帮助。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的概念离散数学是研究离散结构及其性质的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用计算机科学:图论在网络设计、算法分析中的应用,集合论在数据结构设计中的应用等。

数学逻辑:计算机程序设计中的逻辑判断,布尔代数在电路设计中的应用等。

二、集合论2.1 集合的基本概念集合的定义:由明确的元素构成的整体。

集合的表示法:列举法、描述法。

2.2 集合的运算并集、交集、补集的定义及运算性质。

集合的幂集。

三、逻辑与布尔代数3.1 命题逻辑命题、联结词、复合命题的真值表。

命题逻辑的推理规则。

3.2 谓词逻辑个体、谓词、量词。

谓词逻辑的推理规则。

3.3 布尔代数布尔代数的基本运算:与、或、非。

布尔表达式的化简。

四、图论4.1 图的基本概念图的定义:节点和边的集合。

无向图、有向图、多重图、加权图等。

4.2 图的运算图的遍历:深度优先搜索、广度优先搜索。

图的连通性:强连通、弱连通。

4.3 特殊图二分图、树、路径、圈。

网络流、最短路径问题。

五、组合数学5.1 排列组合排列、组合的定义及计算公式。

分布计数原理。

5.2 计数原理鸽巢原理、包含-排除原理。

二项式定理、多项式定理。

5.3 组合设计区块设计、拉丁方、Steiner系统等。

组合设计的性质和构造方法。

《离散数学教案》课件六、数理逻辑与计算逻辑6.1 数理逻辑的基本概念命题、联结词、逻辑代数。

真值表和逻辑等价式。

6.2 计算逻辑形式语言和自动机。

编译原理中的逻辑分析。

七、组合设计与编码理论7.1 组合设计的基本概念区块设计、拉丁方、Steiner系统。

组合设计的性质和构造方法。

7.2 编码理论线性码、循环码、汉明码。

编码的纠错能力和应用。

八、图的同态与同构8.1 图的同态图的同态的定义和性质。

同态定理和同态的应用。

8.2 图的同构图的同构的定义和性质。

同构定理和同构的应用。

九、树与森林9.1 树的基本概念树的定义和性质。

离散数学教案

离散数学教案

离散数学教案一、教学目标通过本节课的学习,学生将能够:1. 了解离散数学的基本概念和重要性;2. 掌握离散数学中的基本运算规则;3. 理解离散数学在计算机科学和信息技术中的应用。

二、教学内容1. 离散数学的基本概念a. 离散数学的定义和特点b. 与连续数学的区别与联系2. 离散数学中的基本运算规则a. 集合的定义和运算b. 逻辑运算c. 排列与组合3. 离散数学的应用a. 离散数学在计算机科学中的重要性和应用领域b. 离散数学在信息技术中的应用案例分析三、教学过程1. 导入在课堂开始前,通过提问或引入一些相关问题的方式,引起学生的兴趣和思考离散数学的应用场景。

2. 概念介绍和讲解逐步介绍离散数学的定义、离散数学与连续数学的区别,以及离散数学在计算机科学和信息技术中的重要性。

3. 基本运算规则的学习通过示例和练习,教授集合的定义、集合的运算、逻辑运算、排列与组合等基本运算规则,并着重强调它们在离散数学中的应用。

4. 应用案例分析结合实际案例,对离散数学在计算机科学和信息技术中的应用进行分析和讨论。

可以使用图表、演示等形式,提高学生对离散数学应用的理解和实际运用能力。

5. 总结与扩展对本节课的内容进行总结,强调离散数学在计算机科学和信息技术中的重要性,并提供相关扩展资料供学生深入学习和研究。

四、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,包括问题回答和举手提问等。

2. 练习和作业:布置相关的练习和作业,检验学生对离散数学的理解和应用能力。

3. 学习笔记:鼓励学生做好课堂笔记,评价学生对离散数学知识的整理和梳理能力。

五、教学资源1. PowerPoint演示文稿:包含离散数学的基本概念、基本运算规则和应用案例。

2. 练习和作业册:提供相关练习和作业,让学生巩固所学知识。

注意:以上教案仅为示例,具体的教学流程和内容可根据实际情况进行调整和修改。

祝您教学顺利!。

离散数学教案

离散数学教案

离散数学教案主要是针对离散数学课程的教学内容和教学方法进行设计和安排。

以下是一个简单的离散数学教案示例:一、教学目标1. 理解离散数学的基本概念和基本原理,如集合、图论、数理逻辑等。

2. 掌握离散数学的基本运算和方法,如集合运算、图论分析、逻辑推理等。

3. 培养学生的逻辑思维和抽象思维能力,提高解决实际问题的能力。

二、教学内容1. 集合的基本概念和运算- 集合的定义和性质- 集合的运算:并、交、差、对称差等- 集合的运算规律和定理2. 图论的基本概念和分析方法- 图的定义和性质- 图的表示方法- 图的连通性、路径和距离等概念- 图的染色问题、最短路径算法等分析方法3. 数理逻辑的基本概念和推理方法- 命题和命题联结词- 推理和证明的基本方法- 谓词和量化词- 命题逻辑和谓词逻辑的基本定理和推论三、教学方法1. 讲授式教学:教师通过讲解、示范和示例等方式,向学生传授离散数学的基本概念和原理。

2. 案例教学:通过引入实际问题,引导学生运用离散数学的知识和方法进行分析和解决。

3. 练习和讨论:布置适量的练习题,让学生通过练习巩固所学知识,并组织课堂讨论,促进学生之间的交流和合作。

四、教学评价1. 课堂参与度:通过观察学生在课堂上的参与程度,了解他们对离散数学的兴趣和学习的积极性。

2. 练习题完成情况:通过批改学生的练习题,评估他们对离散数学知识的掌握程度。

3. 期末考试:组织期末考试,测试学生对离散数学知识的综合运用能力和解决问题的能力。

以上是一个简单的离散数学教案示例,具体的教学内容和教学方法可以根据实际情况进行调整和改进。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的定义:研究离散结构及其相互关系的数学分支。

1.2 离散数学的应用领域:计算机科学、信息技术、运筹学、生物学等。

1.3 离散数学的重要性:为计算机科学提供数学基础,培养逻辑思维和抽象能力。

二、逻辑基础2.1 命题逻辑:概念、命题、逻辑运算符(与、或、非、蕴含、等价)、真值表。

2.2 谓词逻辑:个体、谓词、逻辑运算符(量词、连接词)、真值表。

2.3 推理规则:演绎推理、归纳推理、反证法。

三、集合与函数3.1 集合的概念:集合、元素、集合运算(并、交、补、幂集)。

3.2 集合的表示:列举法、描述法、图示法。

3.3 函数的定义:函数、域、值域、函数运算(复合函数、反函数)。

四、图论4.1 图的基本概念:图、顶点、边、无向图、有向图、图的表示(邻接矩阵、邻接表)。

4.2 图的性质:连通性、路径、圈、树、网络流。

4.3 图的应用:最短路径问题、最小树问题、网络流问题。

五、组合数学5.1 组合的概念:组合、排列、组合数、排列数。

5.2 组合数的计算:二项式定理、组合恒等式。

5.3 组合数学的应用:计数原理、概率计算、图的着色问题。

《离散数学教案》课件六、组合数学(续)6.4 排列组合问题的解决方法:插板法、捆绑法、倒置法。

6.5 鸽巢原理:鸽巢定理及其应用。

6.6 数论基础:整数、素数、最大公约数、最小公倍数。

七、数理逻辑7.1 命题逻辑的等值关系:等价、蕴涵、矛盾。

7.2 谓词逻辑的等值关系:量词、域、谓词、逻辑等值。

7.3 逻辑推理:演绎推理、归纳推理、反证法。

八、代数结构8.1 群的概念:封闭性、结合律、单位元、逆元。

8.2 环和域的概念:加法群、乘法群、环、域。

8.3 群的作用:对称性、编码理论、密码学。

九、关系与函数9.1 关系的定义:关系、有序对、自反性、对称性、传递性。

9.2 等价关系与序关系:等价类、序关系、偏序集。

9.3 函数的性质:单射、满射、双射、复合函数。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1. 离散数学的定义和意义2. 离散数学与其他数学分支的区别3. 离散数学在计算机科学和信息技术领域的应用4. 学习离散数学的目标和要求二、逻辑与集合1. 逻辑基础命题与联结词逻辑推理与证明2. 集合的基本概念集合的表示方法集合的运算集合的性质3. 集合的运算律和集合恒等式4. 集合的分类和应用三、图论基础1. 图的基本概念图的定义和表示方法图的类型和例子2. 图的运算邻接矩阵和邻接表子图、补图和连通性3. 路径和圈路径和圈的概念最短路径问题环的性质和应用4. 树和森林树的概念和性质树的表示方法树的算法四、组合数学1. 组合的基本概念排列和组合的定义组合数的计算公式2. 组合计数原理包含-排除原理鸽巢原理和球和箱子问题3. 组合设计区块设计和平面设计拉丁方和Steiner系统4. 组合数学的应用组合数学在计算机科学中的应用组合数学在其他领域的应用五、离散数学的应用实例1. 布尔代数和逻辑电路布尔代数的基本概念逻辑电路的设计和分析2. 计算复杂性理论计算复杂性的基本概念时间和空间复杂性的分析方法3. 信息论和编码理论信息论的基本概念编码理论和错误纠正码4. 离散数学在其他领域的应用实例离散数学在生物学中的应用离散数学在经济学中的应用六、关系与函数1. 关系的基本概念关系的定义和表示关系的性质和分类2. 关系的运算关系的复合和逆关系关系的闭包和分解3. 函数的基本概念函数的定义和表示函数的性质和分类4. 函数的运算和性质函数的复合和反函数函数的连续性和differentiability七、组合设计与计数1. 组合设计的基本概念区块设计和平面设计-拉丁方和Steiner系统2. 组合计数原理包含-排除原理鸽巢原理和球和箱子问题3. 代数结构群、环和域的基本概念群的作用和群的分解八、图论进阶1. 欧拉图和哈密顿图欧拉图的定义和性质哈密顿图的定义和性质2. 网络流和匹配网络流的基本概念和定理最大流和最小费用流问题匹配的概念和算法3. 树的同构和唯一分解定理树的同构概念唯一分解定理的证明和应用九、离散数学在计算机科学中的应用1. 计算理论和算法计算模型的基本概念算法的描述和分析2. 数据结构和算法基本数据结构常见算法和分析方法3. 形式语言和编译原理形式语言的基本概念编译器的设计和实现1. 离散数学的主要概念和定理2. 离散数学在不同领域的应用3. 离散数学的发展趋势和未来展望重点和难点解析一、引言难点解析:离散数学与其他数学分支的区别,学习离散数学的目标和要求。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1. 课程介绍离散数学的概念:研究离散结构及其相互关系的数学分支课程目标:培养学生掌握离散数学的基本概念、原理和方法,提高解决问题的能力2. 课程内容离散数学的主要内容:集合论、图论、逻辑、组合数学、数理逻辑等各章节安排:第一章:集合论第二章:图论第三章:逻辑与数理逻辑第四章:组合数学第五章:算法与复杂性二、集合论1. 集合的基本概念集合的定义:由不同元素构成的整体集合的表示方法:列举法、描述法、区间表示法等2. 集合的关系子集、真子集、非空子集的定义与性质集合的幂集及其性质3. 集合的运算并、交、补集的定义与运算规律集合的德摩根定理4. 应用实例集合的表示与运算在计算机科学中的应用集合论在图论、逻辑等领域中的应用三、图论1. 图的基本概念图的定义:由顶点集合和边集合构成的数学结构图的表示方法:邻接表、邻接矩阵等2. 图的性质与分类无向图、有向图、weighted 图的定义与特点连通性、路径、圈的概念及性质3. 图的算法深度优先搜索(DFS)与广度优先搜索(BFS)算法最短路径算法:Dijkstra算法、Floyd-Warshall算法最小树算法:Prim算法、Kruskal算法4. 应用实例图论在网络优化、社交网络、交通规划等领域中的应用图论在计算机科学中的重要作用,如图灵机、网络流等四、逻辑与数理逻辑1. 命题逻辑命题与命题联结词的概念逻辑推理规则:蕴含、逆否、德摩根定理等命题逻辑的等值转换与推理2. 谓词逻辑量词:全称量词、存在量词谓词与谓词联结词:合取、析取、非、蕴含等谓词逻辑的等值转换与推理3. 数理逻辑公理化逻辑:ZF公理体系形式演算:命题演算、谓词演算逻辑电路与布尔代数4. 应用实例逻辑在计算机科学中的应用:逻辑门、逻辑电路、计算机网络中的协议等数理逻辑在数学基础研究中的应用五、组合数学1. 组合数学的基本概念组合与排列的概念及其区别组合数的计算公式:二项式定理、组合恒等式等2. 组合计数原理鸽巢原理、包含-排除原理、函数等计数方法3. 图的着色问题顶点着色、边着色及其相关性质着色问题的算法及其复杂性分析4. 应用实例组合数学在计算机科学中的应用:算法设计、数据结构等组合数学在其他领域中的应用,如运筹学、统计学等六、算法与复杂性1. 算法的基本概念算法的定义:解决特定问题的步骤序列算法的特性:输入、输出、确定性、有穷性2. 算法设计技巧贪心算法、动态规划、分治法、回溯法等设计方法递归算法的概念与实现3. 算法分析与评价时间复杂度分析:大O符号、主定理等空间复杂度分析算法的效率与优化4. 应用实例排序算法:冒泡排序、快速排序、归并排序等搜索算法:线性搜索、二分搜索等算法在实际问题中的应用案例七、数理逻辑与集合论的应用1. 数理逻辑在计算机科学中的应用形式语言与自动机理论编译原理中的逻辑方法程序正确性证明2. 集合论在计算机科学中的应用数据结构:集合、映射、函数等数据库理论:关系模型、SQL语言等计算复杂性理论:问题的可计算性分析3. 应用实例计算机网络中的逻辑运算与协议设计软件工程中的需求分析与规格说明中的知识表示与推理八、图论的应用1. 社会网络分析社交网络中的图模型网络中心性指标:度中心性、介数中心性等社群发现与网络演化分析2. 网络流与最优化问题最大流与最小费用流问题匹配问题与网络设计运输问题与物流优化3. 应用实例交通网络中的路径规划与拥堵分析电信网络中的资源分配与调度生物信息学中的基因调控网络分析九、组合数学的应用1. 组合设计拉丁方、Steiner系统、区块设计等组合设计组合设计在编码理论、通信系统中的应用2. 排列组合在概率论中的应用随机事件的概率计算条件概率与贝叶斯定理随机过程的基本概念3. 应用实例彩票号码组合与概率分析统计学中的样本设计运筹学中的排程与调度问题十、总结与展望1. 离散数学在计算机科学中的重要性离散数学作为计算机科学基础的必要性离散数学在各个领域的应用趋势2. 离散数学的发展与挑战离散数学的新兴研究领域离散数学在理论与应用之间的桥梁作用3. 离散数学的未来方向离散数学在、大数据、云计算等领域的融合与应用离散数学教育与研究的挑战与机遇重点和难点解析一、集合论1. 集合的基本概念与表示方法:理解集合的定义及其表示方法是离散数学的基础。

离散数学教案

离散数学教案

离散数学教案教案:离散数学概论教学目标:1.使学生了解离散数学的基本概念和方法。

2.培养学生的逻辑思维和数学推理能力。

3.帮助学生将离散数学的知识应用到实际问题中。

教学内容:1.真值逻辑与命题逻辑2.集合论与其运算3.二元关系与其属性4.递归与归纳5.图论与树论基础6.组合数学与概率论教学重难点:1.对学生来说,最难的可能是理解集合论和命题逻辑的基本概念和运算规则。

2.理解递归和归纳的思想和方法。

3.运用图论和树论的基础概念解决实际问题。

教学过程:第一课时:真值逻辑与命题逻辑(60分钟)1.真值表与命题的逻辑运算(10分钟)-介绍命题逻辑的基本概念和真值表的作用。

-教授真值表的构建方法和命题的逻辑运算规则。

2.命题逻辑的推理法则(20分钟)-介绍命题逻辑的推理法则,如合取范式、析取范式、蕴含式等。

-给出一些例子,帮助学生理解和应用这些推理法则。

3.应用实例:判断命题的真假(30分钟)-提供一些具体的例子,让学生通过构建真值表来判断命题的真假。

-引导学生思考如何通过命题逻辑的推理法则来判断复杂命题的真假。

第二课时:集合论与其运算(60分钟)1.集合的基本概念(10分钟)-介绍集合的定义和表示方法。

-引导学生通过例子理解集合的基本概念。

2.集合的运算(20分钟)-教授集合的运算,包括交集、并集、差集和补集。

-给出一些具体的例子,让学生通过集合运算来解决问题。

3.应用实例:集合的应用问题(30分钟)-提供一些实际问题,让学生通过集合的运算来解决。

-引导学生思考如何应用集合论解决实际问题。

第三课时:二元关系与其属性(60分钟)1.二元关系的定义(10分钟)-介绍二元关系的基本概念和定义。

-引导学生通过例子了解二元关系的特点。

2.二元关系的性质(20分钟)-教授二元关系的自反性、对称性和传递性等基本性质。

-给出一些具体的例子,让学生判断二元关系的性质。

3.应用实例:二元关系的应用问题(30分钟)-提供一些实际问题,让学生通过二元关系解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习目标:1.深刻理解序偶、笛卡尔积、关系、集合的划分与覆盖、等价关系、等价类、商集、相容关系、(最大)相容类、偏序关系、极大元、极小元、上(下)界、上(下)确界、最大(小)元、全序关系、良序关系等概念;2.掌握集合的交、并、差、补、对称差的运算及其运算规律;3.掌握关系的交、并、逆、复合运算、闭包运算及其性质;4.掌握关系的矩阵表示和关系图;5.深刻理解关系的自反性、反自反性、对称性、反对称性和传递性,掌握其判别方法;6.掌握集合的覆盖与划分的联系与区别;7.掌握偏序关系的判别及其哈斯图的画法;会求偏序集中给定集合的极大元、极小元、上(下)界、上(下)确界、最大(小)元。

主要内容:1.集合的基本概念及其运算2.序偶与笛卡尔积3.关系及其表示4.关系的性质及其判定方法5.复合关系和逆关系6.关系的闭包运算7.等价关系与相容关系8.偏序关系重点:1.关系的性质及其判别;2.关系的复合运算及其性质;3.等价关系与等价类、等价关系与集合的划分的联系;4.偏序关系判别及其哈斯图的画法、偏序集中特异位置元素的理解。

难点:1.关系的传递性及其判别;2.等价关系的特性;3.偏序关系的哈斯图的画法;偏序集中特异位置元素的求法。

教学手段:通过多个实例的精讲帮助同学理解重点和难点的内容,并通过大量的练习使同学们巩固和掌握关系的性质及其判别、关系的复合运算及其性质、等价关系的特性、偏序关系的哈斯图的画法及偏序集中特异位置元素的求法。

习题:习题 3.1:4,6;习题 3.2:3(8),4(12),6(m );习题 3.4:1 (2)、(4),3;习题 3.5:1,4;习题 3.6:2,5,6;习题 3.7:2,5,6;习题3.8:1(1)-(6);习题3.9:3(2)、(4),4(3);习题3.10:1 ,4,5。

3.1 集合的基本概念集合(set)(或称为集)是数学中的一个最基本的概念。

所谓集合,就是指具有共同性质的或适合一定条件的事物的全体,组成集合的这些“事物”称为集合的元素。

集合常用大写字母表示,集合的元素常用小写字母表示。

若A 是集合,a 是A 的元素,则称a 属于A ,记作a A ∈;若a 不是A 的元素,则称a 不属于A ,记作。

若组成集合的元素个数是有限的,则称该集合为有限集(Finite Set),否则称为无限集(Infinite Set)。

常见集合专用字符的约定:N —自然数集合(非负整数集)I (或Z )—整数集合(I +,I -)Q —有理数集合(Q +,Q -)R —实数集合(R +,R -)F —分数集合(F +,F -) 脚标+和-是对正、负的区分C —复数集合 P —素数集合 O —奇数集合E —偶数集合幂集定义 3.1.1 对于每一个集合A ,由A 的所有子集组成的集合,称为集合A 的幂集(Power Set),记为 ()P A 或2A.即(){}P A B B A =⊆。

例如:{,,}A a b c =, (){,{},{},{},{,},{,},{,},{,,}}P A a b c a b b c a c a b c φ=。

定理3.1.1 如果有限集A 有n 个元素,则其幂集()P A 有2n个元素。

证明 A 的所有由k 个元素组成的子集数为从n 个元素中取k 个的组合数。

(1)(2)(1)!k n n n n n k C k ---+=另外,因A φ⊆,故()P A 的元素个数N 可表示为1201nk nkn nnnn k N C C C C C ==++++++=∑又因 0()nnk k n k nk x y Cx y -=+=∑令 1x y == 得 02nnk nk C==∑故()P A 的元素个数是2n。

人们常常给有限集A 的子集编码,用以表示A 的幂集的各个元素。

具体方法是: 设12{,,,}n A a a a =,则A 子集B 按照含i a 记1、不含i a 记0(1,2,,)i n =的规定依次写成一个n 位二进制数,便得子集B 的编码。

例如,若1{,}n B a a =,则B 的编码是10001,当然还可将它化成十进制数。

如果4n =,那么这个十进制数为9,此时特别记14{,}B a a =为9B 。

3.2 集合的对称差运算定义 3.2.1 设A 、B 是两个集合,要么属于A ,要么属于B ,但不能同时属于A 和B 的所有元素组成的集合,称为A 和B 的对称差集,记为A B ⊕。

即{}()()A B A B B A x x A x B ⊕=--=∈∨∈例如,若{1,2,,}A c d =,{1,,3,}B b d =,则{2,,,3}A B c b ⊕=。

对称差的定义如图3-1所示。

图3-1由对称差的定义容易推得如下性质: (1)A B B A ⊕=⊕ (2)A A φ⊕= (3)A A ⊕=∅ (4)()()A B AB A B ⊕=(5)()()A B C A B C ⊕⊕=⊕⊕证明 (5)()A B C ⊕⊕[()]()A B C A B C =⊕⊕{[()()]}[()()]A B A B C A B A B C =()(){[()()]}A BC A B C A B A B C =但 [()()]AB A B C={[()][()]}AB A AB BC [()()()()]A A A B A B B B C =[()()]A B AB C φφ=()()A B C ABC =故 ()A B C ⊕⊕()()A B C AB C =()()A B C A B C又 ()A B C ⊕⊕()[()]AB C AB C =⊕⊕[()()]{[()()]}A B C B C A B C B C ={[()()]}[()()]A BC B C A B C AB C =因为 [()()]A BC B C[()()()()]A B B B C C B CC =[()()]A BC CB =()()A B C A CB =故 ()A B C ⊕⊕()()A B C A B C =()()AB C A B C因此 ()()A B C A B C ⊕⊕=⊕⊕对称差运算的结合性亦可用图3-2说明。

A B ⊕ B C ⊕()()A B C A B C ⊕⊕=⊕⊕图3-2 对称差运算的结合性从文氏图3-3亦可以看出以下关系式成立。

()()()A B A B B A A B = ()()A B A B =⊕图3-3 AB3.4 序偶与笛卡尔积3.4.1 序偶在日常生活中,有许多事物是成对出现的,而且这种成对出现的事物,具有一定的顺序。

例如,上,下;12<;男生9名而女生6;中国地处亚洲;平面上点的坐标等。

一般的说,两个具有固定次序的客体组成一个序偶(Ordered Pair),记作,x y 。

上述各例可分别表示为〈上,下〉;1,2;9,6;〈中国,亚洲〉;,a b 等。

序偶可以看作是具有两个元素的集合,但它与一般集合不同的是序偶具有确定的次序。

在集合中,{}{},,a b b a =,但对序偶,当a b ≠时,,,a b b a ≠。

定义3.4.1 两个序偶相等,,,x y u v =,当且仅当,x u y v ==。

这里指出:序偶,a b 中两个元素不一定来自同一个集合,它们可以代表不同类型的事物。

例如,a 代表操作码,b 代表地址码,则序偶,a b 就代表一条单地址指令;当然亦可将a 代表地址码,b 代表操作码,,a b 仍代表一条单地址指令。

但上述这种约定,一经确定,序偶的次序就不能再予以变化了。

在序偶,a b 中,a 称第一元素,b 称第二元素。

序偶的概念可以推广到有序三元组的情况。

有序三元组是一个序偶,其第一元素本身也是一个序偶,可形式化表示为,,x y z 。

由序偶相等的定义,可以知道,,,,x y z v w =当且仅当,,,x y u v z w ==,即,,x u y v z w ===,我们约定有序三元组可记作,,x y z 。

注意:,,,,x y z x y z ≠,因为,,x y z 不是有序三元组。

同理,有序四元组被定义为一个序偶,其第一元素为有序三元组,故有序四元组有形式为,,,x y z w ,可记作,,,x y z w ,且,,,,,,x y z w p q r s =x p y q z r w s ⇔=∧=∧=∧=这样,有序n 元组(Ordered n-tuple)定义为121,,,,n nx x x x -,记作121,,,,n n x x x x -,且1212,,,,,,n n x x x y y y =1122n n x y x y x y ⇔=∧=∧∧=一般地,有序n 元组12,,,n x x x 中的i x 称作有序n 元组的第i 个坐标。

3.4.2 笛卡尔积定义3.4.2 设A 和B 是任意两个集合,若序偶的第一个成员是A 的元素,第二个成员是B 的元素,所有这样的序偶集合,称为集合A 和B 的笛卡尔乘积或直积(CartesianProduct),记作A B ⨯。

即{,}A B x y x A y B ⨯=∈∧∈例3.4.1 若{1,2},{,,}A B a b c ==, 求,A B B B ⨯⨯以及()()A B B A ⨯⨯解 {1,,1,,1,,2,,2,,2,}A B a b c a b c ⨯={,,,,,,,,,,,,,,,,,}B B a a a b a c b a b b c c a c b c c ⨯= {,1,,2,,1,,2,,1,,2}B A a a b b c c ⨯=()()A B B A φ⨯⨯=显然,我们有: (1)A B B A ⨯≠⨯;(2)如果,A m B n ==,则A B B A A B mn ⨯=⨯==。

我们约定:若A φ=或B φ=,则A B φ⨯=。

由笛卡尔积定义可知:(){,,,}A B C x y z x y A B z C ⨯⨯=∈⨯∧∈{,,}x y z x A y B z C ∈∧∈∧∈(){,,,}A B C x y zx A y z B C ⨯⨯=∈∧∈⨯由于,,x y z不是三元组,所以()()A B C A B C ⨯⨯≠⨯⨯定理3.4.1 设A 、B 和C 为任意三个集合,则有(1)()()()A B C A B A C ⨯=⨯⨯ (2)()()()A B C A B A C ⨯=⨯⨯(3)()()()A B C A C B C ⨯=⨯⨯ (4)()()()AB C A C B C ⨯=⨯⨯证明 (1)设,()x y A B C ∈⨯x A y B C ⇔∈∧∈()x A y B y C ⇔∈∧∈∨∈ ()()x A y B x A y C ⇔∈∧∈∨∈∧∈ ,,x y A B x y A C ⇔∈⨯∨∈⨯ ,()()x y A B A C ⇔∈⨯⨯因此, ()()()A BC A B A C ⨯=⨯⨯。

相关文档
最新文档