轮机英语课本翻译
轮机英语词汇总结1~20章
Lesson1:ships and machinery 专业词汇:naval architect造船工程师marine engineer轮机工程师hull 船体外壳propel推进steer 操舵anchor 抛锚cargo-handling 货物装卸vibration振动longitudinal纵向的transverse横向的deck甲板hatch 舱口hatch cover舱盖navigating bridge area 驾驶台communication centre通信中心stabilizer 减摇鳍container ship 集装箱船bulk carrier 散货船tanker液货船passenger ship 客船cruise ship 游船pilot vessel 引航船displacement排水量deadweight 船舶载重量light weight 船舶空船排水量installation 安装layout 布置gearbox 齿轮箱direct-couple 直接传动diesel engine柴油机team turbine 蒸汽轮机propeller 螺旋桨prime mover原动机crankshaft 曲轴cylinder 气缸auxiliary辅助的generator发电机air compressor 空压机evaporator 造水机heat exchanger 换热机boiler 锅炉funnel烟炊twin-screw双螺旋port左旋starboard 右旋waste combustion plant 焚烧炉bulkhead 船舱壁metric米制的公制的tug 拖船非专业词汇:vehicle 交通工具habitability可居住性overlap 重合ores 矿石arbitrary 任意性distinct 清楚的独特的endure 持续度过self-sustaining 自稳定自维持Lesson2:how does a marine diesel engine work 专业词汇:internal combustion engine内燃机ignite 点燃injection喷射chamber腔室piston活塞spray 油雾cycle循环sequence顺序stroke 冲程alternator 交流发电机aspirate吸入atomized 雾化的auxiliary 辅助的blow 吹,鼓风draw 抽吸centripetal 向心的chamber 腔,室charge 填充物combustion 燃烧compress压缩crank 曲柄crankshaft 曲轴crankpin 曲柄箱cylinder 气缸diesel 柴油机exhaust 排出,耗尽,废气fine细小的generator 发电机ignite 点燃induce 引起,招致inefficient 效率低的inhale 吸入inject 喷射injector喷射器inlet 进口marine海运的,船用的piston活塞principle 原理,原则propeller螺旋桨,推进器propulsion 推进residual 残留的,剩余的revolution 转rotate 旋转scavenge扫除,吹除timing 定时turbocharge 涡轮增压turbocharger 涡轮增压器bottom dead centre (BDT)下止点top dead centre(TDC)上止点loop scavenge 回流扫气uniflow scavenge 直流扫气reduction gear box 减速齿轮箱slight ram 进气阀座connecting rod 连杆blade 叶片非专业词汇:adjacent邻近的application 请求,应用closure 关闭encourage 促使fresh 新鲜的inlet 进口medium 中间的,介质operation 操作,过程poppet 提升retard 推迟vast 大量的Lessen3 diesel engine construction 专业词汇:adjustment 调节annular 环形的assembly 组件bearing 轴承bedplate 机座bolt螺栓bore 钻孔channel 通道clearance间隙component 部件diameter 直径dowel 销钉drill 钻孔duct 管道emission 散发,喷射film 油膜flange 法兰forge 锻造frame 机架groove槽,沟guide导板indicator 示功器jacket 夹层joint 接口liner 衬套maneuverability 机动操作性,机动性mount 安装pin 销子reliability 凹槽scraper 刮油器screw 螺钉seating 座,底座shim 垫片shoe 滑块slot 开槽stud 双头螺栓weld焊接carrier ring 承磨环cast iron 铸铁chain transmission 链条传动white metal 白合金stuffing box 填料箱非专业词汇:deformation变形rigid 刚性的,坚实的rubber 橡胶horizontally 水平地adequate 足够的advanced先进的chromium镀铬construction结构displace 错位integral 整体的precise精确的reliability 可靠性rotary旋转secure固定topmost最上部vertical垂直的vital至关重要的Lesson4 fuel oil system 专业词汇:catalyst催化剂catalytic催化剂的centrifuge分油机cavitation 气穴现象contaminate污染contaminate杂质deaerate除气,除氧impurity杂质,混杂物overflow溢流overhaul大修pressurize增压,密封purifier分水机clarifier分杂机refinery炼油厂rust铁锈safeguard维护,保护措施black-out全船停电booster pump增压泵gasway气道in parallel并联in series串联residual fuel渣油fuel oil燃油diesel oil柴油daily service tank日用柜viscosity粘度preheater预热supply pump驳运泵maintenance维护setting point倾点water content水分cleaerate放气flash point闪点specific gravity比重valve seat阀座bar大气压filter滤器非专业词汇:component元件,构件consumption消费量conventional常规的delivery传递,输送provided倘若irrespective不考虑的Lesson5 central cooling water system专业词汇:Chest 箱,柜deaeration除气malfunction故障scoop收集器,吸入口standstill停车thermostatic恒温的by-pass旁通管expansion tank 膨胀水箱volume体积alarm device 报警装置shipyard船厂非专业词汇:Accomodate 收容,装有additional另外的alternatively备用地integrate使成整体,结合Lesson 6Reservoir 容器Drainage 放残Interlock 连锁Non-return vavle 单向阀Pilot air 控制空气Pneumatic 气动Vent 放气Ahead/astern 进车/倒车Deposit 沉积物Ignite 点燃Flame trap 阻焰口Relief vavle 安全阀Bursting cap 防爆门Fusible plug 易熔塞Air distribution 空气分配器Engage/disengage 啮合/脱离Humidity 湿度Suck in 吸收Isolate 隔离Manoeuvre 操纵,机动Provision 备件Reluctant 冗余的Drawn from 来自Stringent 严格的Bore 孔Correspond 相应的Whilst 当什么时候Occurrence 事故Lesson 7Oil film 油膜Neutralize 中和Acidic product 酸性产物Considerable 相当多的Resist oxidation 抗氧化Wear detritus 磨削Total loss system 不回收系统Circulating system 循环系统Line wall 气缸壁Piston ring belt 活塞环带Carry Out 实现完成Quill 注油针阀Residual fule 渣油Corrosive 腐蚀的Lacquer 漆Alkalinity 碱Detergency 去垢能力Property 性质Rupture 破裂Crack 裂纹Slump 油底壳In duplicate 双联Level guage 液位表Drain tank 循环柜Impinge 射到Counteract 克服Impart 给予Reversal 相反的=Lesson 8Naturally aspiration 自然换气Exhaust gas turbocharging 废气涡轮增压Induce 参与Manifold 总管Volumetric efficiency 容积效率Turbine blade 增压机压片Adjacent 邻近的Swirl 漩涡Opposed piston 对置活塞Constant pressure system 定压增压Pulse system 脉动增压Thermal loads 热负荷Cross flow scavenge 横流扫去i Loop flow scavenge 回流增压Uniflow scavenge 直流扫气Blower 鼓风机Simplify 简化Lesson 10Thrust 推力Intermediate shaft 中间轴承Tail shaft 尾轴承Sterntube 尾轴管Cone 螺旋桨轴帽Mounte 安装Integral/independent 整体式/独立式Cate for 满足Shock load 冲击性负荷Thrust block 推力块Fitted bolt 紧固螺栓Bearing pad 承压块Pivot 支点,枢轴Tilt 倾斜Thrust Collar 推力环Oil scraper 刮油器Fabricate 铸造Aftermost tunnel bearing 尾轴管轴承Jounal bush 轴瓦Oil thrower ring 甩油环Gland 机械密封Outboard/inboard 舷外/内Stuffing box 填料箱Bulkhead 舱壁Lip seal 唇封Radial seal 径向密封Mate 配对Ingot steel 钢锭Taper 变细Fixed pitch propeller 定距桨Controlallable pitch propeller 变距浆Static 静态Dynamic 动态Lesson11直径Diameter半径radius孔,镗孔bore 行程stroke 平均有效压力MEP平均活塞速度mean piston speed 比燃油消耗率SFOC共轨common rail传统的conventionl 可用的available电磁阀magnetic valve/ solenoid valve 可靠性reliability耐用性durability精确地precisely精确的precise灵活地flexibly消耗consumption优化的optimized排放mission机动性maneuverability大修over hauls烟灰soot变量,可变的variable备份back-upLesson15轴向的axial离心的centrifugal水库,水柜reservoir安全阀relief valve容积volume排出的delivery排出阀discharge valve吸入阀suction valve空气室air vessel椭圆的elliptical螺杆screw双作用double acting往复泵reciprocating displacement pump 自吸self-priming维护,保养maintenance放残draining回转式容积泵rotary displacement pump 程序procedure轴封shaft sealing密封装置packing arrangement磨蚀abrasive腐蚀corrosive叶轮impeller外围periphery填料箱式packed gland转子element机械轴封mechanical seal耦合室coupling spacer紧tight导轮diffuser套筒drum串联in seriesLesson10Transmission SystemThrust shaft推力轴Intermediate shaft 中间轴Tail shaft 尾轴Thrust block推力轴承Thrust collar 推力环Lip seal 唇形密封Head tanker高置油箱Thread 螺纹Back press背压Boss 桨Pitch 螺距Radial face seal 径向面密封Fixed pitch propeller定距桨Stern tube bearing 尾轴管轴承Controllable pitch propeller变距桨Bearing pad 推力块Integral 完整的Cone 锥形物推冒Rudder 舱Hull 壳体Fitted blot 紧配螺栓Pivot 支点Tilt 使倾斜Scraper 刮油器Cascade 分布Fabricate 焊接Aftermost 靠近船尾Bush 轴瓦Tunnel 轴遂Thrower ring 甩油环Dip 浸入Lignum vitae铁梨木Timber 纤维Axial 轴向的Radial 径向的Stuffing box填料箱Helicoidat 螺旋面Blad 桨叶Rigid 刚性的Cascade 倾泻Lesson11 A leap in technology for marine enginesMagnetic valve 电磁阀Part load 低负荷Emission 排放Strock 行程Mean piston speed 活塞平均速度SFOC燃油消耗率Bore 缸孔Coastal 海岸的Diminish 使减少Dredger 挖泥船Leap 飞跃Optimal 最理想的Optimize 使最优化Precise 精确的Vital 至关重要的Back up 备份Lesson12 ME EnginesActuator 执行器Boester 升压器Diognostics 诊断Governor 调速器Hydraulic 水力的Inclination 倾斜Mechatronic 机械电子的Mesh 网孔Momentum 动力Proprietary 专利的Servo 伺服Counterpart对应物LESSON13 marine boilera and their constructionAttemperator 保温装置Casing 包装Conrection 传送对流Downcomer 下水道Furnace 炉子Gastight 不漏气Mounting 设备Propulsion 推力推进力Spherical 球型的Tangent 接触的Refractory lining耐火Saturated steam 饱和蒸汽Steam generation 蒸发Lesson14boiler mountings management and maitentBilge 舱底Condensate 冷凝物Bulge 不规则突起Detritus 碎石Dislodge 驱逐Fracture 破裂Friable 易碎的、Gauge 测量Periodically 优先的Salinity 盐分Sludge 淤泥Sample connection 取样口Soot blower 吹灰口Steam trap 凝气口Lesson15 marine pumpAxial flow pump 轴流泵Screw displacement pump 螺杆泵Displacement pump 容积式泵Peciprdate 螺杆泵Impeller 叶轮Volute 蜗壳Pump element 泵转子Priming umit引水单元Self-priming自吸Multi-stage多级Vane 叶片Wearing ring 承磨环Suction pipe 引入管NPSH汽蚀余量Configuration 构造Equilibrium平衡Pipe work 管系Alternately 交替的Valve arrangement阀组Air vessel空气室Dampen 减弱Vaper 水蒸气Entrained 引入空气Seizure 卡住Ridge凸台Erratically 不稳定Ground in 研磨Nesh 啮合Abrasive 磨蚀的Covrosive 腐蚀的Strip 拆开Bracket 支架Diffuser 导轮Coupling spacer耦合室Reservoir 储存器Lesson16marine refrigerationRefrigerant 冷剂Condenser 冷凝器Sub-cooled过冷Super heat 过热Evaporator 蒸发器Liquid receiver 储液器Drier 干燥器Unloading gear 卸载机构Hermetic 封闭的Semi-hermetic 半封闭的Oxide 氧化Brine 盐水Carbon dioxide二氧化碳Compact 紧凑的Bulb 湿包Fin 肋板Pass over 在上面流过Pass through 在里面穿过Ventilation 通风Solenoid valve 电磁阀Sub—devided 细分Rotor 螺杆Star wheel 星形轮Pitch 倾斜Fan 风机Coin 盘管Hunt 震荡Baffce 挡板Solenoid 螺线管Elastomer 弹性体Lesson17 marine refrigeration management and fault diagnosisLeak detector lamp检漏灯Concentration 浓度Liquid hammer水击Oil hammer油击Surplus 过多的Up right 直立Inclined 倾斜Violet 紫色Pale blue淡蓝Symptom 症状Press differential rely压差继电器Parge valve 放气阀Service valve 检修阀Duct 管子Under charge 冷剂不足Gauge 压力表Stem 阀杆Purge 放出Ascertain 确定Lesson20 Air Conditioning systemClimatic condition 气候条件Sufficient 足够充分Relative humidity 相对湿度Percentage 百分数Ratio 比例Vapor pressure蒸汽压力Absorb 吸收Heat source 热源Criculate 循环Renewal 补充Consume 消耗Single duct system 单风管系统Volume 容积Flexible 灵活性Tendency 趋势Incurs 引起Fabricated standard duct 预制标准尺寸风管Air terminals lined 空气终端管路Sound insulation material 隔音材料Centrifugal fan 离心式风机Driect expansion 直接膨胀Hermetic 气密的Thermostat 温度传感器Pnenmatic 气动型Capacity 载荷Stuffiness 不通风的Interval 每隔Grease 润滑Axial flow fan 轴流式风机Slight variation 微调Extreme weather 热带气候Tropical condition温和条件Intermediate weather极端天气Lesson19 Bilge Water Treatment SystemBilge water 舱底水Definition 定义Scope 范围Merely 仅仅Intermittent 断续Predictable 可预测Foresee 预见Soot water 吹灰冲洗水Leakage 泄露Detergent 洗涤剂Cat fine 催化粉末Soot 灰分Primary 第一级Particle 颗粒Portion 空间Emulsified 被乳化Organic solvent 有机溶剂Sludge 渣Nautical miles 海里Desposal 排放Legislation 立法Ecosystem 生态系统Constraints 约束Compactness 结构紧凑Droplet 滴Buoyancy 浮力Disperse 分散Immiscible 不融合的Shear 剪力Robust 耐用Adsorbent 吸附剂Polisher 洁油单元Zeolite 硅酸盐Capacity 能力Salinity 盐度Polymeric 聚合体Ultimate 根本上Primary 最初的Cross—flow membrane 横流膜Predicte 预期Filtration system 反渗透超滤系统Lesson20 Garbage Management and Biological Sewage TreatmentClinker 渣块Refuse 废物Dunnage 垫舱物料Crockery 陶器Comminute 粉碎Incinerator 焚烧炉Discharge 排出Authorize 批准In principle 原则上Engage 从事Comply 遵守Prescribe 规定Regulator 调节器Extended aeration process 充分曝气过程Bubbling 气泡Agitating 搅拌Bacteria 细菌Propagate 繁殖Thrives 兴旺Innocuous 无害的BOD生物需氧量Aerobic 好氧的Anaerobic 厌氧的。
轮机英语课文
Lesson 1HOW DOES A MARINE DIESEL ENGINE WORK?The diesel engine is a type of internal combustion engine which ignites the fuel by injecting it into hot, high pressure air in a combustion chamber. The marine diesel engine is a type of diesel engine used on ships. The principle of its operation is as follows:A charge of fresh air is drawn or pumped into the engine cylinder and then compressed by the moving piston to very high pressure.When the air is compressed, its temperature rises so that it ignites the fine spray of fuel injected into the cylinder. The burning of the fuel adds more heat to the air charge, causing it to expand and force the engine piston to do work on the crankshaft which in turn drives the ship's propeller.The operation between two injections is called a cycle, which consists of a fixed sequence of events. This cycle may be achieved either in four strokes or two. In a four-stroke diesel engine, the cycle requires four separate strokes of the piston, i.e. suction, compression, expansion and exhaust. If we combine the suction and exhaust operations with the compression and expansion strokes, the four-stroke engine will be turned into a two-stroke one, as is shown in Figures l (a)-(d).The two-stroke cycle begins with the piston coming up from the bottom of its stroke, i.e. bottom dead centre (BDT), with the air inlet ports or scavenge ports in the sides of the cylinder being opened (Fig. 1 (a)). The exhaust ports are uncovered also. Pressurised fresh air charges into the cylinder, blowing out any residual exhaust gases from the last stroke through the exhaust ports.As the piston moves about one fifth of the way up, it closes the inlet ports and the exhaust ports. The air is then compressed as the piston moves up (Fig. 1 (b)).When the piston reaches the top of its stroke, i.e. the top dead center (TDC), both the pressure and the temperature of the air rise to very high values. The fuel injector injects a fine spray of fuel oil into the hot air and combustion takes place, producing much higher pressure in the gases.The piston is forced downward as the high pressure gases expand (Fig. 1 (c)) until it uncovers the exhaust ports. The burnt gases begin to exhaust (Fig. 1(d)) and the piston continues down until it opens the inlet ports. Then another cycle begins.In the two-stroke engine, each revolution of the crankshaft makes one power or working stroke, while in the four-stroke engine, it takes two revolutions to make one power stroke. That is why a two stroke cycle engine will theoretically develop twice the power of a four stroke engine of the same size. Inefficient scavenging and other losses, however, reduce the power advantage to about 1.8.Each type of engine has its application on board ship. The low speed (i.e. 90 to 120 r/min) main propulsion diesel operates on the two-stroke cycle. At this low speed the engine requires no reduction gearbox between it and propeller. The four-stroke engine (usually rotating at medium speed, between 250 to 750 r/min) is used for alternators and sometimes for main propulsion with a gearbox to provide a propeller speed of between 90 to 120 r/min.READING MATERIALWORKING CYCLESA diesel engine may be designed to work on the two-stroke or on the four-stroke cycle. Both of them are explained below.The Four-Stroke CycleFigure 2 shows diagrammatically the sequence of events throughout the typical four-stroke cycle of two revolutions. It is usual to draw such diagrams starting at TDC (firing) but the explanation will start at TDC (scavenge). Top dead centre is some times referred to as inner dead centre (IDC).Proceeding clockwise round the diagram, both inlet (or suction) and exhaust valves are initially open. (All modern four-stroke engines have poppet valves.) If the engine is naturally aspirated, or is a small high-speed type with a centrifugal turbocharger, the period of valve overlap, i.e. when both valves are open, will be short, and the exhaust valve will close some 10o after top dead centre (ATDC).Propulsion engines and the vast majority of auxiliary generator engines running at speeds below 1,000 r/min will almost certainly be turbocharged and will be designed to allow a generous throughflow of scavenge air at this point in order to control the turbine blade temperature. In this case the exhaust valve will remain open until exhaust valve closure (EVC) at 50-60o ATDC. As the piston descends to outer or bottom dead centre (BDC) on the suction stroke, it will inhale a fresh charge of air. To maximise this, balancing the reduced opening as the valve seats against the slight ram or inertia effect of the incoming charge, the inlet (suction) valve will normally held open until about 25-35o ABTC (145-155o BTDG). This event is called inlet valve closure (IVC). The charge is then compressed by the rising piston until it has attained a temperature of some 550o C. At about 10-20o BTDC (firing), depending on the type and speed of the engine, the injector admits finely atomised fuel which ignites within 2-7o (depending on the type again) and the fuel burns over a period of 30-50o, while the piston begins to descend on the expansion stroke, the piston movement usually helping to induce air movement to assist combustion.At about 120-150o ATDC the exhaust valve opens (EVO), the timing being chosen to promote a very rapid blow-down of the cylinder gases to exhaust. This is done: (a) to preserve as much energy as is practicable to drive the turbocharger, and (b) to reduce the cylinder pressure to a minimum by BDC to reduce pumping work on the 'exhaust' stroke. The rising piston expels the remaining exhaust gas and at about 70-80o BTDC the inlet valve opens (IVO) so that the inertia of the outflowing gas, plus the positive pressure difference, which usually exists across the cylinder by now, produces a through flow of air to the exhaust to ’scavenge’ the cylinder.If the engine is naturally aspirated the IVO is about 10o BTIDC. The cycle now repeats.The Two-Stroke CycleFigure 3 shows the sequence of events in a typical two-stroke cycle, which, as the name implies, is accomplished in one complete revolution of the crank. Two-stroke engines invariably have ports to admit air when uncovered by the descending piston. The exhaust may be via ports adjacent to the air ports and controlled by the same piston (loop scavenge) or via poppet exhaust valves at the other end of the cylinder (uniflow scavenge).Starting at TDC combustion is already under the way and the exhaust opens (EO) at 110-120o ATDC to promote a rapid blow-down before the inlet opens (IO) about 20-30o later (130-150o ATDC). In this way the inertia of the exhaust gases-- moving at about the speed of sound-- iscontrived to encourage the incoming air to flow quickly through the cylinder with a minimum of mixing, because any unexpelled exhaust gas detracts from the weight air entrained for the next stroke.The exhaust should close before the inlet on the compression stroke to maximise the charge, but the geometry of the engine may prevent this if the two events are piston controlled. It can be done in an engine with exhaust valves.At all events the inlet ports will be closed as many degrees ABDC as opened before it (i.e. again 130-150o BTDC) and the exhaust in the same region.Injection commences at about 10-20o BTDC depending on speed and combustion lasts 30-50o, as with the four-stroke.。
EnglishofMarineEngineering(轮机英语)
EnglishofMarineEngineering(轮机英语)English of Marine Engineering(轮机英语)Unit 1 :Main Propulsion Plant(船舶主推进装置)一、船舶动力装置概述●船舶动力装置的组成和类型、热机的类型和应用二、船舶柴油机1)船舶柴油机基本参数、特性指标2)船舶柴油机的工作原理3)船舶柴油机的基本结构4)船舶柴油机的燃油系统5)船舶柴油机的润滑系统6)柴油机的冷却系统7)柴油机的启动系统8)船舶柴油机操纵和控制系统、柴油机的运行管理、故障诊断三、船舶推进装置●推进装置的传动方式Unit 2 :Auxiliary Machinery(船舶辅助机械)一、船用锅炉1)船用锅炉的类型和结构特点2)船用锅炉的运行管理、故障分析和排除二、船用泵1)船用泵类型;常见船用泵的工作原理和结构特点;船舶通用泵系的布置原则和特点2)常见船用泵的运行管理和故障排除三、船舶制冷和空调装置1)船舶制冷原理和制冷循环2)船舶空调系统的组成及主要设备;船舶空调装置的运行管理、故障分析和排除四、船舶防污染设备1)油水分离器的工作原理及运行管理2)焚烧炉的工作原理及运行管理3)生活污水处理装置的工作原理及运行管理五、分油机和海水淡化装置1)分油机的工作原理及运行管理2)海水淡化原理、主要设备和运行管理六、船舶甲板机械1)起货机的结构特点及其故障分析和排除2)锚机、绞缆机的结构特点及其故障分析和排除3)液压泵、控制阀件和油马达的结构特点;液压系统管理Unit 3:Marine Electrization and Automatization(船舶电气和自动化)一、船用发电机1)船用发电机的结构特点2)船用发电机的并车和解列3)船用发电机的故障分析和排除二、船用配电板1)主配电板的分类及组成2)应急配电板;配电箱三、船舶电气设备●船舶电气设备:船舶电气设备概况;电气控制设备;电气设备运行管理Unit 4 :Marine Engineering Management(船舶轮机管理)一、操作规程●备车;巡回检查;完车二、安全管理知识1)船舶防火防爆的措施及守则2)轮机部操作安全注意事项;安全知识;机舱应急设备的使用及管理三、油、物料和备件的管理●燃油的管理四、船舶修理和检验1)修理的类别;轮机坞修工程2)船舶检验的类别与作用五、防污染管理及PSC检查1)《油类记录簿》与IOPP证书的管理2)PSC检查中的明显理由与更详细检查;PSC检查报告和缺陷的纠正Unit 5 :International Convention and Regulations(国际公约与规则)一、STCW公约1)STCW78/95公约中有关轮机值班的基本原则2)轮机员的基本职责和道德;机架联系制度二、MARPOL公约●MARPOL73/78公约中有关含油污水的排放规则;有关国家、港口的防污染规则三、SOLAS公约●SOLAS公约的基本精神和基本原则四、ISM、ISPS等规则和公约1)ISM规则简介2)ISPS规则简介3)其他最新公约和规则。
新版轮机英语unit29轮机英语
The device will open on overload (过载)and (过载)and also in the event of a short circuit(短路). circuit(短路). Unlike a fuse, the circuit can be quickly remade by simply closing the switch.
A two wire system (双线制)is (双线制)is usual to provide a supply and return to each item of equipment.
An earth lead (接地线)would (接地线)would be the only electrical connection (电气连接) between any item (条款,项目) of equipment and the ship’s structure(船体). structure(船体).
The cartridge fuse is to be preferred since the fusing current value(保险丝熔断电流值) value(保险丝熔断电流值) is more reliable than for a rewirable type .
A circuit breaker(断路器) is an breaker(断路器) isolating switch(隔离开关) which switch(隔离开关) also functions as a fuse.
电涌被称为瞬态过电,是电路中出现 电涌被称为瞬态过电,是电路中出现 的通常持续约百万分之一秒
Use of the earthed system could result in(导致、引起) the loss in(导致、引起) of an essential (必要的)service (必要的)service such as the steering gear(操舵 gear(操舵 装置) as a result of an earth fault.
《轮机英语》汉英互译
二、气缸 和气 缸盖
在扫气箱上部,每个气缸装有一个坚固的铸铁框架。这些框架称作气缸体或冷却水套,并
带有垂直法兰,与扫气箱一样,可用螺栓将各框架连成首尾两组。
基座、机架和气缸体用长贯穿螺栓连到一起,形成一个较大的坚实结构,减少了使用时产
生的变形及振动。
气缸套由铸铁制造,缸套表面有时镀铬。气缸套向下延伸到扫气箱。缸套与扫气箱顶部
当活塞上行到行程底部,即上止点(
时空气的压力和温度都上升到很高的数值。此时喷
油器把很细的油雾喷入炽热的空气中,燃烧开始,在气体中产生更高的压力。
随着高压气体的膨胀,活塞被推动下行「图
」直到它打开排气口,燃烧过的气体开始
排 出[ 图
,活塞继续下行直到它打开进气口,另一个循环开始。
在二冲程柴油机中,曲轴转一周产生一个动力行程,即做功行程;而在四冲程柴油机中,曲
使发动机活塞对曲轴做功,随之驱动螺旋桨. 两次 喷油期间 的运转过 程叫一个 工作循环 。它
由一些程序固定的过程组成。这个循环可在二个行程或四个行程内完成。四冲程柴油机的工
作循环需四个独立的活塞行程,即吸气、压缩、膨胀和排气。如果我们把吸气和排气行程与压
缩和膨胀行程结合起来,四冲程柴油机就变成了二冲程柴油机,如图
课文注释
机座在大多数情况下是焊接结构,用螺栓固定在构成船舶双层底的底座上。
该句为复合句,包含由
引导的两个定语从句,分别限制主语
和宾语
它在横向借助于侧楔垫螺栓,在纵向借助于端楔垫螺栓固定。 该句为并列句,由 连 接 。第二个分句省略了“
形机架顶部有一个结实的框架结构叫扫气箱。 该扫气箱分若干段,每段均带有垂直法
兰,通过螺栓可将它们在链传动装置前
缸的部分连成一体,链传动装置后
轮机英语教材后315道翻译
1 以任意吃水漂浮在水面上的载货船舶,它的排水量等于船体置换掉的相应质量的水。
;ship in loaded condition 船舶处于有负载的状况;arbitrary 任意的 water line (船的)吃水线,水位;displacement 排水量;equal to 等于,与……相等;relevant mass 相应的质量;displace 取代,置换2 船舶的排水量等于相应装载货物船舶的总重量。
;total weight 总重量;all told 副词,表示总计,总共,合计,用在这里强调是载货船舶总共的质量。
3 哪句话不正确?造船工程师与轮机员在职责上处于截然不同的区域。
;(应该是在一些范围内有所重叠);distinct divisions 截然不同的区域;naval architect 造船工程师,验船师;marine engineer 轮机员4 为什么中速柴油机驱动的船舶需要齿轮箱?为了安装固定螺旋桨轴。
(即螺旋桨轴不是直接由主机带动的,而是连接到齿轮箱的);gearbox 齿轮箱;fix 固定,安装,修理;propeller shaft 螺旋桨轴5 螺旋桨,为了更有效率的工作,必须以相对较低的速度旋转。
;in order to 为了;efficiently 有效率地;relatively 相关的,相对的6 在柴油机里,燃油的燃烧直接提供了热能,而燃烧过的气体混合物则作为工作介质将热能转变为机械能(即推动活塞做往复运动)。
;working medium 工作介质;change … to …将…转变为…;the burned gas mixture 燃烧过的气体混合物,即燃气7 在柴油机里,燃气作为工作介质并将热能转换为机械能,连杆则将往复运动转换为回转运动。
;working medium 工作介质;change … to …将…转变为…;the burned gas mixture 燃烧过的气体混合物,即燃气;reciprocating movement 往复运动;rotary movement 回转运动8 二冲程和四冲程柴油机的区别之一是:二冲程机工作中没有吸气过程。
轮机英语翻译课文
LESSON 1Diesel enginesThe majority of ships around the world continue to be powered exclusively by diesel engines.世界范围内大多数船舶都是采用柴油机作为动力。
The predominance of diesel engines has come from improved engine efficiencies and designs compared to other forms of propulsion such as steam or gas turbines.与蒸汽机、燃气轮机等形式的动力装置相比,无论是效率上的提高,还是设计上的进步,柴油机都体现出了一定的优势。
Many combinations and configurations of diesel engine power plant exist. All provide the energy to do the work of moving the ship using diesel engines.存在有很多种联合形式及结构形式的柴油机动力装置,他们都能够利用柴油机为船舶提供推动力。
Slow speed diesel engines 低速柴油机Slow speed diesel engines are large, especially tall, and heavy and operate on the two-stroke cycle.低速柴油机是体积较大、缸体较长、机身较重的二冲程柴油机。
These are the largest diesel engines ever built. Engine powers up to 100 000kw are available from a single engine.它们是已建造过的最大型的柴油机,它们的单机可用功率可达100000 kw。
新版轮机英语unit7 lubricating system
GDOU
Cleanse( 清洁 ) hot moving ( 清洁) parts of carbonaceous deposits, resist oxidation( 氧 化 ) and wash away ( 冲 洗 , 带 走 ) wear detritus(磨屑). detritus(磨屑 磨屑)
GDOU
Oil is supplied to the cylinder liner wall and the piston rings by means of mechanical lubricators(注油器) giving a (注油器) carefully controlled(精确控制) (精确控制) oil feed, through injectors or quills(注油针 quills(注油针), 注油针)
GDOU
Cylinder liner
Piston
belt
Quill
Piston ring
Jimei university GDOU
Hydraulic motor
Injector
Gear pump
Lubrication oil
Jimei university GDOU
Camshaft
The films of oil between the rings and the liner and between the rings and the grooves in the piston are not only essential 必需的) (必需的) for lubrication but also play an important part in achieving a gas seal(气密性). (气密性)
船舶专业英语课后翻译
lesson3Marine Diesel船用柴油机intermal combustion engine内燃机combustion chambe r燃烧室principle of its operation工作原理cylinder气缸piston活塞fine spray of fuel细多状燃油crankshaft曲轴propeller推进器cycle循环four-stroke diesel engine四冲程柴油机suction进气compression压缩expansion膨胀exhaust排气t ow-stroke one二冲程柴油机bottom dead下止点exhaus排气residual exhaus gases残留废气top dead centre上止点fuel inject燃油喷射inlet ports进气口working stroke工作冲程reduction gerar box减速齿轮箱alternator交流发电机connecting rod连杆s cavenge por t扫气口lesson5Fixed parts固定件moving parts运动件crank case曲柄箱liner缸套和衬套cylinder cover气缸盖cylinder block气缸体crown活塞体piston rod活塞杆corss head十字头main bearin g主轴承axial thrust轴向推力end-chock bolts端塞螺栓driven shaft从动轴thrust block推力块scavenging air box扫气箱bedplate机座frame机架cooling jacket冷却水套exhaust valve排气阀fuel valve燃油阀starting valve气动阀satety valve安全阀indicator cock示功器旋塞piston skirt活塞裙piston ring活塞环gasket垫圈reciprocating movement往复运动l esson6fuel oil system燃油系统operation and maintenance运行和维护carbon residues残碳fuel oil’s viscosity燃油粘度heavy oil重油residual oil渣油settling tank沉淀柜fuel oil tank燃油柜service tank日用柜fine filter细滤器pressure regulating valve压力调节阀needle valve针阀low tanklevel低油位报警transfer pump输送泵three-way valve三通阀injector pump喷射泵filter过滤器lesson7lubricating oil film润滑油膜moving part运动件mverment condition运动条件oil cooled pistons油冷式活塞resist oxidation抗氧化total loss system总量损耗系统circulating system循环式系统gearing传动装置piston head活塞顶piston ring活塞环liner wall衬套壁reversal of direction of motion运动方向的改变mechanical quill机械注油器crank case曲轴箱bearing轴承piston rod活塞杆auxiliavy equipment辅助设备p ump泵centrifvge离心分离机lesson8fuel jetector valve燃油喷射阀staring air valve起动空气阀mechanical strength机械强度internal passages内部管道heat exchanger热交换器jacket water circulating pump气缸套冷却水循环泵turbo-blower涡轮增压器closed system闭式系统open sysem开式系统head tank压力水柜sea water airculating cooler海水循环式冷却器cavitation effect气蚀效应air bell气囊vent port放气口ventilation pipe透气管branch支路visual flow indicator可视式流量计nozzle carbon喷嘴积碳lubricating oil covler滑油冷却器blind-flange盲板法兰Lesson 9舱底水:bilge 压载水:ballast相互连接:interconnect涨水,进水:inflow在船上,到舷外:overboard水密舱室:watertight compartment 应急舱底水泵:emergency bilge suction 替换物,选择对象:alternative 饮水装置:priming device到某种程度:in some extemt 调节船舶吃水差:turn the vessel切换阀箱:change-over chestLesson 11容积式泵:displatement pump离心泵:centrifugal pump往复泵:reciprocating pump叶片泵:vane pump齿轮泵:gear pump旋转泵:rotary pump离心力:centrifugal fore轴向的:axial涡轮,涡轮机:turbine自吸式:self-priming 啮合齿轮:meshing gears蒸汽喷射器:steam ejector 舵机液压系统:steering gear hydraulic system 人字齿:double helical teech大气压:atmospheric pressure 立式泵:vertical pumpLesson 13甲板机械:deck machinery克令吊:crane 日常检验:rountine checking锚泊设备:anchor arrangement集装箱吊装设备厂:锚链管:chain pipe原动机:generator装卸能力:cargo handling productivity多旋转吊杆系统:multiwinch slewing derrick system 绞车卷筒:winch end 吊杆式起货装置:derrick cargo rig安全负载:safe working loadLesson31.The diesel engine is type of internal combustion engine which ignites the fuel by injecting it into hot ,high pressure air in a combustion chamber柴油机是一种内燃机,它是通过将燃油喷射到具有高温高压气体的燃烧室从而点燃燃油。
轮机英语LESSON 2
★valve overlap ['əuvə'læ p]
气阀 重叠
⑦Injectiቤተ መጻሕፍቲ ባይዱn commences
④Inlet valve open
(before TDC)
①Firing TDC
②Fuel valve close Full load
Expansion
compressio n
Exhaust
★Inefficient scavenging
[,ini'fiʃənt] ['skæ vindʒ] 无效率的 驱气,扫气
★power advantage [əd'vɑ:ntidʒ]
功率 优势
★reduction gearbox 减速齿轮箱
proceed [prə‘si:d] (沿特定路线)行进,进行 clockwise [‘klɔkwaiz] 顺时针方向的;右旋的
anti-clockwise 逆时钟方向的 initially [i‘niʃəli] 最初;开头 adv poppet[‘pɔpit] valve 提升阀 centrifugal [sen‘trifjugəl] 离心的 adj period ['piəriəd] 时期,期间
★naturally aspirated ['næ tʃərəli] ['æ spəreit]
① fprreinschiplaei[r'pirsinsdərpal]w原n则o;原r 理pumped,compressed
空气被吸入或泵入,压缩
②dasCecsoepoxhirqnrpawauseryieiognsgnedt[rcns:k充[epii:r,tk[入空keseə[i‘p],'n气注sfe‘喷sinu:入i点kds雾ewt]l燃];ə用,喷nobs燃f光雾u]由r次,料状耗n…序物,i尽n组;,顺g燃消成序c烧耗,构a;先导u成s后致e 消ex耗p,en做d功and ③scfieastneocvryhreptoccauniekelrrtevane:[et,f依:eeɔ循[::vi次[s'əev环]['的e‘n用tsn,ʃet,事ti力接p:]svə],事件推下rse完件t进来i,t冲成r],大o单,程实k事独e,现4,的4冲,-独程s立t向r的o2k冲e程tu转r换n i!nto 2-
轮机英语lesson-3
ship. 底座形成船舶双层底的一部分。
5. liner n. 内衬,衬套 cylinder liner 缸套,缸衬
China Maritime Police Academy
23. component n. 成分,组成,部件 = part 24. horizontally adv. 水平地 vertically adv.
垂直地 25. duct n. 粗而短的管子, 比较pipe 管道,
tube 试管 and hose 软管 26. shim n. 垫片 shims of different thicknesses
有重叠搭口的宽环 47. during the running-in period 在磨合期间
China Maritime Police Academy
48. thermal stress 热应力 49. to direct the cooling liquid flow 引导冷却
液流 50. to intensify the conventional ‘cocktail
It is secured ( 固 定 ) in the transverse( 横 向 的 ) direction by
means of bolts known as side-chock bolts ( 侧 楔 螺 栓 ) and in longitudinal( 纵 向 的 ) direction by means of end-chock bolt (端楔螺栓).
top 外部顶端成圆角 21. annular a. 环形的 to form an annular space 形成一
轮机中英文翻译
HYDRODYNAMIC DAMPING OF THE TORSIONAL VIBRATIONS OF THE SYSTEMSHAFT-SHIP'S PROPELLERFor ships' power plants with an internal combustion engine, whose important component is the propeller and shaft, a very topical question is the refinement of existing methods and the devising of new methods of calculating torsional resonance vibrations. This will make it possible to accurately determine the state of dynamic stress of the installation, and consequently also to determine the possibility of fatigue failure of its most heavily loaded elements.At present, calculations of the torsional vibrations of ships' propeller shafts, amounting to obtaining the amplitude response of the system, are carried out by taking into account the damping which, as a rule, is due to friction in the internal combustion engine, in elastic couplings, and the friction of the propeller against the water[1].Investigations in recent years showed that the damping of torsional vibrations in consequence of energy dissipation in the material of the propeller shafts is slight, and it is therefore usually neglected.Therefore, the prevalent role in the damping of the torsional vibrations of ships' power plants belongs to structural and hydrodynamic damping, whose studyand refinement is at present the object of researchers' ,endeavors.Damping of the propeller in the ship's power plant is the most important form of damping outside the engine in all forms of vibrations, except the so-called motor vibrations at which the amplitudes of the free vibrations in the shaft section are small. However, it is very difficult to obtain a formula for calculating the damping effect of the propeller, because it depends on an entire complex of factors such as the geometry of the propeller, the number of blades, the vibration frequency, etc. That is also the reason why the corresponding formulas determining the damping of the propeller were obtained experimentally on simulating installations, and they are not very accurate. Moreover, the formulas suggested by different authors yield different results when used in the same calculations.The methods used at present in the investigation and calculation of torsional vibrationsof ships' propeller shafts are based, as a rule, on the approximate method worked out by Terskikh [2]; this method entails the replacement of the real friction in the system by twonominal components, one of which has the properties of linear friction, and consequently, has a quadratic dependence of work on amplitude, and the other has the properties of dry friction with linear dependence of work on amplitude.In practice, friction in the elements of a ship's propeller shaft is not linear; however, the nonlinear problem of the damping properties of different components of the ship's power plant, especially of the propeller, led to difficulties in the solution of nonlinear differential equations, and in view of this, various approximate methods are used in practice, but they are not very accurate.Therefore, one of the ways of improving the accuracy of the calculations of torsional resonance vibrations is to continue the theoretical and experimental investigations, whose object would be to determine more accurately the elements of the propeller shaft and to solve the nonlinear problem of torsional resonance vibrations.The question of taking into account the energy dissipation due to hysteresis losses in the material in the calculation of mechanical vibrations has received sufficient attention; this included the elaboration of physically substantiated methods of calculating the vibrations of systems, which was done very successfully by the use of asymptotic methods of nonlinear mechanics [3].Up to the present, however, there do not exist any reliable methods of calculating vibrations for other kinds of energy losses (structural and aerodynamic damping).Pisarenko [4] suggested a new approach which makes it possible to solve the problem of taking into account not only the hysteretic energy dissipation In the material, but also stnlctural as well as aerodynamic kinds of damping, on the basis of a single method whose essence is that all kinds of energy losses in the vibrating system, regardless of their origin, are represented in the form of some hysteresis loops, separately for each kind of loss, and the areas of the hysteresis loops then characterize the respective part of the energy out of the peak value of potential energy of a unit volume of cylically deformed material of an elastic element of the vibrating system ("spring") with the given amplitude of deformation (stress), Here we have to proceed from the following nonlinear correlations between stress ξand relative deformationσin any single cyclically deformed element (spring) with peak value of ξfor the ascending and descending motion leading in a cycle to the formation deformationaof the hysteresis loop [5]:2n n 3=E 28ξσξδξξξ⎡⎤⎛⎫±-⎢⎥ ⎪⎝⎭⎣⎦(1) where E is the modulus of elasticity of the material; δ is the logarithmic decrement of the vibrations. Arrows pointing to the right refer to the ascending branch of the hysteresis loop; arrows pointing to the left refer to the descending branch.By introducing into (1) the decrement as a function of the factor on which it depends, we can generalize the approach used in taking hysteresis losses in the material into account to the case of taking other energy losses into account, losses that are due to any arbitrary causes, because in all cases energy is dissipated which was integrally accumulated in the vibrating system and which consists of the sum of the energies of unit volumes of the cyclicallydeformed material of an elastic element of the system (spring), and the latter is a function of the amplitude of deformation (stress). llais approach therefore makes it possible to use a single method.By integrating with respect to the volume of the cyclically deformed material, we can take into account any energy losses, summing them as hysteresis loops having the same shape whose magnitude depends on the level of the vibration decrements contained in the equation of the loop and obtained experimentally as a function of some factor. The above-mentioned hysteresis loops characterizing the energy losses in a unit volume of cyclically deformed mate; rial with deformation amplitude a ε may, generalized and schematically, be represented in the form()2n n 3=E 28M K ad ξσξδδδξξξ⎡⎤⎛⎫±++-⎢⎥ ⎪⎝⎭⎣⎦(2) where M δ is the vibration decrement characterizing the energy dissipation in the cyclically deformed material itself, which, as was shown above, depends on the deformation amplitude; K δ is the vibrational decrement characterizing energy losses in fixed joints (structural damping), which, as a rule, depends on the magnitude of the reactive moment acting in the node; ad δ is tile aerodvnamic vibration decrement, which may depend on various factors in dependence on the nature of the environment and its interaction with the vibratingelements.Thus, proceeding from relation (2) and taking into account the decrements it contains as functions of the respective factors, we may, by the methods of nonlinear mechanics [3],envisaging energy losses to be taken into account by integration with respect to the volume of tile cyclically deformed material of the vibrating system, construct the amplitude response of the latter in the resonance and near-resonance zones that are of interest to us; this will make it possible to evaluate the state of dynamic stress of the investigated system.Extending the above approach to the case of hydrodynamic damping of a propeller with critical vibrations of the propeller shaft, we devise, in analogy with expression (1), equations describing the outline of the hysteresis loop corresponding to the given type of damping, and we adopt them as initial ones:2a a 328h G γτγδγγγ⎡⎤⎛⎫=±-⎢⎥ ⎪⎝⎭⎣⎦(3) where G is tile shear modulus; h δ, hydrodynamic vibration decrement; a γ, amplitude of the cyclic torsional deformation; and γ, running value of the relative shear deformation.In order to simplify further calculations, we represent formula (3) in the forms y τττ ±= (4)where y τ is the stress,y τ=γG (5)s τis the frictional stress, 2328s h a a G γτδγγγ⎛⎫=±- ⎪⎝⎭(6) We assume that the cyclic deformation of the material ychanges with time cosinusoidallcos a γγθ= (7)Wherewt θ= (8)Taking (7) into account, we write expression (6) in the form()2312cos cos 8h G τδθθ=±- (9)Shear deformation of an element of the material of a circular rod, situated at thedistance p from the center of its cross section, is determined by the formula d dxϕγρρϕ'== (10) where ϕ is the angle of torsion of the rod; x is the axis of coordinates in the direction of the axis of the rod. The peak value of shear at the given point is equal tomaxa m d dx ϕγρρϕ⎛⎫'== ⎪⎝⎭ (11) If we substitute (10) into (5), and (11) into (9), we obtain:y G τρϕ'= (12)()2312cos cos 8m h G τδρϕθθ'=±- (13) Taking (12) and (13) into account, we write expression (3) in the form()2312cos cos 8h G G τρϕδρϕθθ''=±- (14)The magnitude of the torque acting in the cross section of the rod is determined by the formulaM dF τρ=⎰ (15) For a rod with completely circular cross section and outer radius max ρ=4, Eq. (15), taking (14) into account, assumes the form()4230023212cos cos 44rm h M d G G d πτρπρρϕπϕθθδρρ''==±⨯-⎰⎰ (16) or()21312c o s c o s 4p m M GI G I ϕπϕθθ''=±- (17) where 2/4r I P π= is the polar moment of inertia;310rh I d δρρ=⎰ (18)Since ()p p y GI GI d dx M ϕϕ'== is the elastic torque in an arbitrary cross section of the rod, Eq. (17) may be written in abbreviated form as follows:y s M M M =± (19)where sM is the "braking" torque due to hydrodynamic damping of the propeller inconsequence of its friction with the water, which, in accordance with expression (17), may be represented in the following manner:()21312cos cos 4m M G I πϕθθ'=±- (20) Where;/m m d const l dx lϕϕϕϕϕ''==== (21) ϕ is the full angle of torsion of a rod with length l at any instant, determined by the expressiony y p M lGI ϕϕ== (22)not taking into account the energy dissipation in consequence of the hydrodynamic damping of the propeller subjected to torsional vibrations; m ϕis its peak value.In fact, the angle of rotation of the end section of the rod with length l , takinghydrodynamic damping into account, can be determined on the basis of expressions (19), (20), and (22) by the formulas y p pM l Ml GI GI ϕϕ==+ (23) We denote the second term on the right-hand side of expression (23)s ϕ:()21312cos cos 4s m s p pM l I GI I πϕϕθθ==±- (24) Then Eq. (23), characterizing the true angle of rotation of the end section of the rod at any instant , may be written in abbreviated form as follows:y s ϕϕϕ=+ (25)In investigations and calculations, the propeller shaft is reduced to a system consisting ofconcentrated masses that have only inertial properties, and of joints that have only elastic properties.Figure I shows the initial structural simulator of the investigated system propellershaft-propeller, which is an elastic rod with a disk at the end. The mass of the shaft, which has only elastic properties, may be neglected in comparison with the mass of the disk.The forced torsional vibrations are effeeted under the influence of small periodic angular displacements 0ϕ of the constraint, proportional to the small parameterε[6]in the planeparallel to the plane of the disk: 0cos q wt ϕε= (26)where q ε is the peak value of the angle of rotation of the constrained section of the rod, max 0)(ϕε=q ; w is the angular frequency of the vibrations of the constrained rod.Then the expression of the total angle of rotation of the end section of the rod, i .e .of the disk, at any instant may be written in the form0cos q wt ϕϕϕϕε=+=+ (27)where ϕ is the full angle of torsion determined by Eq. (25), and taking this into account,we write expression (27) as follows:cos y s q wt ϕϕϕε=++ (28)If we apply to the system the torque of the inertial forces of the disk, using therebyLagrange's second-order equation, we obtain the differential equation of the motion of the disk at the end of the rod:Fig.1. Structural simulator of a torsionalvibration system with one degree of freedom.()22c o s y s d I c q wt dt ϕϕϕε++= (29) where c is the torsional rigidity of the rod,pGI c l = (30)L, length of the rod; and I, moment of inertia of the mass of the disk relative to the x axis of the rod, which is perpendicular to the plane of the disk.For the component o~ the angle of rotation of the end section of the rod s ϕ, the valuesin the ascending motion s ϕ and in descending motion s ϕ are different, in consequence of which Eq. (29) is nonlinear. The given nonlinearity of "hysteretic" origin, which is due to hydrodynamic damping, is very slight, and it is expedient to express this by introducing the small parameter εinto the corresponding term of Eq. (29): :()22c o s y d I c f q w t dt ϕϕεϕε⎡⎤++=⎢⎥⎣⎦(31) Where()()21312cos cos 4m s pI f I πϕεϕϕθθ==±- (32)We introduce the following notation: 2cl pGI lI ρ== (33)()()2f ρεϕεϕ=Φ (34)where p is the natural angular frequency of the torsional vibrations of the system. In view of (33) and (34), Eq. (31) may he written in the form()2212cos d q wt dtϕρϕεεϕ+=-Φ (35) where 1/q q I =;()()222312cos cos 4m p I I πρϕεϕθθ⎡⎤Φ=-±-⎢⎥⎢⎥⎣⎦(36) Following the methods of Krylov and Bogolyubov [7], we will seek the general solution of Eq. (35) with weak distortion in the form of an expansion into a series with powers of the small parameter ε:()()()21122cos u wt u u wt u u wt ϕϕεψεψ=++++++⋅⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ (37)Where wt ϕτ+=; w is the angular frequency of the distorting force; τ, phase of the vibrations; and ψ, phase shift.The magnitudes u and ψ are functions of time, and they are determined from the differential equations()()()()()()212212212p+B B p w+B B du A u A u dtd u u dtd u u dtεετεεψεε=++⋅⋅⋅=++⋅⋅⋅=-++⋅⋅⋅或 (38)Fig. 2. Dependence of the hydrodynamic decrement on the frequency of the forced torsional vibrations.(The dots show the experimentalvalues of the hydrodynamic decrements.)where()()212B B w u u ρεε=+++⋅⋅⋅2012ψψεψεψ=+++⋅⋅⋅With vibrations in the resonance zones, when the phase shift ψ is a constant magnitude, it may be assumed that the amplitude u and the phase τ do not depend on the phase shift ψ,and they may be determined by using the differential equation (38).The terms 1u and u2 of the series (37) are periodic functions of τ with the period2π.Thus, the solution of Eq. (35) reduces to finding the functions u1(u, T); u2(u, T) .... ,At(u); A2(u) ..... B1(u) ; B2(u) .....We will omit the procedure of solving Eq. (35), since its method was explained in detail in [3], and we present the final expressions for determining the phase shift in the first approximation and for plotting the amplitude response of the investigated system, taking hydrodynamic damping into account:0112cos 1p u I q I ψε⎛⎫=±-- ⎪ ⎪⎝⎭(39) 2111q 3142u p p I w I p I I επ⎛⎫⎛⎫=-±- ⎪ ⎪ ⎪⎝⎭⎝⎭(40) In Esq. (39) and (40) the unknown is 1I , which is determined on the basis of (18) from the expression310r h I d δρρ=⎰The hydrodynamic decrement contained in this formula may be represented in the formh h1h2h3δδδδ=++ (41)where h1δ is the component of the hydrodynamic decrement that depends on the frequency of the forced torsional vibrations; h2δ, component of the hydrodynamic decrement that depends on the rotational frequency of the propeller shaft with the propeller carrying out forced torsional vibrations; and h3δ, component of the hydrodynamic decrement that depends on the speed of the flow of water past the propeller in forced torsional vibrations.The above components of the hydrodynamic decrement may in turn be represented by the following expressions :111maxh m k k t γδγ∂⎛⎫==⎪∂⎝⎭ (42) Where 11k tg α= (43)is the proportionality factor, sec; 1a , slope of the straight line ()w f h =δ to the axis of the abscissas, obtained experimentally (Fig. 2); m γ, pack value of the shear deformation rate22h k n δ= (44)where 2k is the proportionality factor, 1sec sec -⋅,22k tg α= (45)2αis the slope of the straight line ()n f h =δ to the axis of abscissas obtained by experiment (Fig. 3a); n, rotational frequency of the propeller, 1sec -⋅rev ;33h k V δ= (46)where 3k is the proportionality factor, 1sec -⋅m33k tg α= (47)3α is the slope of the straight line ()V f h =δto the axis of abscissas obtained by experiment (Fig. 3b); V is the flow rate of water past the propeller, 1sec -⋅mLet us examine in more detail the expression for 1h δ. It is known from Esq. (10) and (21) thatd dx ϕγρρϕ'==;d const dx lϕϕϕ'=== Then the shear deformation may be expressed in the following way:l ϕγρ= (48)where ϕ, in solving Eq. (35) in the first approximation, is equal to()cos u wt ϕψ=+ (49)With this taken into account, the expression for shear deformation assumes the form()cos u wt l ρψγ+= (50)If we substitute (50) into (42) and differentiate, we obtain:()11cos uw wt k l ρψδ+=- (51)For the case of the peak value of the shear deformation rate, which is being investigate here, ()sin 1wt ψ+=. Then we have31h uw k l ρδ= (52)Substituting (52), (44), and (46) into Eq. (18), we write:311230ruw I k k n k V d l ρρρ⎛⎫=++ ⎪⎝⎭⎰ (53) If we integrate expression (53) and substitute r = d/2 into the r e s u l t , where d is the shaft diameter, we obtain finally :()34112316064k uwd d I k n k V l =++ (54) where w = p in the first approximation, in accordance with (38).If we substitute (54) into (39) and (40), we have: ()321230125cos 1u k wd u k n k V l q ψπε⎡⎤++⎢⎥=±-⎢⎥⎢⎥⎢⎥⎣⎦ (55)Fig. 3. Dependence of the hydrodynamic decrement on the rotational frequency ofthe propeller (a) and on the flow rate around the propeller (b). (Notation isthe same as in Fig. 2.)Fig. 4. Theoretical amplitude responses of the investigated system for different rotational frequencies of the propeller: 1) res w = 620.271sec -,n = 0,V = 0; 2) res w = 618.831sec -,n = 1.67 rev.1sec -,V = O; 3) res w = 617.39 1sec -,n = 3.33 rev.1sec -, V = 0; 4) res w = 615.95 1sec -, n = 5.00 rev.1sec -, V = O;5) res w = 614.58 1sec -, n = 6.67 rev'1sec -,V = 0; 6) res w = 613.08 1sec -,,n =8.33 rev.1sec -, V = 0; 7) res w = 611.701sec -, n = i0 rev. 1sec -, V = O. (For comparison, tile dots show the experimentally obtained resonance frequencies.)()()2122311231335212082uk wd k n k V uk wd q w l k n k V p l u επ⎡⎤++⎢⎥⎡⎤⎛⎫=-++±-⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦ (56) where the coefficeints kl, k2, k3 are calculated by Esq. (43), (45), and (47) on the basis of experimental data.Equations (55), (56)enable us to determine the phase shift and to plot the amplitude response with critical vibrations of the propeller shaft, taking hydrodynamic damping of thepropeller into account.For experimental investigations with the object of confirming the above theoretical conclusions, the device K-80 was built; it is described in detail in [8].To calculate the vibration decrements, we used the energy method, according to which relative energy dissipation is determined by the formula [9]frW W f ψ-=∏ (57)where W is the total power expended on the excitation of torsional vibrations, W; fr W , power expended on overcoming friction in the device itself, W; f, frequency of thesteady-state torsional vibrations of the propeller, Hz; and ∏, potential energy of the twisted shaft, corresponding to the amplitude of the steady-state vibrations.We represent the correlation between the relative energy dissipation and the logarithmi decrement of the vibrations in the form [I0]2ψδ= (58)Fig. 5. Theoretical amplitude responses of the investigated .system for different flow rates: 1)res w = 620.27 1sec -, V = 0, n = 0; 2) res w = 619.181sec -, V = 0.5m.1sec -, n = 0; 3) res w = 618.081sec -, V = 1.0 m 1sec -, n = 0; 4) res w = 616.991sec -, V = 1.5 m.1sec -, n = 0; 5) res w = 615.941sec -, V = 2.0m.1sec - , n = 0; 6)res w = 614.861sec -, V = 2.5 m.1sec -, n =0. (The meaning of the dots is the same as in Fig. 4.)Fig. 6. Theoretical amplitude responses of the investigated system: 1)res w = 620.271sec -, n = 0, V = 0; 2) res w = 618.831sec -, n = 1.67 rev. 1sec -, V = 0; 3) res w =618.081sec -, n = O, V = 1 m.1sec -; 4) res w = 611.331sec -, n = 1.67 rev.1sec -, V =1 m.1sec - (file meaning of the dots is the same as in Fig.4.)where δ is the vibration decrement. Taking Eqs. (57) and (58) into account, we write the expression for determining the hydrodynamic decrement of the propeller in the following form2frW W f δ-=∏ (59)Figure 2 shows the experimentally obtained dependence of the hydrodynamic decrement on the frequency of the forced torsional vibrations of the propeller; it is a straight line at the angle a1 to the axis of abscissas.Figures 3a, b show the experimentally determined dependences of the hydrodynamic decrement on the rotational frequency of the propeller and on the flow rate of the water past the propeller; they are straight lines at the angles a2 and a3, respectively, to the axis of abscissas.Using the experimentally found angles a1, a2, and a3, we calculate by Esq. (43), (45), and (47) the coefficients kl, k2, and k3, and with their aid we can determine the phase shift by Eqs.(55)and(56)and plot the amplitude responses of the investigated system for differentrotational frequencies of the propeller and different flow rates of the water past the propeller.Figures 4-6 present the resonance curves obtained by calculation.A comparison of the resonance frequencies obtained by calculation using the formulas of the theoretical section with those experimentally determined shows the error of calculation lies within the limits 0.3-0.4%.This ensures an accuracy sufficient for engineeringcalculations.CONCLUSIONS1.It follows from an analysis of the obtained results that a propeller in a vibrating system exerts a damping effect which makes it possible to greatly reduce vibration amplitude and dynamic stress. Moreover, calculation of the torsional vibrations of a ship’s propeller shaft taking hydrodynamic damping of the propeller into account makes the resonance frequencies 2-5%more accurate ,even with relatively small hydrodymic decrements. Obviously, for those types of propeller shafts where the damping of the propeller is predominant, the accuracy of the resonance frequencies will be substantially enhanced.2. Since we know the experimentally obtained dependences of the hydrodynamic decrement of the vibrations of the propeller on the frequency of the forced torsional vibrations, on the rotational frequency of the propeller, and on the flow rate of the water past the propeller, and also the principal characteristics of the conditions under which the propellerwill operate (rotational frequency of the main engine in all operational regimes, and the speed of the ship), we can calculate and plot the amplitude responses of the systempropeller-shaft-propeller, thereby determining the resonance frequencies and the regions in which the torsional vibrations will have large amplitudes.3. The suggested approach of theoretically evaluating the state of dynamic stress of ships' propeller shafts subjected to vibrations, taking into account the principal kinds of energy losses in the vibrating system occurring under real operating conditions, is well confirmed by experimental data obtained on a simulator specially devised for this purpose, and it may be recommended for the stress analysis of ships' propellers at the design stage, with the object of predicting their state of dynamic stress in operation.船舶螺旋桨轴系扭振的流体阻尼船舶内燃机动力装置主要有螺旋桨和轴的组成,其计算扭振的主要问题是现有方法的改良和发明新的计算方法。
30期轮机英语汉译英
3080177.PSC官员在检查机械处所时,如果发现阀手轮丢失、水和油长期渗漏的迹象或机器底座的延伸性锈蚀,则说明船舶对系统的维护不能令人满意。
如果发现大量的临时修理,例如管路卡箍和水泥堵漏箱,则表明船舶不愿意进行永久性修理。
During inspection of the machinery spaces, if the PSCO found missing valve hand wheels, evidence of chronic water and oil leaks or extensive corrosion of machinery foundations are pointers to an unsatisfactory organization of the system’s maintenance. If found a largenumber of temporary repairs, including pipe clips or cement boxes, will indicate reluctance to make permanent repairs.78.我轮仍在安特卫普港修理主机。
新的机座和曲轴已经到船,发动机制造厂的两名代表已经于10月25日到船组装发动机。
一个活塞组件和一个缸套需要换新。
发动机将于10月28在原处找正和定位,工程预计还需要七天。
My vessel is still at ANTWERP undergoing repairs to the main engine. Now bedplate and crankshaft have been delivered to the vessel and two engine manufacturers’ representatives were, as of 25/10, carrying out the engine rebuild. One piston assembly and one liner had to be renewed. The engine would be in position to align and chok 28/10. futher work is expected to take an additional seven days.3080277. PSC官员如果发现大量的临时修理,例如管路卡箍和水泥堵漏箱,则表明船舶不愿意进行永久性修理。
轮机英语 翻译 lesson 6
第6 课起动系统柴油机是按所需方向,以适当顺序向各缸通入压缩空气起动的。
所供压缩空气以30~40bar 的压力存于气罐或气瓶内,随时可用。
有时压缩空气通过减压阀降压以备他用。
空气瓶靠空压机充气。
船级社对空气系统的设计包括空气瓶和空压机的数量及容量、辅助及放残设备的设置有严格要求。
所储存的压缩空气量可进行多达12 次的起动。
起动空气系统通常装有连锁装置,若其他设备没准备好,则不允许柴油机起动。
压缩空气通过大口径管道进入遥控操作的止回阀或自动阀,进而到达气缸起动阀。
气缸起动阀开启,空气进入相应的气缸。
气缸起动阀及自动遥控阀由控制空气系统控制。
按所需运转方向,每个气缸起动阀在(活塞)经过上止点后立即开启,在排气口适当开启前关闭。
这13样,在压缩空气经主管路进入柴油机的起动系统时,至少进入活塞处于对应做功冲程某一位置的某些缸中,结果,施加于活塞上的压力迫使柴油机转动。
当达到足够高转速,如30 r/min 时,起动空气切断,燃油喷入,使气缸发火并正常连续运转。
控制空气来自主空气管并通入由柴油机起动操纵杆控制的起动控制阀。
当操作起动手柄时,控制空气使控制导阀手动开启或(当驾驶台安装控制系统时)靠气动液压缸开启。
控制空气也通入空气分配器。
空气分配器通常由柴油机凸轮轴驱动,它将控制空气通入气缸起动阀。
此控制空气按所需运转方向以恰当的顺序通入。
当不用气缸起动阀时靠弹簧保持关闭。
当它由控制空气打开时,压缩空气便直接从空气瓶进入气缸。
柴油机着火后,起动手柄拉回。
控制空气控制阀回复到关闭位置,控制空气管路和遥控空气起动阀放气并使其关闭。
起动空气系统连有许多连锁装置,以保护机器及人身安全。
它们是:1.盘车机连锁阀。
在盘车机没脱开时,该阀可切断起动空气控制管路,防止柴油机起动。
2.控制空气连锁阀。
在柴油机运行时,当主控制杆操纵控制空气连锁阀时,防止起动空气系统工作。
控制空气在起动进行时,即在主控制手柄离开起动位置前,控制空气连锁阀保持开启,但在此之后保持关闭,且在主控制手柄移回停车位置前不再打开。
轮机英语30课翻译
can now be closed and the field current adjusted to enable the generator to take its share of the
动辅助设备的电动机,也用于甲板机械、照明、通风和空气调节设备。A constanபைடு நூலகம் supply of
electricity is essential for safe ship and machinery operation, and therefore standby or additional
flame, i.e. contain any fire or explosion.它必须能阻止火焰的传递,也就是能容纳任何火焰或爆
炸。
Alternating current supply 交流电的供电
The Supply to a distribution system will usually come form(from?) two or more generators
and the bus‐bars, so that one instrument can display, one of a number of values. 这使他们能相
互切换,例如,相与相之间,或并入发电机与汇流排之间,这样一个仪表能显示多个测量值
中的一个。The wattmeter measures the power being used in a circuit, which, because of the
轮机英语新版教材译文(党坤)
r/min)用于发电机,并且有时做推进主机,用减速箱提供 90~120 r/min 的转速。
工作循环
柴油机可设计成二冲程循环或以四冲程循环工作,二者解释如下: 四冲程循环 图 2-2 示出了典型的两转四冲程循环的过程顺序。该图通常从上止点(TDC,发火)开始 绘制,因此就从上止点(TDC,扫气)开始解释。上止点又叫内止点。 沿该图顺时针看,开始时进排气阀都是打开的(所有现代四冲程柴油机均有气阀机构)。 如果柴油机是自然换气或带有径流增压器的小型高速机,气阀的重叠时间,即两气阀同时开 启的时间将很短。排气阀将在上止点后(ATDC) 100 左右关闭。
在机座上平面装有若干铸铁或锻钢制成的 A 形机架,机架安装在机座的横梁上,并用 螺栓固定。A 形机架顶部有一个结实的框架结构叫扫气箱。该扫气箱分若干段,每段均带有 垂直法兰,通过螺栓可将它们在链传动装置前 1~3 缸的部分连成一体,链传动装置后 4 缸 ~6 缸的部分连成一体。链传动装置将曲轴和凸轮轴连在一起,封闭在链传动箱的壳体内。
7
第 3 课 柴油机结构
机座和机架
在大多数情况下机座是焊接结构,用螺栓固定在构成船舶双层底的底座上。它在横向借 助于侧楔垫螺栓,在纵向借助于端楔垫螺栓固定。
曲轴安放在机座横梁的轴承上,这些轴承称作主轴承。每个轴承由两块轴瓦组成,两块 轴瓦由在机座上加工出的瓦座支撑,用双头螺栓和轴承盖固定,即推力轴承位于发动机的尾 部,可同机座制成一体,也可同机座分开。
带齿轮减速器的中速柴油机 图 1-2 所示的火车轮渡船的机舱布置采用四台中速柴油机(500 r/min )。其齿轮装置以 170 r/min 的转速双螺旋驱动两个变距桨。减速装置驱动轴带发电机,用于提供海上所需电力。 在最低高度的机舱空间中,这种在机舱底部还布置有各种各样的泵及辅助机械。废气锅炉及 其烟囱位于左右两舷,紧靠船体板。
轮机英语翻译及课后答案
轮机英语翻译及课后答案1. how long have you worked on board?I have worked on board for 10 years.1。
你多长时间在船上工作的?我在船上工作了10年。
2. which certificate do you have now?I have the second engineer's certificate.2,该证书你有吗?我有个工程师的证书3. what is your marital status?how many departments are there on board?I am married. There are there departments on board.3,什么是您的婚姻状况?有多少部门在船上呢?我结婚了。
在船上有三个部门。
4. how many people are there in your family? Are you married?There are there people in my family. Yes,I am married.4,有多少人在你的家庭吗?你结婚了吗?那里有我的家人的人。
是的,我结婚了5. how many countries have you ever been to?I have been to seven countries.5,有多少个国家,你有没有去过?我到过7个国家。
6. when did you begin to work on board? What kind of ship have youworked on?I began to work on board in 2000.i have worked on bulk sarriers.6,你什么时候开始在船上工作的?什么样的船你工作呢?我开始在船上工作2000.i对散装sarriers工作。
轮机英语翻译课文
轮机英语翻译课文LESSON 1Diesel enginesThe majority of ships around the world continue to be powered exclusively by diesel engines.世界范围内大多数船舶都是采用柴油机作为动力。
The predominance of diesel engines has come from improved engine efficiencies and designs compared to other forms of propulsion such as steam or gas turbines.与蒸汽机、燃气轮机等形式的动力装置相比,无论是效率上的提高,还是设计上的进步,柴油机都体现出了一定的优势。
Many combinations and configurations of diesel engine power plant exist. All provide the energy to do the work of moving the ship using diesel engines.存在有很多种联合形式及结构形式的柴油机动力装置,他们都能够利用柴油机为船舶提供推动力。
Slow speed diesel engines 低速柴油机For equivalent power output, the two-stroke diesel engine is significantly lighter than its comparable four-stroke relative.对于相同的功率输出,相对于四冲程柴油机,二冲程柴油机的重量明显轻很多。
This is most apparent for large power requirements where the two-stroke engine produces much more power for the same weight.对于大功率需求场合这是一个最明显的优势,二冲程柴油机能够在相同的重量情况下,发出更大的功率。
轮机英语34课翻译
过程应持续约4h。
Check through the crankcase, etc. for any tools, obstructions, or waste material and remove
telephones to the bridge and Chief Engineer’s office. 确认机舱车钟功能正常,同时查看(机舱)
与驾驶台和轮机长办公室间的通话。
Check the reversing and control gear, running direction safety interlocks, auto‐shut‐down
from all the bearings and then close up the crankcase. 起动滑油泵,在工作压力下检查各轴承
油流是否均匀一致,之后关闭曲拐箱。On engines having oil cooled pistons the lubricating oil
pre‐heater must be put into operation and the rate of heating so arranged that the temperature
air system. 向空气瓶打气至最高压力,将空气瓶及空气系统放残。The scavenge drains should
be cracked open. The drains from diaphragm glands should be slightly open. 稍稍开启扫气箱放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课船用柴油机是怎样工作的柴油机是一种内燃机,通过把燃油喷入高温高压的燃烧室而发火。
船用柴油机是一种在船上使用的柴油机。
其工作原理如下:一定量的新鲜空气被吸入或泵入汽缸并被运动的活塞压缩至很高的压力。
空气被压缩时,温度升高,便点燃喷入汽缸的油雾。
燃油的燃烧增加了缸内空气的热量,使空气膨胀并迫使发动机活塞对曲轴做功,随之驱动螺旋桨。
两次喷油期间的运转过程叫一个工作循环。
它由一些程序固定的过程组成。
这个循环可在两个行程或四个行程内完成。
四冲程柴油机的工作循环需四个独立的活塞行程,即吸气,压缩,膨胀和排气。
如果我们把吸气和排气行程与压缩和膨胀行程结合起来,四冲程柴油机就变成了二冲程柴油机,如图1(a)~ (b)所示。
A 扫气B 压缩C 喷油D 排气二冲程循环从活塞离开其行程底部,即下止点(BDC)向上运行开始,气缸侧面的进气口即扫气口是打开的[图1(a)],排气口也是打开的。
经压缩的新鲜空气充入气缸,通过排气口将上一行程的残气吹出。
当活塞上行至其行程的1/5时,关闭进,排气口,随后空气在活塞上行中被压缩[图1(b)]。
当活塞上行到行程底部,即上止点(TDC)时空气的压力和温度都上升到很高的数值。
此时喷油器把很细的油雾喷入灼热的空气中,燃烧开始,在气体中产生更高的压力。
随着高压气体的膨胀,活塞被推动下行[图1(c)]直到它打开排气口,燃烧过的气体开始排出[图1(d)],活塞继续下行直到它打开进气口,另一个循环开始。
在二冲程柴油机中,曲轴转一周产生一个动力行程,即做功行程;而在四冲程柴油机中,曲轴转两周才产生一个动力行程。
这就是为什么从理论上说二冲程柴油机能产生相同尺寸的四冲程柴油机的两倍功率。
然而,扫气不充分和其他损失使这一优势降到大约1。
8倍。
在船上,每种柴油机都有他的应用。
低速(即90~120 r/min)主推进柴油机以二冲程工作。
在此低速时,机桨间不需减速箱。
四冲程柴油机(通常以中速运转,转速在250~750r/min)用于发电机,并且有时作推进主机,用减速箱提供90~120 r/min的速度。
阅读材料译文工作循环柴油机可设计成以二冲程循环或四冲程循环工作,二者解释如下:四冲程循环图2示出了典型的两转四冲程循环的过程。
该图通常从上止点(TDC,发火)开始绘制,从上止点(TDC,扫气)开始解释。
上止点又叫内止点。
沿该图顺时针看,开始时进,排气阀都是打开的(所有现代四冲程柴油机均有气阀机构)。
如果柴油机是自然换气或带有径流增压气的小型高速机,气阀的重叠时间,即两气阀同时开启的时间将很短。
排气阀将在上止点后(ATDC)10º左右关闭。
推进柴油机和绝大多数1000r/min以下运转的辅助发电柴油机几乎都采用涡轮增压,并设计成在这一时刻让大量的扫气空气贯穿流动以控制适当的叶片温度。
在这种情况下,排气阀将保持开启直至上止点后50~60º关闭。
随着活塞在其吸气行程向外或下止点下行,它将吸入大量新鲜空气。
为使吸入空气量达到最大,并补偿因阀落座造成的开启量减少或吸气惯性作用,进气阀保持开启,直到下止点后大约25~30º(145~155ºBTDC)。
这一过程称之为进气阀关闭。
充入的空气然后被上行的活塞压缩至大约550ºC。
依柴油机的型号和转速而定,大约在10º~20ºBTDC,喷油器喷入精细雾化的燃油。
喷入的燃油在2~7º内着火(也依机型而定),活塞在膨胀行程下行,在30~50º的期间内燃烧。
活塞的运动通常有利于诱导空气助燃。
在大约120~150ºATDC,排气阀打开(EVO)。
这样选择正时能迅速将缸内气体排至排气管。
这样可以:(a)保留足够的能量驱动废气涡轮增压器;(b)减小缸内压力在下止点时达最小值以减小排气行程消耗的泵气功。
上行的活塞驱赶残留的废气,在70~80ºBTDC,进气阀打开,这样向外流动的气体惯性加上正的压差(此时通常在汽缸中是存在的),就产生了空气对废气的贯穿气流以清扫汽缸。
如果柴油机是自然换气的,进气阀开启约在上止点前10º。
工作循环重新开始。
二冲程循环图3示出了典型二冲程循环的过程,正如其名称所指,工作循环是在曲轴转一周内完成的。
图 3二冲程柴油机总是有进气口的,该气口被下行的活塞打开时使空气进入汽缸。
废气可以经与邻近的排气口由同一活塞控制排出(回流扫气),或经气缸另一侧的排气口排出,或经排气阀排出(直流扫气)。
从上止点开始,燃烧已经进行。
排气在上止点后110~120º开始,进气在随后20~30º,即上止点后130~ 150º开始迅速吹扫气缸。
用这种方式,以音速流动的废气靠惯性促使空气迅速流过气缸,以产生最小的(新废气)掺混,因为所有未排出的废气都将降低用于下一行程的空气量。
在压缩行程,排气口应当在进气口前关闭以使充气量最大,但如果两个过程是同一活塞控制的,发动机的几何形状回妨碍实现这一点。
这种情况可在有排气阀的柴油机中实现。
在任何情况下,进气口都将在下止点后,以和下止点前开启时相同的角度关闭,即在下止点后130~150º关闭,排气口在同样的角度范围内关闭。
喷油在上止点前约10~20º开始,角度依转速而定。
燃烧同四冲程机一样持续30~50ºLESSON 2柴油机结构(I)一、机座和机架机座在大多数情况下是焊接结构,用螺栓固定在构成船舶双层底的底座上。
它在横向借助于侧楔垫螺栓,在纵向借助于端楔垫螺栓固定。
曲轴安放在机座横梁的轴承上,这些轴承称作主轴承。
每个轴承由两块轴瓦组成,两块轴瓦由在机座上加工出的瓦座支撑,用双头螺栓和轴承盖固定。
推力轴承位于发动机的尾部,可同机座制成一体也可同机座分开。
在机座上平面装有由若钢铸铁或锻钢制成的A字形机架,机架安装在机座的横梁上,并用螺栓固定。
A形机架顶部有一个结实的框架结构叫扫气箱。
该扫气箱分若干段,每段均带有垂直法兰,通过螺栓可将他们在链传动装置前1~3缸的部分连成一体,链传动装置后4~6缸的部分连成一体。
链传动装置将曲轴和凸轮轴连在一起,封闭在链传动箱的壳体内。
二、气缸和气缸盖在扫气箱上部,每个气缸装有一个坚固的铸铁框架。
这些框架称作气缸体或冷却水套,并带有垂直法兰,与扫气箱一样,可用螺栓将各框架连成首尾两组。
基座、机架和气缸用长贯穿螺栓连到一起,形成一个较大的坚实结构,减少了使用时产生的变形及振动。
气缸套有铸铁制成,缸套表面有时镀铬。
气缸套向下延伸到扫气箱。
缸套与扫气箱顶部的密封由橡胶圈实现,橡胶圈安装在缸套上切削的环槽内。
在气缸套伸入扫气箱内的部位有一列称为扫气口的开口。
气口的高度是这样布置的,当活塞位于下止点时,活塞上沿刚好打开气口。
气口在缸套上以大约20º的倾角制成,其结果是使扫气旋转。
各缸顶部由特殊耐热钢制成的缸盖封闭。
缸盖装在缸套顶部的平面上,并由机加工的凸肩定位。
密封圈嵌入在缸盖锥形面时必须十分小心。
气缸盖和气缸套用旋入缸体中的双头螺栓固定。
缸套上有钻空用于润滑,新型的缸套在其最上部还有钻空用于冷却。
每个缸盖上有一个大型中心孔,用于安装排气阀,还有两到三个空用于装喷油器,还有些孔用来安装起动阀、安全阀、示功阀、以及作为排气阀冷却水腔的进出口。
A.SULZER船用柴油机SULZER RND-M 型柴油机是单作用、低速、二冲程、可逆转发动机。
每个汽缸的运动机构由活塞、活塞杠、连杆及所连接的单柄曲轴组成。
机座制成纵向箱形梁的双壁结构。
A形框架安装在机座上,支撑机架和气缸体,整个机座、A形框架和气缸体组件用贯穿螺栓连在一起形成一个刚性结构。
为了承受曲轴横向弯曲负荷,主轴承盖由撑杆螺栓固定。
这种强化结构对于承受经缸头传到柴油机结构上的燃烧负荷是必要的。
曲轴是半组合式的,曲柄臂设计成部分平衡回转质量。
气缸盖被制成单体件,并装有在中央的喷油器,起动空气阀、安全阀和示功阀。
废气驱动定压式的涡轮增压器提供扫气空气。
采用回流式扫气并带有一台电动的自动运行的辅助鼓风机,以便低速和机动操作时使用。
润滑油供到低压和中压系统,低压系统向主轴承和其它轴承供油,十字头轴承由中压系统供油,铰链管把滑油送到十字头轴承。
汽缸、汽缸盖以及活塞由水冷却,伸缩套管把水送入活塞。
燃油喷射采用独立喷射系统,并且用Woodward型液压调速器调速。
RL型柴油机以RND-M型为基础,活塞行程加长,提供更大的输出功率和更低的转速。
其新特征包括带有推力轴承的单壁机座、活塞头和其他主要燃烧室部件钻空冷却,及用水在接近热表面的钻空中循环。
B SULZER RTA 型柴油机SULZER RTA84C是一种典型的低速二冲程十字头式长行程现代柴油机。
其缸径为840mm,行程为2400 mm,转速为100r/min,4 到12缸间均产品,也可特别为大型快速集装箱船生产。
其设计及结构和RTA2型系列相似,RTA2系列使汽缸尺寸降到380mm。
机座是由钢板和一些铸件焊接构成的单壁深墙箱形结构,在焊接的坚实A形机架上装有各冷却缸套,它们由螺栓连成一体形成缸体。
这些机件组成了柴油机的强固整体框架。
整个框架结构由贯穿螺栓垂直预紧。
缸套为铸铁合金。
其上端是一坚实环台,坐落在汽缸体上,它承受很大的气体负载。
缸套钻空冷却,可调节水流以维持合适的温度。
缸套下端在扫气箱内,不进行冷却。
在不同高度位置对气缸进行润滑以降低汽缸磨损率。
缸盖为坚实的锻钢件,采用钻孔冷却以减少热应力,并传递喷油器套的热量,使排气阀座用缸盖冷却水集中冷却。
排气阀用84#镍铬钛合金(Ninonic80)制成,并通过安装在阀杆上的叶片转动。
他靠液压开启,靠空气弹簧作用关闭,开启的液体压力来自凸轮驱动的操纵机构。
活塞带有合金钢的活塞头,并有5道压缩环,安装在镀铬的环槽内,活塞有一短的铸铁活塞裙。
活塞用油冷却,既采用震荡冷却的方法,也采用小型喷嘴注射的方法,将油通入紧贴活塞头底面和在活塞环槽背面的孔中。
冷却油通过活塞杆中的钻孔从十字头的铰接杆供入和返回。
活塞杆与单体十字头上表面相连,并连续贯穿整个下半部和上端轴承。
上端轴承材料为白合金,靠压力油润滑。
十字头导向滑块与十字头各端相连。
半总成式曲轴采用倒角内缩的曲柄以增大主轴承面积,主轴承盖由装在机架内的撑杆螺栓固定。
凸轮轴由齿轮驱动,配有伺服器以便在倒车运行时给燃油泵和起动空气分配器重新定时。
高压油泵为凸轮驱动阀式油泵,带可变发火定时调节,以保持低速时高效燃烧。
每个高压油泵向对称布置的装在缸盖上不进行冷却的三个喷油器供油。
在不喷油时热的燃油在喷油器中循环。
这种柴油机采用直流扫气,定压增压,带有高效的非冷却的透平增压器,在低速运行时,用两台高速电动辅助风机作补充。
柴油机结构(II)一、活塞及活塞杆活塞由其下部一铸铁制成的活塞裙以及上部一耐热钢制成的活塞头组成。