《材料科学基础》考研复习知识点
石德珂《材料科学基础》考点精讲5
瓶内 C =k槡p0,瓶外 C′=0
因此,J=-DdC =-Dc-c′=-Dk槡p0
dx
h
h
措施:改变容器材料,减小 D和 k;降低容器内储存氢气压力 p0;增加壁厚 h。 二、扩散第二定律(菲克)(非稳态扩散,dC/dt≠0) 1.Ct=x(DCx) =D2xC2
— 149—
C— t
浓度随时间的变化率,kg/(m3·s)
[解]详见视频。 [例 4] 钢的渗碳有时在 870℃而不是在 927℃下进行,为什么?已知碳在 γ-Fe中的扩散常数 为 2.0×10-5m2s-1,扩散激活能 Q=1.4×105J/mol(R=8.31J/mol·K),请问在 870℃下渗碳要多少 小时才能得到相当于在 927℃下 10小时的渗碳深度? [解]详见视频。
— 152—
硝酸酒精 500K 20钢 渗碳后空冷 表层全脱碳,白亮部分为铁素体 次表层为部分脱碳层,即珠光体 +少量铁素体 过渡区为珠光体 +铁素体(白色网块)
[例 3] 菲克第二定律的解之一是误差函数解,可用于铁的渗碳过程。若温度固定,不同时间碳 的浓度分布如图所示。已知渗碳 1小时后达到某一特定浓度的渗碳层厚度为 0.5mm,问再继续渗碳 8 小时后,相同浓度的渗碳层厚度是多少?
-
互扩散系数—由 A和 B组元构成的扩散偶中,D =xBDA +xADB 代表两组元的综合扩散系数,称 为互扩散系数或化学扩散系数。
— 148—
调幅分解 — 是指过饱和固溶体在一定温度下分解成结构相同、成分不同的两个相的过程。 [例题] 名词解释 上坡扩散 反应扩散 柯肯达尔效应…….
第五章 扩散与固态相变
本章考研要求 一、扩散定律 二、扩散的微观机制 三、扩散的驱动力 四、反应扩散 五、扩散的影响因素
材料科学基础考研复习
材料科学基础考研复习材料科学基础是材料科学与工程学科中的一门基础课程,其内容涉及材料科学的基本理论、基本原理和基本方法,是进行材料科学研究和工程应用的基础。
考研复习材料科学基础需要系统地学习和理解相关知识点,加深对材料科学的理论和实践应用的认识。
1.材料工程基础知识:包括材料科学的发展历史、材料分类与特性等知识。
这些知识对于理解和掌握材料科学的基础概念和原理非常重要。
2.结构与性能关系:掌握材料的微观结构与宏观性能之间的关系。
了解材料的结构特点,如晶体结构、非晶态结构等,并能够解释材料性能改善的原因。
3.材料制备技术:学习不同材料的制备方法与工艺,如液相法、气相法、固相法等。
了解各种制备方法的特点及其对材料性能的影响。
4.材料测试与分析技术:包括材料的物理性能、化学性能和机械性能等测试方法与技术。
学习各种常用测试仪器和分析方法,如扫描电镜、透射电镜、X射线衍射等。
5.材料性能与应用:了解材料的各种性能指标,如强度、硬度、导电性、磁性等,并能够解释不同材料的性能应用特点。
在复习材料科学基础时,可以通过以下几个途径进行:1.整理笔记:将课堂上的重点内容进行整理和归纳,形成自己的复习笔记。
可以通过制作思维导图、总结重要公式和推导过程等方式,帮助加深对知识点的记忆和理解。
2.刷题巩固:通过解答一些典型的习题和试题,巩固所学知识。
可以选择一些综合性的考研试题进行模拟考试,提高解题能力和应试技巧。
3.参考教材和相关资料:选择几本优质的教材和参考书进行阅读和学习。
可以参考一些考研辅导资料和复习指南,了解相关知识点的掌握程度和考点分布。
4.学习小组讨论:可以与其他考研学生组成学习小组,一起讨论和解答问题。
通过讨论和交流,加深对知识点的理解和运用,并及时纠正和改进自己的思路和方法。
在复习材料科学基础时,还需要注意以下几点:1.提前规划:合理安排复习时间和目标,制定合理的学习计划。
根据自己的掌握情况和考试时间,合理安排每一阶段的复习内容和进度,保证复习进程的顺利进行。
材料科学基础考研知识点总结
材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。
材料科学基础考研大纲解析
材料科学基础考研大纲解析大纲解析及重点知识(自编)【考试大纲解析】绪论部分材料科学与工程:1.材料的主要类型及其基本特性。
工程材料主要可以划分为:金属、陶瓷、聚合物、复合材料、半导体。
通常所说的三大固体材料是:金属材料(金属中大量的自由电子能在金属两端电势差的作用下定向流动,形成电流,显示金属良好的导电性。
温度升高,金属正离子振动振幅增大,电子运动受阻,电阻升高,因此金属具有正的电阻温度系数。
金属热量的传递,不仅依靠金属正离子的振动,更由于自由电子的运动,极大地增强了热量传递,所以金属具有良好的导热性。
自由电子容易吸收可见光的能量,随后又将吸收的可见光的能量辐射出来,从而使金属不透明具有光泽。
金属的两部分作相对位移时,金属正离子仍沉浸在电子云中,保持着金属键结合,因此金属能变形而不断裂,表现出延展性。
)、陶瓷材料(也叫无机非金属材料,特性:)、高分子材料(特性:质量轻、比强度高、比模量高、耐腐蚀性能好、绝缘性好。
)第1部分材料的原子结构与键合1.原子结构与原子的电子结构;原子结构、原子排列对材料性能的影响。
决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律,以及原子集合体的形貌特征等。
原子是由质子和中子组成的原子核,以及核外的电子所构成的。
原子的电子结构:电子在原子核外空间作高速旋转运动,就好像带负电荷的云雾笼罩在原子核周围,故称为电子云。
电子既具有粒子性又具有波动性,即波粒二象性。
2.材料中的结合键的类型、本质,各结合键对材料性能的影响,键-能曲线及其应用。
【解析】结合键可分为化学键和物理键两大类。
化学键包括金属键、离子键和共价键;物理键即范德瓦尔斯力。
此外还有一种氢键,性质介于化学键和范德瓦尔斯力之间。
金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。
金属键无饱和性和方向性。
离子键——正负离子依靠他们之间的静电引力结合在一起。
材料科学基础复习资料
材料科学基础复习资料材料科学基础是各个工程领域的基本学科,是各个领域的基础。
材料科学基础涵盖了材料的结构、物理与化学性质、制备工艺等方面内容,是材料科学领域学习过程中必须掌握的知识。
因此,为帮助有需要的人顺利复习材料科学基础知识,本文整理了一些相关的复习资料。
一、材料基础知识1. 基本的物理性质:包括化学成分、密度、电导率、热导率等基本参数,通常在每种材料的材料数据表中都可查到。
2. 结构相关:晶体结构:晶体结构指材料中原子、离子、分子排布的类型和规律,常用的晶体结构有:立方晶系、四方晶系、六方晶系、等轴晶系、正交晶系、单斜晶系、三斜晶系等。
非晶态:非晶态作为一种新兴的材料类型,其分子呈无序排列,在某些情况下可能拥有更好的性能。
3. 材料特性:热膨胀系数:在温度变化时,材料线膨胀的速度大小,通常用公式ΔL/L0 = αΔT 表示,其中α为热膨胀系数。
韧性:材料在受到剪切力或拉伸力时的弹性变形程度,是一种考量材料性能的指标,通常可以通过材料变形曲线进行查看。
4. 金属与合金相关:金属材料通常具有良好的导电、导热等特性,同时在高温、高压等环境下具有较强的稳定性。
合金则通常是由多个金属或者非金属元素组成的混合物,其性质与材料组分、配比等有关。
二、材料治理、工艺及应用1. 材料的处理:常用材料的处理包括固化、焊接、框架处理、表面处理以及高压工艺等,其中固化的过程包括了煅烧、烧结等过程。
2. 材料配方:通常材料的配方根据材料的成分、目的等进行确定,其中分子键长、键能以及分子排列等指标都可能用来确定最终配方。
3. 材料的加工工序:通常材料加工工序包括切削、钣金、打压成形等过程,每个工序都会影响材料的性质和特性。
三、材料的主要分类1. 材料的物理分类:主要涉及到材料的形态、密度以及各种物理性质,通常有固体、液体、气体以及等离子体等分类方式。
2. 材料的化学分类:不同的元素应用于不同的方案分类,这种分类通常依据材料的化学成分。
《材料科学基础》复习提纲
《材料科学基础》复习提纲一、(共20分)名词解释(每个名词2分)简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生二、(共30分)简要回答下列问题1、计算面心立方晶体的八面体间隙尺寸。
2、简述固溶体与中间相的区别。
3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。
4、计算面心立方晶体{111}晶面的面密度。
5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。
6、简述刃型位错攀移的实质。
7、简述在外力的作用下,螺型位错的可能运动方式。
8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数?9、简述单组元晶体材料凝固的一般过程。
10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。
1、计算体心立方晶体的八面体间隙尺寸。
2、简述决定组元形成固溶体与中间相的因素。
3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。
·4、计算体心立方晶体{110}晶面的面密度。
5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。
6、简述刃型位错滑移的实质。
7、简述在外力的作用下,刃型位错的可能运动方式。
8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数?9、简述纯金属凝固的基本条件。
10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为%、(A+B)%和(A+B+C)%的相对量。
《材料科学基础》总复习(完整版)
《材料科学基础》上半学期内容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件结晶后系统自由能下降。
材料科学基础复习资料整理
一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。
2. 原子核外电子分布规律遵循的三个原则。
3. 金属键、离子键、共价键、分子键的特点。
4. 混合键比例计算与电负性差的关系。
5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。
6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。
7.影响固溶体溶解度的因素。
8.间隙相和间隙化合物的区别。
9. 晶体缺陷几何特征分类-点、线、面缺陷。
10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。
11.获得过饱和点缺陷的方法及原因。
12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。
13. 位错的主要运动方式;常温下金属塑性变形的方式。
14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。
15.说明柏氏矢量的确定方法。
掌握利用柏氏矢量和位错线的位向关系来判断位错类型。
16.两根平行的螺型位错相遇时的相互作用情况。
17.刃型位错和螺型位错的不同点。
18. 大小角度晶界的位向差、常见类型、模型描述、能量等。
19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。
20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。
21.柯肯达尔效应的含义及说明的问题(重要意义)。
22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。
23. 反应扩散定义、特点、扩散层增厚速度的决定因素。
24. 影响扩散的主要因素简述及分别叙述。
材料科学基础复习资料整理
一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。
2. 原子核外电子分布规律遵循的三个原则。
3. 金属键、离子键、共价键、分子键的特点。
4. 混合键比例计算与电负性差的关系。
5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。
6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。
7.影响固溶体溶解度的因素。
8.间隙相和间隙化合物的区别。
9. 晶体缺陷几何特征分类-点、线、面缺陷。
10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。
11.获得过饱和点缺陷的方法及原因。
12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。
13. 位错的主要运动方式;常温下金属塑性变形的方式。
14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。
15.说明柏氏矢量的确定方法。
掌握利用柏氏矢量和位错线的位向关系来判断位错类型。
16.两根平行的螺型位错相遇时的相互作用情况。
17.刃型位错和螺型位错的不同点。
18. 大小角度晶界的位向差、常见类型、模型描述、能量等。
19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。
20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。
21.柯肯达尔效应的含义及说明的问题(重要意义)。
22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。
23. 反应扩散定义、特点、扩散层增厚速度的决定因素。
24. 影响扩散的主要因素简述及分别叙述。
材料科学基础108个重要知识点
材料科学基础108个重要知识点1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。
5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。
(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。
7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。
8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。
在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。
9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。
10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。
12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。
材料科学基础知识点
材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。
包括晶体生长、晶体结构分析、晶体缺陷等。
2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。
3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。
4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。
5. 材料化学:研究材料的化学成分、结构和化学反应。
包括材料的合成方法、表面改性、材料的腐蚀与防护等。
6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。
7. 材料加工:研究材料的加工方法、工艺和性能改善。
包括材料的铸造、焊接、锻造、热处理等。
8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。
9. 材料选择:根据工程要求和材料性能,选择最合适的材料。
10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。
【上海大学考研849】材料科学基础-基础知识点106页
上海大学材料科学基础知识点第一章材料中的原子排列第一节原子的结合方式1原子结构2原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O- H—O(4)混合键。
如复合材料。
3结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷; b 可有无限多种。
2晶胞(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
考研必备之《材料科学基础》学霸笔记
材料科学基础笔记第一章原子结构与键合概述:决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律以及原子集合体的形貌特征等。
为此,我们需要了解材料的微观构造,即其内部结构和组织状态,以便从其内部的矛盾性找出改善和发展材料的途径。
第一节原子结构1 物质的组成物质是由无数微粒按一定方式聚集而成的,这些微粒可能是原子、分子或离子;分子是能单独存在且保持物质化学特性的一种微粒;原子是化学变化中的最小微粒。
2 原子的结构(原子结构直接影响原子间的结合方式)3 原子的电子结构3.1电子既有粒子性又具有波动性,具有波粒二象性。
3.2电子的状态和在某处出现的机率可用薛定谔方程的解/波函数来描述,即原子中每个电子的空间位置和能量可用四个量子数来确定:a主量子数(n):决定原子中电子的能量及与核的平均距离(一般能量低的趋向近轨道,r较小,反之则反),即表示电子所处的量子壳层。
如K、L、M…,n=1,2,3;b 轨道角动量量子数(l):表示电子在同一壳层内所处的能级,与电子运动的角动量有关。
如s、p、d、f…(0,1,2,…n-1);c 磁量子数(m):给出每个轨道角动量量子数的能级数或轨道数,为2l+1,决定电子云的空间取向;d 自旋角动量量子数(s):反映电子不同的自旋方向,其值可取*只有n,l决定能量和能级3.3能级和能级图把电子不同状态对应着相同能量的现象称为简并。
将所有元素的各种电子态(n,l)按能量水平排列成能级图。
3.4核外电子的排布规则a 能量最低原理:电子的排布总是尽可能使体系的能量最低;b Pauling不相容原理:在一个原子中,不可能有上述运动状态完全相同的两个电子,即不能有上述四个量子数都相同的两个电子;c 洪德Hund规则:在同一个亚层中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同(尽可能保持自旋不成对);3.5 元素周期表元素是具有相同核电荷数的同一类原子的总称;元素的外层电子 结构随着原子序数的递增而呈周期性的变化规律称为元素周期律;元素周期表是元素周期律的表现形式;元素的性质、原子结构和该元素在周期表中的位置三者之间有着密切的关系。
《材料科学基础》考研复习笔记
《材料科学基础》考研复习笔记第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷; b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
材料科学基础重点知识复习
材料的涵义及其分类
材料是指人类利用化合物的某些功能来制作物件时用的 化学物质。
使用性能(物理)
合成/加工 (工程)
性质(化学)
结构/成分 (物理)
作为材料,必须具备如下特点:
✓ 一定的组成 ✓ 可加工性 ✓ 现状保持性 ✓ 使用性能 ✓ 经济性 ✓ 再生性
从以上的分析可见,材料与物质是两个不同的概 念,材料总是和一定的用场相联系的。
所谓炼钢,其实质是控制生铁中含碳量达到钢的要求,
同时除去危害钢的性能的一些杂质,如S、P等。若要想得 到特殊性能的合金钢,当然还要加入一些其他金属。
钢铁的九大应用领域
电力系统中的工业锅炉、高压锅炉及其热交换管道,发电机中 的大型篆字和叶轮,变压器的铁芯。
汽车工业:根据美国的一份调查,美国平均美台车消耗的材料
燃料能源 煤、石油、薪柴、天然气 汽油、酒精、液化气、煤气
非燃料能源 水力、铀、风力
热水、蒸汽、电
能源还可以分为常规能源与新能源。
常规能源:在一定历史时期和科学水平下, 已被人们广泛利用的能源称为常规能源,如 煤、石油、天然气、水能等;
新能源:随着科技的不断发展,才开始被人 类采用先进的方法加以利用的古老能源以及 新发展的利用先进技术所获得的能源都是新 能源,如:核聚变能、用以发电的风能、太 阳能、海洋能等。
太阳能发电(Photovoltaic)原理 (I)
太陽光
正極:P 型 +
負極:N 型 -
+-
+-
P+
正、負電荷
太陽光
+- +- N -
太陽光
++Biblioteka -+P
+
《材料科学基础》考研复习知识点
浙江大学《材料科学基础》第一章晶体结构§1-1晶体学基础一、空间点阵空间点阵:晶体中原子或分子的空间规则排列。
图1- 1点阵特点:各阵点为彼此等同的原子群或分子群的中心,周围环境都相同,在空间的位置是一定点阵基本要素:阵点(二)晶胞晶胞:点阵中取出的一个反映点阵对称性的代表性基本单元(通常取最小平行六面体)。
点阵的组成单元图1- 2晶胞描述:1晶轴X、Y、Z;2点阵常数a、b、c;3晶轴夹角α、β、γ 图1- 3 晶胞的原子、体积与密度计算(三)晶系7个晶系:按晶胞外形即棱边长度之间的关系和晶轴夹角情况归类,每一类别即一个晶系。
晶系只有七种!表1- 1(四)布拉菲点阵14种布拉菲点阵的晶胞:1-简单三斜;2-简单单斜;3-底心单斜;4-简单正交;5-底心正交;6-体心正交;7-面心正交;8-简单六方;9-菱形(三角);10-简单四方;11-体心四方;12-简单立方;13-体心立方;14-面心立方3个晶族:表示晶体结构对称性高低。
三、晶向指数和晶面指数晶向:晶体的方向晶面:原子所构成的平面晶向指数:确定晶向的一组数[uvw],表示所有相互平行、方向一致的晶向。
晶向族:晶体中因对称关系而等同的各晶向的归并,表为<uvw>。
(二)晶面指数晶面指数:确定晶面方位的一组数,代表一组相互平行的晶面 晶面族:具等同条件,而空间位向不同的各组晶面的归并 晶面指数的确定步骤:(1)对晶胞作晶轴X 、Y 、Z ,以晶胞的边长作为晶轴上的单位长度。
(2)求出晶面在三个晶轴上的截距(如该晶面与某轴平行,则截距为∞)。
例如1、1、∞,1、1、1,1、1、1/2等。
(3)取这些截距数的倒数。
例如110,111,112等。
(4)将上述倒数化为最小的简单整数,并加上圆括号,即表示该晶面的指数,一般记为(hkl)。
例如(110),(111),(112)等。
如果所求晶面在晶轴上的截距为负数,则在相应的指数上方加一负号,如(1-10)、(11-1)、(112-)等。
材料科学基础复习提纲
材料科学基础复习提纲一、介绍材料科学基础A. 定义材料科学基础B. 材料科学的重要性C. 材料科学的发展历程二、材料分类与结构A. 材料的分类1. 金属材料2. 陶瓷材料3. 高分子材料4. 复合材料B. 材料的结构1. 晶体结构2. 非晶体结构3. 结晶缺陷三、材料的力学性能A. 弹性力学1. 应变与应力的关系2. 弹性模量B. 塑性力学1. 屈服强度与延展性的关系2. 硬度与韧性的关系C. 断裂力学1. 断裂模式2. 断裂韧性四、材料的热学性能A. 热膨胀性B. 热导性C. 热传导五、材料的电学性能A. 导电材料与绝缘材料B. 电导率与电阻C. 介电材料六、材料的磁学性能A. 磁性材料与非磁性材料B. 磁导率与磁饱和强度C. 磁性材料的应用七、材料的光学性能A. 透明材料与非透明材料B. 折射率与反射率C. 光学材料的应用八、材料的化学性能A. 腐蚀性B. 氧化性C. 降解性九、材料的加工与制备A. 熔融法B. 溶剂法C. 沉淀法十、材料的表面处理与性能改性A. 表面处理技术1. 打磨与抛光2. 镀层与涂料B. 性能改性技术1. 合金化2. 掺杂十一、材料选择与设计A. 功能需求与材料选择B. 材料设计原则C. 材料性能测试与评估结论以上是材料科学基础复习提纲的大致内容,通过对材料科学的分类、结构以及不同性能的介绍,有助于加深对材料科学基础知识的理解与掌握。
在学习和研究材料科学时,还需要了解材料的加工与制备过程、表面处理与性能改性技术,同时掌握材料选择与设计的方法和原则。
材料科学基础的复习与掌握是深入学习材料科学和进行材料研究的重要一步。