第三章多电子原子
东南大学固体物理基础课后习题解答
《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。
所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。
1-2若在一维无限深势阱中运动的粒子的量子数为n 。
①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。
(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。
(3)当n→∞时,1()4P x =。
此时,概率分布均匀,接近于宏观情况。
1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。
解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。
3 第三章 原子结构和元素周期表
三、 核外电子排布
根据三个原理和鲍林近似能级图,写出 下列元素原子的核外电子排布式。
也可写作:
21Sc:
1s22s22p63s23p63d14s2
[Ar] 3d14s2
Mn: 1s22s22p63s23p63d54s2 25
[Ar] 3d54s2
方括号部分称原子实
注意
对于等价轨道(同一电子亚层)来说,电
第 3章
原子结构和元素周期表
第一节
核外电子的运动状态
一、氢原子光谱和玻尔模型
当一束白光通过棱镜时,不同频率的光由于折射率不同, 经过棱镜投射到屏上,可得到红、橙、黄、绿、青、蓝、紫连 续分布的带状光谱。这种光谱称为连续光谱。 各种气态原子在高温火焰、电火花或电弧作用下,气态原子也 会发光,但产生不连续的线状光谱,这种光谱称为原子光谱。 不同的原子具有自己特征的谱线位置。 1.氢原子光谱 氢原子光谱为线状光谱 ,在可见光区可观察到四条分立的 谱线,分别是H、H、H、H,并称之为巴尔麦线系。从谱 线的位置可以确定发射光的波长和频率,从而确定发射光的能 量。
在没有外加磁场情况下,同一亚层的原子轨道,
能量是相等的,叫等价(简并)轨道。
n、l、m可以确定原子轨道的能量和形状,
故常用这3个量子数作的脚标以区别不同的波函
数。例如 100 ,表示n=1、l=0、m=0的波函数。
(4)自旋量子数(ms):表示电子自旋角动 量在外磁场方向的分量。 实验证明,电子除绕核运动外,还有绕自身 的轴旋转的运动,称自旋。 1 1 ms= 和 2。其中每一个数值表示电子的一种 2 自旋方向,即顺时针和逆时针方向。 研究表明:同一原子中,各个电子的四个量 子数不可能完全相同,即不可能有运动状态完 全相同的电子。 由此可知:每一个轨道只能容纳两个自旋方 向相反的电子。
原子物理学 课后答案
目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
第三章 多电子原子的结构
子半径逐渐收缩,这个现象称为镧系收缩。从 72 号 Hf 开始重新填充 5d 轨道,到 79 号 Au 5d 轨道填 满,形成第三过渡元素系。由于镧系收缩,第三过 渡系的元素与第二过渡系的元素中同族元素的原子 离子半径很相近,化学性质很相近。第七周期的 5f 轨道参与成键的程度比第六周期 4f 轨道要大(由于 5f 轨道有节面,4f 轨道没有节面,5f 轨道电子云分 布比 4f 更为弥散,离原子核更远)。从 Ac 到 Lr 的离子都具有 fx 的组态,化学性质很相似,称为锕 系元素。
§3 原子中电子的排布和元素周期表 3.1 原子中电子排布的原则
基态原子核外电子的分配遵从如下三条原则: (1)泡利原理:在同一原子中不能有两个或两个以 上的电子具有完全相同的四个量子数,即每一个原 子轨道最多只能填充两个自旋相反的电子。 (2)最低能量原理:在符合泡利原理的前提下,电 子填充后尽可能使体系的能量最低。 (3)洪特规则:在等价轨道(量子数 n、l 都相同) 上排布的电子尽可能分占不同的轨道,且自旋平行。
3. 第三周期填 3s 和 3p 轨道,可以填 8 个电子。3d 轨 道虽然可填 10 个电子,但由于优先填充 4s 比优先 填充 3d 的体系总能量更低,所以 3p 轨道填满后, 先填 4s 轨道,4s 填满后再填 3d,然后再填 4p,4d 和 5s 情况类似。这样就造成第三周期填充的轨道为 3s、3p,总数仍是 8 个电子。
上面四式中,η1 和 η2 是对称的,而 η3 和 η4 是 非对称的,但可将 η3 和 η4 线性组合成两个等价的自 旋波函数 (3-23) (3-24) 其中 η5 是对称的,η6 是反对称的。
包括空间坐标与自旋坐标的多电子体系的完全波 函数是否必须是对称或反对称的呢?并且是对称的还 是反对称的呢?泡利(Pauli)在总结大量实验结果的 基础上得出泡利原理。
第三章 电子效应和空间效应
例: CH3δ+ Clδ键距 μ=qd q: 中心电荷 d:正负电荷中心的距离
分子的偶极距是各键的键距向量和:
H H H
μ=0
Cl H Cl Cl
μ=0
Cl Cl H H
μ=1.94D
C
C
C H
Cl-Cl ( 键距为零)
3.2诱导效应
4.2.1 定义:诱导效应是指在有机化合物中由于电负性不同的取 代基的影响,使整个分子中成键电子云按取代基团的电负性所决定 的方向而偏移的效应。
-I效应:
CH3δδδ+-CH2δδ+-CH2δ+→Clδ-
+I效应:
O CH 3 C H
诱导效应在没有外加电场影响下也存在,它体现的是分子自身的性质。诱
导效应一般用 I 表示,饱和 C-H 键的诱导效应规定为零。
当一个原子或原子团与碳原子成键后,电子云偏离碳 原子,称为-I 效应。 例:
O H3C X H3C H H3C
非极性共价键:相同原子(基团)成键,电 子云分布对称 极性共价键:不同原子(基团)成键,电子 云分布偏向 共价键极性:取决成键原子的相对电负 性.是结构与反应性能关系的基础
极性共价键: 形成共价键的原子,它们之间吸引电子 的能力是不一样的。这就使得两原子间 共价键的电子云不是平均分配在两个原 子核之间,而是偏向电负性较大的原子, 这种键成称为极性共价键。
•
3.4.2 对反应机理的影响
在一些反应中,由于诱导效应等因素可以改变其反 应机理。如溴代烷的水解反应,伯溴代烷如CH3—Br主 要按 SN2历程进行,而叔溴代烷如(CH3)3C—Br则主要 遵从SN1历程进行。
3.4.3 对反应速率的影响
原子物理学第三章习题解答
第三章习题解答3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波长。
解:根据公式hp λ==10eV 、100eV 、1 000eV得1240eV λ=⋅因此有:(1)当110,0.39K E eV nm λ===时 (2)当1100,0.123K E eV nm λ===时 (3)当11000,0.039K E eV nm λ===时3-2设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:由题意知Q 光子的动量h p λ= , 光子的能量cE h hνλ==电子的动量 h p λ= , 电子的能量2e E m c =∴(1)121p p = (2)126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm⋅====⨯⨯⋅ 3-3若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有2200()m c m m c ∴=-由此推得02m m ===2230.8664v v c c ∴=⇒==(2)0hp c λ==Q0.0014nm λ∴===3-4把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。
解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,其德布罗意波长可用下式表示:h p λ==()222220.02522k hc h E eV m mc λλ=== 3-5电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。
半导体物理第三章半导体中的电子状态
有化运动:2s能级引起“2s”的共有化运动,2p能级引起
“共2有p化”的运动。
2p
• 2s • • •
► 晶体中电子的运动
► 晶体中电子做共有化运动时的能量是怎样的?
a: 考虑一些相同的原子,当它们之间的距离很大时,可以 忽略它们之间的相互作用,每个原子都可以看成孤立的, 它们有完全相同的电子能级。如果把这些原子看成一个 系统,则每一个电子能级都是简并的。(2个原子构成的 系统,为二度简并(不计原子本身的简并时);N个原 子构成的系统,为N度简并)。
b: 能带的形成:原子相互靠近时,由于之间的相互作用, 使简并解除,原来具有相同能量的能级,分裂成具有不 同能量的一些能级组成的带,称为能带。原子之间的距 离愈小它们之间的相互作用愈强,能带的宽度也愈大。 (图3.2)
• 原子能级和能带之间并不一定都存在一一对应的关系。 当共有化运动很强时,能带可能很宽而发生能带间的重 叠,碳原子组成的金刚石就是属于这种情况。(图3.3)
3:处于低能级的内壳层电子共有化运动弱,所以能级分裂小, 能带较窄;处于高能级的外壳层电子共有化运动强,能级分 裂大,因而能带较宽。
4:每个能带都是共有化电子可能的能量状态,称为允带;各允 带之间有一定的能量间隙,电子能量不可能在这一能量间隙 内,称之为禁带。
5:每个允带包含的能级数一般等于孤立原子相应能级的简并度 (不计自旋简并)× 组成晶体的原子数目。
设一维晶格长为L,
则有:
L
0
(
x
)
2
dx
1
( 归一化)
即:
L
0
2
A dx 1,
取A
1, L
则 ( x )=
1 exp(ikx) L
原子核物理-第三章
3.3 β衰变
• 由于K层电子最靠近原子核,故K层俘获几率最大,但 当 时,显然K层俘获不能发生, 而L层俘获则能发生,如202Pb和205Pb
• 轨道电子俘获所形成的子核原子,它的内层电子缺少 了一个,即产生了一个空穴,如K层俘获将使K层产生 一个空穴,从而子核原子处于不稳定的激发态,造成 L层电子跳到K层来填充该空穴并发出特征X射线,这 一射线能量为两层电子的结合能之差
3.1 放射性衰变的基本规律
• 镎系,在人造放射性核素中获得,从 241Pu开始衰变到稳定核素209Bi,系中各 放射性核素的质量数满足A=4n+1,该系 最长的母体半衰期为2.14X106a • 上述放射系中的衰变主要通过α衰变进行, 很少一部分通过β衰变,并且过程中伴随 γ射线的发射
3.1 放射性衰变的基本规律
• 因此发生β+衰变的条件为母核的原子质量比子核的原 子质量大2个电子质量
3.3 β衰变
• 轨道电子俘获的一般形式为: • 轨道电子俘获的本质是核内质子俘获电子转变成中子
• 轨道电子被俘获必须克服电子在原子中的结合能Bi,i 表示K,L,M等层,所以衰变能等于
• 因此发生第i层轨道电子俘获的条件为母核原子质量与 子核原子质量之差大于子核原子第i层电子结合能对应 的质量,即
3.2 α衰变
3.2 α衰变
• 母体向子体不同能级衰变的分支比Ri定义为衰变分强 度,分支比满足Σ Ri =1,所以总的衰变强度等于各分 强度之和
i Ri
ln 2 ln 2 Ri i T T
3.2 α衰变
• 如果母核本身是衰变产物,那么既可 能处于基态又可能处于激发态,从而 处于激发态的母核可以通过发射γ射线 退回基态再进行α衰变,或者直接进行 α衰变,后者所发射的α粒子具有很大 的能量,称为长射程α粒子,激发能越 高, α粒子的能量就越大 • 对一般的原子核,从激发态发射γ射线 的概率要大得多,只有212Po和214Po有 长射程α粒子
结构化学-第三章介绍
第三章 双原子分子结构3.1 +2H 的结构及共价键的本质基本内容—、定核近似和+2H 的薛定谔方程A BRe r e r e m H b a 02020*******ˆπεπεπε+--∇-= 我们常采用原子单位:单位长度:Pm e m h a e 9177.524422200==ππε(玻尔半径)单位质量:me=9.1095×10-31Kg (电子质量) 单位电荷:e=1.60219×10-19C (电子电量) 单位能量:024a e πε=27.2116eV单位角动量: =1.0546×10-34 J.S 单位介电常数:04πε=1采用原子单位、+2H 的哈密顿算符为:Rr r Hba 11121ˆ2+--∇-=其薛定谔方程为:ψψE Rr r b a =+--∇-)11121(2,式中E 、ψ分别为+2H 的波函数和能量。
二、变分原理及性线变分法 1. 变分原理对于任意一个品优波函数ψ,用体系的Hˆ算符求得的能量平均值将大于或接近等于体系基态的能量E 0即:*ˆ*E d d H E ≥>=<⎰⎰τψψτψψ 据此原理,利用求极值方法调节参数,找出能量最低时对应的波函数,即为和体系基态相近似的波函数。
2. 线性变分法在量化计算中,广泛采用的是线性变分函数,它是满足体系边界条件的 个线性无关的函数m φφφ,,,21 的线性组合:m m C C C φφφψ+++= 2211采用线性变分函数的变分法叫线性变分法。
根据变分原理求得使E 最低的一组组合系数Ci⎰⎰++++++++++++=τφφφφφφτφφφφφφd C C C C C C d C C C H C C C E m m mm m m m m ))(()(ˆ)(2211***2*2*1*12211***2*2*1*1mC EC E C E ∂∂==∂∂=∂∂ 21=0 由此得一组求解Ci 的m 个联立方程称为久期方程,运用线性代数法求得m 套非零解,由其中与最低E 相对应的一套解C 1,C 2,……,C m 便可组成基态分子轨道波函数,所对应的E 便是基态能量近似值。
第三章 原子发射光谱
第一节 原子发射光谱 分析基本原理
一、概述 二、原子发射光谱的产生 三、谱线强度 四、谱线自吸与自蚀
2018/11/30
Varian 710—ES全谱直读电感耦合等离子发射光谱仪
2018/11/30
一、概述
原子发射光谱分析法(AES): 依据各种元素的原子或离子在热激发或电激发下,由基态 跃迁到激发态,返回到基态时,发射出特征光谱,依据特征 光谱进行定性、定量的分析方法。
缺点:
第二节 原子发射光谱分析 仪器类型与结构流 程
一、光源
二、分光系统
三、检测器
2018/11/30
原子发射光谱分析的三个主要过程:
样品蒸发、原子化,原子激发并产生光辐射。 分光,形成按波长顺序排列的光谱。 检测光谱中谱线的波长和强度。
光源
分光系统
原子发射光谱仪方框图
检测器
2018/11/30
ห้องสมุดไป่ตู้
基态元素M
E 特征辐射
激发态M*
2018/11/30
二、原子发射光谱的产生
必须明确如下几个问题: (1)原子中外层电子能级分布是量子化的,△E不是连续的 ,则λ或ν也是不连续的,原子光谱是线光谱; (2)同一原子中,电子能级很多,有各种不同的能级跃迁, 所以有各种△E不同的值,即可以发射出许多不同 λ或 ν 的辐射线。但跃迁要遵循“光谱选律”,不是任何能
1. 电弧光源
电弧光源:
直流电弧发生器
(a)直流电弧;
(b)交流电弧。
(1)直流电弧:
直流电源作为激发能源,电压150 ~380V,电流5~ 30A
;石墨作电极,试样放置在一支电极(下电极)的凹槽内;使
第三章 原子结构习题及答案
第三章原子结构习题1.是非判断题1-1基态氢原子的能量具有确定值,但它的核外电子的位置不确定。
1-2微观粒子的质量越小,运动速度越快,波动性就表现得越明显。
1-3原子中某电子的合理的波函数,代表了该电子可能存在的运动状态,该运动状态可视为一个原子轨道。
1-4对于氢原子的1s轨道,不应该理解为电子绕核作圆周运动,因为电子有波粒二象性,它的运动轨道是测不准的。
1-5因为氢原子只有一个电子,所以它只有一条原子轨道。
1-6 p轨道的空间构型为双球形,则每一个球形代表一条原子轨道。
1-7因为在s轨道中可以填充两个自旋方向相反的电子,因此s轨道必有两个不同的伸展方向,它们分别指向正和负。
1-8不同磁量子数m表示不同的原子轨道,因此它们所具有的能量也不相同。
1-9随着原子序数的增加,n、l相同的原子轨道的能量也随之不断增加。
1-10每一个原子中的原子轨道需要有3个量子数才能具体确定,而每一个电子则需要4个量子数才能具体确定。
1-11磁量子数m决定原子轨道在空间的取向。
1-12多电子原子中,电子的能量决定与主量子数n和角量子数l。
1-13主量子n相同,角量子数l不同,随l增大,屏蔽作用增加。
1-14 3个p轨道的能量,形状、大小都相同,不同的是在空间的取向。
1-15磁量子数m=0的轨道都是球形对称的轨道。
1-16氢原子的能级中,4s=4p=4d=4f,而多电子原子中,4s<4p<4d<4f。
1-17主量子数n为4时,有4s,4p,4d,4f四条轨道。
1-18电子云的黑点表示电子可能出现的位置,疏密程度表示电子出现在该范围的机会大小。
1-19描述原子核外电子运动状态的波函数Ψ需要用四个量子数来确定。
1-20一组n,l,m组合可以表达核外电子的一种运动状态。
1-21某原子的价电子构型为2s22p2,若用四个量子数表示2p2两个价电子的运动状态,则分别为2,2,0,-1/2和2,2,1,+1/2。
1-22 Na原子的3s能级与K原子的3s能级具有相同的能量。
第三章 原子结构与结合键
工程材料原理
2. 物理性能
密度:金属密度高(金属键); 密度:金属密度高(金属键); 离子键、共价键化合物密度低,如陶瓷密度小; 离子键、共价键化合物密度低,如陶瓷密度小; 熔点:离子键、共价键化合物熔点较高, 熔点:离子键、共价键化合物熔点较高, 金属相对较低(金属中过度族金属熔点较高如W,Mo), 金属相对较低(金属中过度族金属熔点较高如 ), 高聚物熔点偏低; 高聚物熔点偏低; 导电性和导热性: 导电性和导热性: 金属键使金属材料具有良好的导电性和导热性, 金属键使金属材料具有良好的导电性和导热性, 非金属键结合的陶瓷固态下一般是点、热的不良导体, 非金属键结合的陶瓷固态下一般是点、热的不良导体, 作为绝缘体和绝热体。 作为绝缘体和绝热体。
工程材料原理
4. 当两原子无限远时,原子间不发生作用,相互能量视为零, 当两原子无限远时,原子间不发生作用,相互能量视为零, 当原子在引力下互相靠近时,体系作用能量逐渐下降, 当原子在引力下互相靠近时,体系作用能量逐渐下降,到 达平衡距离时作用能量最低,当原子进一步靠近, 达平衡距离时作用能量最低,当原子进一步靠近,必须克 服反向排斥力,使作用能量重新升高。 服反向排斥力,使作用能量重新升高。 •通常把平衡距离下的原子间的相互作用能量定义为原子 通常把平衡距离下的原子间的相互作用能量定义为原子 的结合能E 的结合能 0。 •结合能的大小相当于把两个原子完全分开所做的功,其 结合能的大小相当于把两个原子完全分开所做的功, 结合能的大小相当于把两个原子完全分开所做的功 数据是利用测定固体蒸发热而得到的,又称结合键能。 数据是利用测定固体蒸发热而得到的,又称结合键能。
工程材料原理
固 态 冰
液 态 水
工程材料原理
六. 混合键
无机化学重点
第一章·原子结构一、基本概念(重点)(1代表概率密度; (2n 值的大小表示电子的能量高低。
n 值越大表示电子所在(3)l :角量子数(能级),l 表示电子云的形状,对于多电子原子l 也是决定电子能量高低的因素。
E ns < E np < E nd < E nf ; E 1s < E 2s < E 3s < E 4s ;子数与能量无关;(6)s :自旋角动量量子数,自旋量子数 ms =+1/2和-1/2。
电子的自旋只有两个方向,顺时针和逆时针方向,通常用“↑”和“↓”表示 。
二、结论与规律(重点)(1)描述一个原子轨道的能量高低,用两个量子数(n ,l ) (2)描述一个原子轨道,用三个量子数(n ,l ,m )(3)描述一个原子轨道上运动的电子,用四个量子数(n ,l ,m ,s ) (4)同一原子中,没有四个量子数完全相同的两个电子存在。
(5)l 相同时, n 越大,能量越高:E 1s < E 2s < E 3s < E 4s原因:屏蔽效应:内层电子对外层电子的排斥相当于部分抵消了核对电子的吸引作用。
轨道能量升高。
(6)n 相同时,l 越大,能量越高:E ns < E np < E nd < E nf原因:钻穿效应:外层电子可能钻到内层出现在离核较近的地方的现象。
l 越小,钻穿能力越强。
钻穿结果降低了其它电子对它的屏蔽作用,起到了增加有效核电荷,降低轨道能量的作用。
(7)n 与l 都不同的时候,一般n 越大,能量越高。
但有反常情况:E 4s < E 3d 能级交错原因: 4s电子的钻穿能力较强三、多电子原子中电子的填充规律(三条,重点):(1)能量最低原理(2)泡利不相容原理:在同一原子中没有运动状态完全相同的电子。
(3)洪特规则:在等价轨道中,电子尽可能分占不同的轨道,且自旋方向相同。
作为洪特规则的特例,等价轨道全充满,半充满或全空的状态是比较稳定的。
初三化学第三章知识点完全总结
第三单元物质构成的奥秘知识点完全总结第一节分子和原子一、分子和原子的异同分子原子定义分子是保持物质化学性质的最小粒子。
原子是化学变化中的最小粒子。
性质质量小、体积小;不断运动;有间隔;同种粒子的化学性质相同。
联系分子是由原子构成的。
分子、原子都是构成物质的微粒。
区别在化学变化中,分子可以再分,而原子不可以再分。
备注1.所有金属、稀有气体、金刚石(石墨)和硅是由原子构成的,其他大多数物质是由分子构成的。
2.在受热的情况下,粒子能量增大,运动速率加快。
3.物体的热胀冷缩现象,原因是构成物质的粒子的间隔受热时增大,遇冷时缩小。
4.气体容易压缩是因为构成气体的粒子的间隔较大。
5.不同液体混合后总体积小于原体积的和,说明粒子间是有间隔的。
6.一种物质如果由分子构成,那么保持它化学性质的最小粒子是分子;如果它由原子构成,那么保持它化学性质的最小粒子是原子。
二、验证分子运动的探究实验【实验操作】如右图,取适量的酚酞溶液,分别倒入A、B两个小烧杯中,另取一个小烧杯C,加入约5mL浓氨水。
用一个大烧杯罩住A、C两个小烧杯,烧杯B置于大烧杯外。
观察现象。
【实验现象】烧杯A中的酚酞溶液由上至下逐渐变红。
【实验结论】分子是不断运动的。
【注意事项】浓氨水显碱性,能使酚酞溶液变红。
浓氨水具有挥发性,能挥发出氨气。
三、从微观角度解释问题1.用分子观点解释由分子构成的物质的物理变化和化学变化物理变化:没有新分子生成的变化。
(水蒸发时水分子的间隔变大,但水分子本身没有变化,故为物理变化)化学变化:分子本身发生变化,有新分子生成的变化。
(电解水时水分子变成了新物质的分子,故为化学变化)2.纯净物和混合物(由分子构成的物质)的区别:纯净物由同种分子构成,混合物由不同种分子构成。
3.分子和原子的联系:分子是由原子构成的,同种原子结合成单质分子,不同种原子结合成化合物分子。
4.分子和原子的本质区别:在化学变化中,分子可以再分,而原子不能再分。
原子物理学杨福家1-6章_课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第一章习题1、2解1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有若 sinθ=0, 则θ=0(极小)(8)(2)若cos(θ+2φ)=0 ,则θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ222)(90si nsi nsi n+=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
《原子物理学》PPT课件
40 2Z 1.44fmMeV/0.1nm 3105 Z rad
E (MeV)
E
15
1-2-3 解释 粒子散射实验(4)
• 带正电物质散射(汤氏模型)(4)
–电子对α粒子的偏转的贡献(对头撞)(1)
动量、动能守恒
m v0 m v1 meve ,
1 2
m v02
1 2
m v12
1 2
meve2
2
28
1-3-2 卢瑟福公式的推导 (3)
• 空心圆锥体的立体角 ~ d
ds 2 r sin rd ;
d
ds r2
2
sin d
2 b | db
A
|
a2d 16 Asin4
2
29
1-3-2 卢瑟福公式的推导 (4)
• 薄箔内有许多环: 核 ~ 环;
• 薄箔体积: At; 薄箔环数: Atn • 粒子打在Atn环上,散射角 相同
• 一个粒子打在薄箔
上被散射到 ~ -d
的几率
dp(
)
16
a2d
4
Asin
nAt
2
30
1-3-2 卢瑟福公式的推导 (5)
• N个粒子打在薄箔上测量到 ~ -d 的粒子数
dN
N a2d 16 A sin 4
nAt
ntN
1
4 0
Z1Z2e2 4E
2
d
sin4
2
2
• 微分截面(卢瑟福公式)
–重复散射也不会产生大角度
• 重复散射为随机, 平均之后不会朝一个方向 特别不会稳定地朝某一方向散射
–汤姆逊原子模型与实验不符!
18
高中物理第3章原子世界探秘3.1电子的发现及其重大意义3.2原子模型的提出课件沪科版选修3_5
(3)如果α粒子正对着原子核射来,偏转角几乎达到180°,这种机会极少, 如图8所示,所以极少数粒子的偏转角度甚至大于90°.
图8
达标检测
1.(对阴极射线的认识)(多选)英国物理学家汤姆生通过对阴极射线的实验 研究发现
√A.阴极射线在电场中偏向正极板一侧
B.阴极射线在磁场中受力情况跟正电荷受力情况相同 C.不同材料所产生的阴极射线的比荷不同
采用了如图5所示的阴极射线管,从C出来的阴
极射线经过A、B间的电场加速后,水平射入
长度为L的D、G平行板间,接着在荧光屏F中
图5
心出现荧光斑.若在D、G间加上方向向上、场强为E的匀强电场,阴极射线
将向下偏转;如果再利用通电线圈在D、G电场区加上一垂直纸面的磁感
应强度为B的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去
针对训练2 卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映 实验结果的示意图是
√
解析 α粒子轰击金箔后偏转,越靠近金原子核,偏转的角度越大,所以 A、B、C错误,D正确.
解析
答案
总结提升
解决这类问题的关键是理解并熟记以下两点: (1)明确实验装置的组成及各部分的作用. (2)弄清实验现象,知道“绝大多数”、“少数”和“极少数”α粒子的运 动情况及原因.
[即学即用] 判断下列说法的正误. (1)卢瑟福的核式结构模型认为原子中带正电的部分体积很小,电子在 正电体外面运动.( √ ) (2)对于一般的原子,由于原子核很小,所以内部十分空旷.( √ )
答案
题型探究
一、对阴极射线的认识
例1 (多选)下面对阴极射线的认识正确的是 A.阴极射线是由阴极发出的粒子撞击玻璃管壁上的荧光粉而产生的 B.只要阴阳两极间加有电压,就会有阴极射线产生
高一上册化学第三章人教版知识总结
第一节原子结构1.1 原子的组成原子由电子、质子和中子组成。
电子绕着原子核运动,质子和中子则构成原子核。
1.2 原子模型根据不同的原子结构,化学家提出了不同的原子模型,如汤姆孙模型、卢瑟福模型和玻尔模型等。
1.3 原子序数和质量数原子序数指的是原子中质子的数量,质量数指的是原子核中质子和中子的总数。
第二节电子结构2.1 电子云和能级电子围绕原子核运动形成电子云,而能级则代表了电子在原子中的能量状态。
2.2 原子的能级排布根据能级的不同,原子的电子排布也会不同。
一般情况下,第一能级最多容纳2个电子,第二能级最多容纳8个电子,第三能级最多容纳18个电子。
2.3 原子的壳层关系原子中的电子会按照一定的规律分布在不同的能级上,形成壳层结构。
K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子。
第三节元素周期律3.1 元素周期表的构造元素周期表按照元素原子序数的大小排列,具有周期性规律。
在元素周期表中,元素的性质也会有一定的规律性。
3.2 周期表中元素的分类元素周期表中的元素按照不同的性质和结构被分为金属元素、非金属元素和过渡金属元素等。
3.3 元素周期律的意义元素周期律的发现和应用对于化学研究和工业生产都具有重要的意义,可以帮助人们理解元素的性质和化合物的形成规律。
第四节原子的化学键和分子4.1 原子之间的化学结合原子之间会通过化学键结合在一起,形成分子或晶体结构。
4.2 化合价和离子键化合价是原子形成化合物时与其他原子结合的能力,而离子键是由正、负离子之间的静电作用形成的键。
4.3 共价键和共价分子共价键是通过原子间的电子共享形成的,形成的分子称为共价分子。
第五节反应速率和平衡5.1 反应速率化学反应的速率是反应物消耗或生成的物质的量与时间的比值,反映了化学反应进行的快慢。
5.2 平衡条件当反应物和生成物的浓度达到一定比例时,化学反应会达到平衡状态。
平衡状态下,反应物和生成物的浓度保持一定的比例。
量子化学第三章多电子波函数.
第三章 多电子波函数3.1 电子问题——对于一个N 电子,M 核的体系,在原子单位下,哈密顿Hamiltonian ,可以写为:221111111221NM N Mi AA i A i A A iAN NM MA B i j iA B A ij ABZ H M r Z Z r r =====>=>∇=--∇-++∑∑∑∑∑∑∑∑其中A M 是核A 相对于电子的约化质量A Z 为核A 的原子数第一项为电子动能项 (算符) 第二项为核动能项第三项为电子与核相互作用能 第四项为电子与电子相互作用能 第五项为核之间的相互作用能——为了使问题简化,Born Oppeheimer 提出假设(B O Approach ) 利用BO 近似,可以将核与电子运动分离,从而使我们只讨论电子问题,解决了电子问题后,我们还可以接着解决核问题。
——具体看一下BO 近似上式中,由于核与电子相比,质量很大,因此由动量守恒,其运动与电子相比就慢很多。
这样就可以假设电子是在由定核构成的场中运动。
因此:第二项: 核动能项可以忽略 第五项: 核排斥能为常数由于常数加在算符上,只改变算符本征值而不改变本征函数,因此,我们可以从总Hamiltonian 中减掉它,得到电子哈密顿,或描述N 电子在M 点电荷场中的哈密顿:21111112NN MN N A eleci i A i j i i iA ijZ H r r ====>=-∇-+∑∑∑∑∑其相对应的Schrodinger 方程为:elec elec elec elec H εΦ=Φ这时的Hamiltonian 的本征值不是多电子体系的总能。
为了求得体系总能量,我们需要加上1M MA BA B A ABZ Z r =>∑∑一项,我们以后只考虑电子问题,因此省略掉下标“elec ”。
由于电子Hamiltonian 含有双粒子坐标项11N Ni j i ijr =>∑∑,因此不能简单地利用变量分离法求解,只能用近似法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、价电子绕原子实运动的情况
(1)价电子远离原子实运动 相当于价电子在n 很大的轨道上运动, 价电子与原子实间的作用很弱,原子实电 荷对称分布,正负电荷中心重合在一起。 有效电荷为+e,价电子好象处在一个单位 正电荷的库仑场中运动,与氢原子模型完 全相似,所以光谱和能级与氢原子相同。
Z ee * 势能U ,Z 1 4 0 r0
主线系
第二辅线系
第一辅线系 线 系 限 第 四 条 第 三 条 第 二 条 第 一 条
碱金属原子三个线系的精细结构示意图
推论1;谱线的分裂意味着能级的分裂 推论2;s 能级是单层的,所有p,d,f 能 级都是双层的,并且当量子数n 增大时,双层能级间隔减小。
二、精细结构的理论解释与电子自旋 1、电子自旋(1925年荷兰科学家)
s= 0.4 s =1.35
p = 0.05 p=0.86
d= 0.001 d =0.001
f f
钠:
=0.000
3、能量和能级:
hcR hcR E n hcT *2 2 n (n )
与氢原子的差别
(1)能量由(n, )两个量子数决定,主量子数 相同,角量子数不同的能级不相同。各能级均低 于氢原子相应能级。 (2)对同一n值,不同值的能级,值较大的能 级与氢原子的差别较小;对同一值,不同n值的 能级,n值较大的能级与氢原子的差别较小。 (3)n很大时,能级与氢的很接近,少数光谱线 的波数几乎与氢的相同。
1. 实验规律: 所有的碱 金属原子的光谱,具 有相仿的结构,实验 上可观察的谱线一般 分为四个线系。 对于锂: 主 线 系:
第二辅线系: 第一辅线系: 柏格曼系:
? ? ?
?
,n = 2, 3, 4… ,n =3,4,5… ,n =3,4,5…
, n =4,5,6…
对于钠
§4.2 原子实的极化和轨道贯穿
1、建立原子实模型
内层电子 与原子核结合的较紧密,而价电子与核 结合的很松,可以把内层电子和原子核看作一个整 体称为原子实。价电子绕原子实运动,原子的 化学性质及光谱都决定于这个价电子。 锂价电子的轨道:n ≥ 2
原子实的有效电荷数 :
Z*=Z正电荷-负电荷(Z-1)=1
4. 理论解释
原子实模型 原子实极化与轨道贯穿 能级间跃迁的选择定则:
=±1
§4.3 碱金属原子光谱的 精细结构 ——电子的自旋
精细结构的实验事实 精细结构的理论解释与电子自旋
辐射跃迁的选择定则
一、分析精细结构的实验事实:
由实验可知所有的碱金属原子光谱有相 仿的精细结构。主线系和第二辅线系的每 一条光谱线是由两条靠得非常近的分线构 成;第一辅线系和柏格曼线系每一条光谱 线是由三条靠得非常近的分线构成。 例如钠的黄色光谱线,就是它的主线 系的第一条线,是由波长为5890Å和5896Å 的两条分线构成。
则光谱项为:
RZ T 2 n
R n
2
改写后: T
(
)
2
R 2 所以 n*<n n
a非贯穿轨道
b贯穿轨道
价电子的轨道运动
量子力学定量处理
能量和光谱项
hcR E n 2 (n )
R Tn 2 (n )
越小, 越大
小结:碱金属原子光谱
(5) 磁量子数
ቤተ መጻሕፍቲ ባይዱ自旋角动量相对外场的取向只有两种
1 ms 2
(6)自旋磁矩:
μs
e PS m
轨道角动量:
P ( 1)
e μ P 2m s l 2 ps Pl
轨道磁矩 :
(7) 旋磁比:
2、总角动量
电子同时具有轨道角动量和自旋角动量,总 角动量应当是两个角动量的矢量和。
Pj P Ps
P j j (j 1)
=0时 j=1/2 =1时 j=1/2,3/2
j=+s 或 -s
3 Pj Ps 2
3 15 Pj , Pj 2 2
2
Pj Pl Ps 2Pl Ps cos
2 2
角 动 量 矢 量 合 成
u
Z*e
B
PS
r
-e
Z*e
B
r -e
m
u
电子在轨道运动中如何感受磁场的示意图
e μ s PS m
1 Ze 1 Els μ B 2 2 3 pl ps 40 m c r
2
附加能量
*
-e
价电子远离原子实
(2)价电子靠近原子实运动 3e e 2e e ee 势能U 4 0 r小 4 0 r大 4 0 r0
-e
价电子靠近原子实, 使原子实极化
Z ee * U ,Z 1 4 0 r小
*
a 原子实极化(形成电偶极子),使电子又 受到电偶极子的电场的作用,能量降低,同 一n值,越小,极化越强。 b 轨道贯穿(电子云的弥散),对于那些偏 心率很大的轨道, 接近原子实的那部分还 可能穿入原子实发生轨道贯穿,这时Z*>1,从 而使能量降低。
主 线 系: 第二辅线系: 第一辅线系: 柏格曼系:
?
,n = 3, 4…
,n =4,5… ,n =3,4… , n =4,5…
?
? ?
2. 光谱项
RZ R R 光谱项 : T n 2 *2 2 n n (n )
*2
锂:
=0.000
电子具有固有角动量和固有磁矩的特性叫电 子自旋。
电子自旋的特点:
(1)自旋与轨道(空间)运动的状态无关 (2)自旋量子数 s =1/2 (3)自旋角动量是量子化的
1 1 3 Ps s( s 1) ( 1) 2 2 2
(4) 自旋角动量在外场方向投影
1 Psz m s 2
P
125°16' j=3/2
B
Pj
P
B
s
Ps
Pj
65 °54 '
s
j=1/2
Ps
3.旋轨相互作用
由于电子具有轨道角动量和轨道磁矩在空间产生 磁场,电子又具有自旋角动量和自旋磁矩在空间也产 生一个磁场,这两个磁场的相互作用使原子获得附加 E 能量,这就是旋轨相互作用能量 。
E μ B