医学统计学之集中趋势的统计描述

合集下载

定量资料统计描述——集中趋势与离散程度

定量资料统计描述——集中趋势与离散程度

度量单位不同资料之间离散度的比较; 均数相差悬殊的资料之间离散度的比较。
【例4-11】
某研究收集了100例7岁男孩的身高和体重的资料,身高均数为 123.10cm,标准差为4.71cm;体重均数为22.92kg,标准差为 2.26kg,比较这100例7岁男孩的身高和体重的变异度。
身高 CV
4.71 100 % 3.83 %
M X n1
当n为奇数时,
() 2
, 位置居中的观察值
当n为偶数时,
M
(X n ()
X n )/ ( 1)
2 ,计算出位次居中的两个观察值的均数
2
2
例:7名病人患某病的潜伏期分别为2,3,4,5,6,9,16天,求其中位数。
本例n=7,为奇数
M X 71 X 4 5(天 ) () 2
例:8名患者食物中毒的潜伏期分别为1,2,2,3,5,8,15,24小时,求其中位数。
本例n=8,为偶数
M
1
2
X 8
() 2
X 8
( 1) 2
1 2
X
4
X5
1 3 5 4(小时)
2
(二) 中位数的应用
中位数可用于各种分布的资料,在正态分布资料中,中位数等于 均数,在对数正态分布资料中,中位数等于几何均数。
中位数不受极端值的影响,因此,实际工作中主要用于不对称分 布类型的资料、两端无确切值(>100)或分布不明确的资料。
患者编号:1 2 3 4 5 6 7 8 9 ... 117 118 119 120 住院天数:1 2 2 2 3 3 4 4 5 ... 40 40 42 45
n=120,120*5%=6,为整数:
P5

医学统计学第5版单选题

医学统计学第5版单选题

《医学统计学》单项选择题摘自:马斌荣主编、医学统计学、第5版、北京:人民卫生出版社,2008第一章1、医学统计学研究的对象就是A 、医学中的小概率事件 C 、动物与人的本质 E.有变异的医学事件医学统计中的基本概念B 、各种类型的数据 D 、疾病的预防与治疗2、用样本推论总体,具有代表性的样本指的就是A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体答案:E E D E A第二章集中趋势的统计描述1、某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标就是 A 、中位数 B 、几何均数 C 、均数 D 、 P 95百分位数E 、频数分布3、下列观测结果属于等级资料的就是A.收缩压测量值 C.住院天数 E.四种血型4、随机误差指的就是A 、测量不准引起的误差 C 、选择样本不当引起的误差 E 、由偶然因素引起的误差 5、收集资料不可避免的误差就是 A 、 随机误差C 、过失误差B.脉搏数 D.病情程度B 、由操作失误引起的误差 D 、选择总体不当引起的误差B 、系统误差 D 、记录误差2、算术均数与中位数相比,其特点就是A.不易受极端值的影响 C.抽样误差较大E.更适用于分布不明确资料3、一组原始数据呈正偏态分布,其数据的特点就是A 、数值离散度较小B 、数值离散度较大C 、数值分布偏向较大一侧D 、数值分布偏向较小一侧E 、数值分布不均匀4、将一组计量资料整理成频数表的主要目的就是A.化为计数资料 B 、便于计算C 、形象描述数据的特点D 、为了能够更精确地检验E 、提供数据与描述数据的分布特征5、6人接种流感疫苗一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320, 求平均滴度应选用的指标就是A 、均数B 、几何均数C 、中位数D 、百分位数E 、倒数的均数答案:A B D E B第三章离散程度的统计描述1、变异系数主要用于A.比较不同计量指标的变异程度 B 、衡量正态分布的变异程度 C 、衡量测量的准确度 D 、衡量偏态分布的变异程度E 、衡量样本抽样误差的大小2、对于近似正态分布的资料,描述其变异程度应选用的指标就是A 、变异系数B 、离均差平方与C 、极差D 、四分位数间距E 、 标准差3、某项指标95%医学参考值范围表示的就是A 、检测指标在此范围,判断“异常”正确的概率大于或等于95%B 、检测指标在此范围,判断“正常”正确的概率大于或等于95%C 、在“异常”总体中有95%的人在此范围之外D 、在“正常”总体中有95%的人在此范围E 、检测指标若超出此范围,则有95%的把握说明诊断对象为“异常”B.能充分利用数据的信息4.应用百分位数法估计参考值范围的条件就是A.数据服从正态分布B.数据服从偏态分布C.有大样本数据D.数据服从对称分布E.数据变异不能太大5.已知动脉硬化患者载脂蛋白B的含量(mg/dl)呈明显偏态分布,描述其个体差异的统计指标应使用A.全距B.标准差C.变异系数D.方差E.四分位数间距答案:A E D B E第四章抽样误差与假设检验1、样本均数的标准误越小说明A、观察个体的变异越小B、观察个体的变异越大C、抽样误差越大D、由样本均数估计总体均数的可靠性越小E、由样本均数估计总体均数的可靠性越大2、抽样误差产生的原因就是A、样本不就是随机抽取B、测量不准确C、资料不就是正态分布D、个体差异E、统计指标选择不当3、对于正偏态分布的的总体,当样本含量足够大时,样本均数的分布近似为A、正偏态分布B、负偏态分布C、正态分布D、t分布E、标准正态分布4、假设检验的目的就是A、检验参数估计的准确度B、检验样本统计量就是否不同C、检验样本统计量与总体参数就是否不同D、检验总体参数就是否不同E、检验样本的P值就是否为小概率5、根据样本资料算得健康成人白细胞计数的95%可信区间为7、2X109/L〜9、1X109/L, 其含义就是A、估计总体中有95%的观察值在此范围内B、总体均数在该区间的概率为95%C、样本中有95%的观察值在此范围内D、该区间包含样本均数的可能性为95%E、该区间包含总体均数的可能性为95%答案:E D C D E第五章t检验1、两样本均数比较,检验结果P 0.05说明A、两总体均数的差别较小B、两总体均数的差别较大C、支持两总体无差别的结论D、不支持两总体有差别的结论E、可以确认两总体无差别2、由两样本均数的差别推断两总体均数的差别,其差别有统计学意义就是指A、两样本均数的差别具有实际意义B、两总体均数的差别具有实际意义C、两样本与两总体均数的差别都具有实际意义D、有理由认为两样本均数有差别E、有理由认为两总体均数有差别3、两样本均数比较,差别具有统计学意义时,P值越小说明A、两样本均数差别越大B、两总体均数差别越大C、越有理由认为两样本均数不同D、越有理由认为两总体均数不同E、越有理由认为两样本均数相同4、减少假设检验的H类误差,应该使用的方法就是A、减少I类错误B、减少测量的系统误差C、减少测量的随机误差D、提高检验界值E、增加样本含量5.两样本均数比较的t检验与u检验的主要差别就是A、t检验只能用于小样本资料B、u检验要求大样本资料C、t检验要求数据方差相同D、t检验的检验效能更高E、u检验能用于两大样本均数比较答案:D E D E B第六章方差分析1、方差分析的基本思想与要点就是A.组间均方大于组内均方B.组内均方大于组间均方C.不同来源的方差必须相等D.两方差之比服从F分布E.总变异及其自由度可按不同来源分解2、方差分析的应用条件之一就是方差齐性,它就是指A、各比较组相应的样本方差相等B、各比较组相应的总体方差相等C、组内方差二组间方差D、总方差二各组方差之与E、总方差二组内方差+组间方差3、完全随机设计方差分析中的组间均方反映的就是A 、随机测量误差大小B 、某因素效应大小C 、处理因素效应与随机误差综合结果D 、全部数据的离散度E 、各组方差的平均水平4、对于两组资料的比较,方差分析与t 检验的关系就是A 、t 检验结果更准确B 、方差分析结果更准确C 、t 检验对数据的要求更为严格D 、近似等价E 、完全等价5.多组均数比较的方差分析,如果P 0.05,则应该进一步做的就是A.两均数的t 检验B.区组方差分析C.方差齐性检验D. q 检验E.确定单独效应答案:E B C E D第七章相对数及其应用1、如果一种新的治疗方法能够使不能治愈的疾病得到缓解并延长生命则应发生的情 况就是A 、该病患病率增加B 、该病患病率减少C 、该病的发病率增加D 、该病的发病率减少E 、该疾病的死因构成比增加2、计算乙肝疫苗接种后血清学检查的阳转率,分母为A 、乙肝易感人数 C 、乙肝疫苗接种人数E 、 乙肝疫苗接种后的阳转人数4、影响总体率估计的抽样误差大小的因素就是A 、总体率估计的容许误差B 、样本率估计的容许误差C 、检验水准与样本含量D 、检验的把握度与样本含量E 、总体率与样本含量B 、平均人口数 D 、乙肝患者人数3、计算标准化死亡率的目的就是A 、减少死亡率估计的偏倚C 、便于进行不同地区死亡率的比较E 、便于进行不同时间死亡率的比较B 、减少死亡率估计的抽样误差 D 、消除各地区内部构成不同的影响5、研究某种新药的降压效果,对100人进行试验,其显效率的95%可信区间为0、862〜0、 926,表示A.样本显效率在0、862〜0、926之间的概率就是95% B 、有95%的把握说总体显效率在此范围内波动 C 、有95%的患者显效率在此范围D 、样本率估计的抽样误差有95%的可能在此范围E 、该区间包括总体显效率的可能性为95%答案:A C D E E第八章 X 2检验1、利用X 2检验公式不适合解决的实际问题就是A 、比较两种药物的有效率B 、检验某种疾病与基因多态性的关系C 、两组有序试验结果的药物疗效D 、药物三种不同剂量显效率有无差别E 、两组病情“轻、中、重”的构成比例2.欲比较两组阳性反应率,在样本量非常小的情况下(如勺< 10,n 2 < 10 ),应采用A 、四格表X 2检验B 、校正四格表X 2检验C 、Fisher 确切概率法D 、配对X 2检验E 、校正配对X 2检验从甲、乙两文中,查到同类研究的两个率比较的X 2检验,甲文X 2 > X ;0i'i ,乙文X 2 >X 2,可认为0.05,1A 、两文结果有矛盾 C 、甲文结果更为可信 E 、甲文说明总体的差异较大5、下列哪一项不就是两组有效率比较检验功效的相关因素(原题的选项设置不合适,已 进行了修改)A 、1型错误B 、理论频数C 、样本含量D 、总体率差别E 、11型错误3.进行四组样本率比较的X 2检验,如X 2 > X O.01,3 ,可认为A 、四组样本率均不相同 C 、四组样本率相差较大E.至少有两组总体率不相同B 、四组总体率均不相同 D 、 至少有两组样本率不相4、 B 、两文结果完全相同 D 、乙文结果更为可信答案:C C E C B第九章非参数检验1.对医学计量资料成组比较,相对参数检验来说,非参数秩与检验的优点就是A、适用范围广B、检验效能高C.检验结果更准确D、充分利用资料信息E、不易出现假阴性错误2、对于计量资料的比较,在满足参数法条件下用非参方法分析,可能产生的结果就是A、增加I类错误B、增加H类错误C、减少I类错误D、减少II类错误E、两类错误都增加3、两样本比较的秩与检验,如果样本含量一定,两组秩与的差别越大说明A、两总体的差别越大B、两总体的差别越小C、两样本的差别可能越大D、越有理由说明两总体有差别E、越有理由说明两总体无差别4、多个计量资料的比较,当分布类型不清时,应选择的统计方法就是A、方差分析B、Wilcoxon T检验C、Kruskal-Wallis H检验D、u检验1、X 2检验5.在一项临床试验研究中,疗效分为“痊愈、显效、有效、无效”四个等级现欲比较试验组与对照组治疗效果有无差别,宜采用的统计方法就是A、Wilcoxon秩与检验B、2 x 4列联表X 2检验C、四格表X2检验D、Fisher确切概率法E、计算标准化率答案:A B D C A第十章线性相关与回归1、使用最小二乘法确定直线回归方程的原则就是A、各观察点距回归直线的纵向距离之与最小B、各观察点距回归直线的横向距离之与最小C、各观察点距回归直线的垂直距离平方与最小D、各观察点距回归直线的纵向距离平方与最小E、各观察点距回归直线的横向距离平方与最小2、两数值变量相关关系越强,表示A、相关系数越大B、相关系数的绝对值越大B、回归系数越大C、回归系数的绝对值越大E、相关系数检验统计量的t值越大3、回归分析的决定系数R 2越接近于1,说明A、相关系数越大B、回归方程的显著程度越高C、应变量的变异越大D、应变量的变异越小E、自变量对应变量的影响越大4、两组资料作回归分析,直线回归系数b较大的一组,表示A.两变量关系密切的可能性较大B.检验显著的可能性较大C.决定系数R2较大D.决定系数R2可能大也可能小E.数量依存关系更密切6、1—7岁儿童可以用年龄(岁)估计体重(市斤),回归方程为Y = 14 + 4X ,若将体重换成国际单位kg,则此方程A.常数项改变B.回归系数改变C.常数项与回归系数都改变D.常数项与回归系数都不改变E.决定系数改变答案:D B E D C第十一章多元线性回归与多元逐步回归1、在疾病发生危险因素的研究中,采用多变量回归分析的主要目的就是A.节省样本B.提高分析效率C.克服共线影响D.减少异常值的影响E.减少混杂的影响2、多元线性回归分析中,反映回归平方与在应变量Y的总离均差平方与中所占比重的统计量就是A、简单相关系数B、复相关系数C、偏回归系数D、回归均方E、决定系数R 23、对同一资料作多变量线性回归分析,若对两个具有不同个数自变量的回归方程进行比较,应选用的指标就是A.决定系数B、相关系数C、偏回归平方与D、校正决定系数E、复相关系数4、多元线性回归分析,对回归方程作方差分析,检验统计量F值反映的就是A.所有自变量与应变量间就是否存在线性回归关系B.部分自变量与应变量间就是否存在线性回归关系C.自变量与应变量间存在的线性回归关系就是否较强D.自变量之间就是否存在共线E、回归方程的拟合优度5、在多元回归分析中,若对某个自变量的值都乘以一个常数c(。

医药统计学 第一章 数据的描述与整理

医药统计学 第一章 数据的描述与整理

统计工作的五个步骤紧密相连、不可分割,任何一
步的缺陷,都将影响整个研究结果。
目前,应用广泛,成为医药学研究、疾病防治、卫 生事业管理等多方面的重要手段、工具之一,即成 为方法论。
医药数理统计学(Mathematical statistics of
medicine): 应用概率论与数理统计学的原理与方法研究医 药学以及卫生服务领域中数据的收集、整理、分析 和解释的一门科学。
一.数据分布集中趋势的描述
频数分布表、图显示的集中趋势和离散程度较 粗略,而计算其各指标则是准确、定量描述其 分布特征。
集中趋势指标:平均数,反映观察值的集中位 置或平均水平,即观察值的典型水平或代表值。 描述一组同质观察值的平均水平或中心位置的 常用指标有均数、中位数、众数、几何均数等。
平均水平指标
数分布大致对称。特殊的对称分布为正态分布 (normal distribution)。
eg:体重、身高等生理、生化检测结果等。
偏态分布:频数分布不对称,集中位置偏向一侧。
40 人 数 30 20 10 0 124 132 140 148 身高(cm)
对称分布
156
164
eg:
.236364
Fraction
国际标准通用的统计分析软件,但操作略为繁琐。 (二)SPSS(社会科学统计软件) 全称Statistical Package for Social Science,是当前 最流行,应用最广泛的专业统计分析软件,操作
方便。
(三)EXCEL(电子表格软件) 可进行基本的统计分析。操作简便。
频数分布的特征:
医药统计学
一.基 本 概 念
概率论(probability):是研究随机现象数量规律的 数学学科。

数据的集中趋势与离散程度

数据的集中趋势与离散程度

数据的集中趋势与离散程度统计学中,描述和衡量数据分布特征的两个重要方面是集中趋势和离散程度。

集中趋势指的是数据集中在哪个数值附近,而离散程度描述了数据的分散程度。

在本文中,我将详细介绍集中趋势和离散程度的定义、常用的衡量指标和如何应用。

一、集中趋势集中趋势是指数据集中在哪个数值处的趋势或位置,常用的衡量指标包括均值、中位数和众数。

1. 均值均值是数据集所有观测值的算术平均数。

它是最常用的衡量集中趋势的指标。

计算均值的方法是将所有观测值相加,再除以观测值的个数。

均值受极端值的影响较大。

2. 中位数中位数是将数据集按照大小排序后,位于中间位置的观测值。

如果数据集的个数是奇数,则中位数就是排序后位于中间的观测值;如果数据集的个数是偶数,则中位数是中间两个观测值的平均数。

中位数对极端值不敏感,更能反映数据的典型情况。

3. 众数众数是数据集中出现频率最高的观测值。

一个数据集可能存在一个众数,也可能存在多个众数,或者没有众数。

众数主要用于描述离散型数据。

二、离散程度离散程度是描述数据分散程度的指标,常用的衡量指标包括极差、方差和标准差。

1. 极差极差是数据集中最大观测值和最小观测值之间的差值。

极差越大,表示数据的离散程度越大;极差越小,表示数据的离散程度越小。

极差对极端值非常敏感。

2. 方差方差是数据集观测值与均值之差的平方的平均值。

方差衡量了数据与其均值之间的离散程度,数值越大表示数据的离散程度越大,反之亦然。

方差对极端值非常敏感。

3. 标准差标准差是方差的平方根,用于衡量数据集的离散程度。

标准差具有与原始数据相同的度量单位,比方差更容易解释和理解。

标准差越大,表示数据的离散程度越大,反之亦然。

三、应用集中趋势和离散程度的概念和指标在各个领域具有广泛的应用。

在金融领域,通过分析股票价格的均值和离散程度,可以评估股票的风险和收益。

在市场调研中,通过分析产品价格的中位数和标准差,可以了解市场需求和产品价值的稳定性。

第三讲 描述定量资料集中趋势的指标

第三讲 描述定量资料集中趋势的指标
预防医学考研之卫生统计学 核心考点
第三讲:描述定量资料集中趋势的指标
复习书目:人民卫生出版社《卫生统计学》第6版 主编:方积乾
算数均数(mean):简称均数,适用于正态 分布或近似正态分布资料。 适用条件:用于反映一组呈正态分布的变量 值在数量上的平均水平
几何均数(geometric mean,G):常用来 反映一组含多个数量级数据的集中位置。 适用条件:适用于原始数据观察值分布不对 称,但经过对数转换后呈正态分布的资料。
X 3.43+2.96+4.43+3.03+4.53+5.25+5.64+3.82+4.28+5.25 4.26 (mmol/L) 10
M 4.28+4.43 4.36 (mmol/L) 2
谢谢观看!
扫描二维码 关注微信官方平台,获取更多资料 微信号:gaojiao-edu
中位数(median,M):一组按大小顺序排列的观 察值中位次居中的数值。 适用条件:中位数适合用于各种分布的资料,特别 是偏锋分布资料、分布末端无确定值的资料等。
答案后血液尿素氮的含量 (mmol/L)分别为 3.43,2.96,4.43,3.03,4.53,5.25,5.64,3.82,4.28, 5.25,试计算其均数和中位数。

《医学统计学》统计描述 (1)

《医学统计学》统计描述  (1)

2500 2500 2500 420
500 500 500
甲 乙丙
例4-9,etc
1.极差(Range) (全距)
符号:R 意义:反映全部变量值的
R X max X min
变动范围。
580
优点:简便,如说明传染病、
560 540
食物中毒的最长、最短潜 520
伏期等。
500
缺点:1. 只利用了两个 极端值
表2-2 115名正常成年女子血清转氨酶(mmol/L)含量分布
转氨酶含量
人数
12~
2
15~
9
18~
14
21~
23
24~
19
27~
14
30~
11
33~
9
36~
7
39~
4
42~45
3
人数
25
20 15
10 5
0
13.5 19.5 25.5 31.5 37.5 43.5. 血清转氨酶(mmol/L)
图2-2 115名正常成年女子血清转氨酶的频数分布
lg 表示以10为底的对数;
lg 1表示以10为底的反对数
X 0,为正值 (0,负数?)
几何均数的适用条件与实例
适用条件:呈倍数关系的等比资料或对数正态分 布(正偏态)资料;如抗体滴度资料
例 血清的抗体效价滴度的倒数分别为:10、
100、1000、10000、100000,求几何均数。
XG
lg1
图 2-3 101 名 正 常 人 血 清 肌 红 蛋 白 的 频 数 分 布
2. 描述计量资料的分布特征
①集中趋势(central tendency):变量值集中 位置。本例在组段“4.7~4.9”。

医学统计学第七版课后答案及解析

医学统计学第七版课后答案及解析

医学统计学第七版课后答案及解析目录第一章医学统计中的基本概念 (1)第二章集中趋势的统计描述 (2)第三章离散程度的统计描述 (5)第四章抽样误差与假设检验 (8)第五章 t检验 (10)第六章方差分析 (14)第七章相对数及其应用 (19)第八章2检验 (22)第九章非参数检验 (26)第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。

要尽量查明其原因,必须克服。

(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。

譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。

对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。

正态分布的集中趋势和离散统计指标

正态分布的集中趋势和离散统计指标

正态分布的集中趋势和离散统计指标在统计学中,正态分布是一种非常重要且常见的概率分布,也被称为高斯分布。

它具有许多重要特性,其中包括集中趋势和离散统计指标。

在本文中,我们将探讨正态分布的集中趋势和离散统计指标,以及它们在实际应用中的意义和重要性。

1. 集中趋势指标正态分布的集中趋势指标是描述数据集中取值位置的统计量。

常见的集中趋势指标包括均值、中位数和众数。

其中,均值是所有数据值的平均数,是最常用的集中趋势指标之一。

在正态分布中,均值通常位于分布的中心位置,并且具有对称性。

除了均值,中位数和众数也是描述集中趋势的重要指标。

中位数是将数据集等分为两部分的数值,而众数则是数据集中出现最频繁的数值。

在实际应用中,集中趋势指标可以帮助我们理解数据分布的中心位置,判断数据的平均水平,并做出相应的决策。

在财务报表分析中,我们可以利用均值来评估企业的盈利水平,进而制定财务策略和规划预算。

在医学研究中,研究人员也常用中位数来描述疾病的发病率,以便做出治疗方案和预防措施。

2. 离散统计指标除了集中趋势指标外,正态分布还具有离散统计指标,用于描述数据的分散程度和波动性。

常用的离散统计指标包括标准差、方差和极差。

标准差是数据偏离均值的平均距离,是描述数据离散程度的重要统计量。

方差则是标准差的平方,用于衡量数据的波动性和离散程度。

另外,极差是描述数据取值范围的统计量,可以帮助我们了解数据的最大和最小取值之间的差异程度。

在实际应用中,离散统计指标可以帮助我们评估数据的波动性和风险程度,从而制定相应的风险管理和控制策略。

在金融投资中,我们可以利用标准差来衡量资产价格的波动性,进而评估投资风险并调整投资组合。

在生产制造中,研究人员也常用方差来评估生产过程的稳定性和一致性,以便提高生产效率和质量。

个人观点和理解对于正态分布的集中趋势和离散统计指标,我认为它们在数据分析和决策制定中起着至关重要的作用。

集中趋势指标可以帮助我们理解数据的中心位置,从而判断平均水平和典型取值。

集中趋势名词解释统计学

集中趋势名词解释统计学

集中趋势名词解释统计学
在统计学中,集中趋势是用来描述数据集中程度的概念。

它帮
助我们了解数据的平均水平或中心位置。

常用的集中趋势指标包括
均值、中位数和众数。

1. 均值(Mean)是一组数据的算术平均值。

它通过将所有数据
值相加,然后除以数据的个数来计算得到。

均值对异常值比较敏感,因为它受到每个数据值的影响。

2. 中位数(Median)是将一组数据按照大小顺序排列后,位于
中间位置的数值。

如果数据个数为奇数,则中位数就是中间的那个数;如果数据个数为偶数,则中位数是中间两个数的平均值。

中位
数对异常值不敏感,因为它只关注数据的位置而不考虑数值大小。

3. 众数(Mode)是一组数据中出现次数最多的数值。

一个数据
集可以有一个或多个众数,或者没有众数。

众数对异常值不敏感,
因为它只关注出现频率最高的数值。

这些集中趋势指标可以帮助我们了解数据的整体特征和分布情况。

它们在统计分析、数据处理和决策制定中都有广泛的应用。


要注意的是,选择合适的集中趋势指标取决于数据的性质和分布,以及具体问题的要求。

此外,还有其他一些指标如加权平均数、调和平均数等,它们在特定情况下也可用于描述数据的集中趋势。

医学统计学定量资料统计描述集中离散

医学统计学定量资料统计描述集中离散

1 5 5
1 5 5
2020/11/14
24
加权法:
25
2020/11/14
设分组后的数据为:X1 ,X2 ,… ,XK
相应的频数为:
f1 , f2, … ,fK
计算公式为
X
X1 f1 X 2 f2 X k f1 f2 fk
fk
fx n
对于频数表资料,用每个组段的组中值代替 该组段观察值的实际取值:
采用加权法计算加权 均数,作为算术均数 的近似值
2020/11/14
红细胞数(1012/L) 3.07~ 3.27~ 3.47~ 3.67~ 3.87~ 4.07~ 4.27~ 4.47~ 4.67~ 4.87~ 5.07~
5.27~5.47
例数 2 3 9 14 22 30 21 15 10 6 4 2
27
算术均数
组段 3.07~ 3.27~ 3.47~ 3.67~ 3.87~ 4.07~ 4.27~ 4.47~ 4.67~ 4.87~ 5.07~ 5.27~5.47 合计
2020/11/14
频数 2 3 9 14 22 30 21 15 10 6 4 2 138
组中值 3.17 3.37 3.57 3.77 3.97 4.17 4.37 4.57 4.77 4.97 5.17 5.37 —
2020/11/14
32
几何平均数(直接法)
将原始数据X取对数后得到的对数值视为一个新变量 Y,求Y的算术均数为:
Yi logXi;
Y Y1 Y2 ……+Yn N
Y logx1 logx2 ……+logxn logx
N
N
G log1 Y
求得Y的算术均数后将其换算为原数值X,即对其取 反对数得几何均数G

卫生统计学--集中趋势的统计描述(第一节 频数分布)

卫生统计学--集中趋势的统计描述(第一节 频数分布)

脉搏组段
(1) 56~ 59~ 62~ 65~ 68~ 71~ 74~ 77~ 80~ 83~85
合计
组中值(Xi)
(2)
57.5 60.5 63.5 66.5 69.5 72.5 75.5 78.5 81.5 84.5
频数, fi (3)
2 5 12 15 25 26 19 15 10 1
N=∑f 130
料,特别是服从对数正态分布资料
第二节 集中趋势的描述
(三) 中位数 11个大鼠存活天数:
4,10,7,50,3,15,2,9,13,60, 70 平均存活天数? 1、中位数(median)
第二章 集中趋势的 统计描述
第一节 频数分布
第一节 频数分布
一、数值变量的频数分布 1、频数:即变量值的个数 2、频数表:同时列出观察指标的可能取值区间
及其在各区间出现的频数。 3、频数分布通常用频数分布表和频数分布图来
表示。 注意:了解频数分布是分析资料的第一步。 (一)频数分布表(frequency table)
之间,尤以组段的人数71~(次/分)最多。 且上下组段的频数分布基本对称。
3.便于发现一些特大或特小的可疑值
组段
频数 f
(1)
(2)
2.30~
12.60~02.90~03.20~
0
3.50~
17
3.80~
20
4.10~
17
4.40~
12
4.70~
9
5.00~
0
5.30~
0
5.60~5.90
8
合计
图 2-1 130 名 正 常 成 年 男 子脉搏的 频 数 分 布
第一节 频数分布

数值变量资料的集中趋势和离散趋势

数值变量资料的集中趋势和离散趋势
总体指标:希腊字母,统计量 样本指标:英文字母,参数
2.几何均数(geometric mean)
常适用于一种特殊的偏态分布资料:等比资料或对 数正态分布资料(常见于抗体滴度)。
3.中位数(median,M) 10.12.9.7.11.39
主要适用于偏态分布资料。中位数是指将一组变 量值从小到大排列,位次居中的变量值。
S CV 100% X
CV: 单位不同,均数相差悬殊 S : 单位相同,均数相近
5.四分位数间距(quartile interval,Q):P75 、 P25分别表示第75百分位数和第25百分位数。
Q= P75-P25(上四分位数-下四分位数)
注:主要用于偏态分布资料离散程度的描述。
正态分布:集中趋势,平均数;离散趋势,方差 偏态分布:集中趋势,中位数;离散趋势,四分位数间距
最大值
统计结果
注:除了用“Frequencies”外,还可以使用 “Descriptives”进行统计描述 描述
三、用SPSS软件实现统计描述
操作步骤:
1.选择“Frequencies”
描述性统计
频数
操作步骤:
2.将变量选入变量框, 点击“Statistics”
操作步骤:
用Excel计算
2.选择相应描述性指标, 无几何均数,变异系数 点击“Continue” 均数
四分位数
间距 中位数 最小值 标准差 方差 极差
偏态分布பைடு நூலகம்集中位置偏向一侧,频数分布不对称的 分布。
正偏态
120 100
负偏态
80
60
40
20
0 0.0 10.0 20.0 30.0 40.0 50.0 60.0

医学统计学(课件)集中趋势

医学统计学(课件)集中趋势
在病例报告的筛选中,研究者通 常会关注出现频率最高的疾病类 型或症状,因为这些疾病类型或 症状最有可能成为研究的主要对 象。
流行病学研究
在流行病学研究中,研究者通常 会关注最常见的人口统计学特征 或健康状况,因为这些特征或状 况最有可能对研究结果产生影响 。
临床诊断
在临床诊断中,医生通常会关注 最常见的症状或体征,因为这些 症状或体征最有可能指示某种疾 病的存在。
众数
在流行病学研究中,众数可以用于描述某种疾病患者的 症状分布。适用于数据分布较为集中,且出现次数最多 的情况。
中位数
在临床试验中,中位数可以用于比较不同组患者的疼痛 程度或生活质量的差异。适用于数据分布不均匀或存在 极端值的情况。
06
医学统计学集中趋势的案例分析
案例一:某地区高血压患者的血糖水平分布
缺点
中位数只能反映数据的集中趋势,不能反映数据的离散程度,因此不能单独使用 来描述数据的整体特征。此外,中位数对于数据量较大的情况下计算相对繁琐。
中位数在医学中的应用
描述定量变量
在医学研究中,中位数常被用来描述定量变量的集中趋势, 特别是当数据呈现出偏态分布时。例如,在描述患者的年龄 时,可能会使用中位数来反映整体情况。
平均数在医学中的应用
描述和比较不同组别或不同时间点的观察结果
在流行病学研究中,平均数是描述疾病发病率和患病 率的重要指标之一
用于诊断和疗效评估
在临床实践中,医生通常会根据患者的平均血压、血 糖等指标来评估其健康状况
03
中位数
定义与计算方法
定义:中位数是一组数据中的一个数值,当这组 数据按从小到大的顺序排列后,处于中间位置的 数值即为中位数
众数(Mode)
众数是指在一组数据中出现次数最多的数值。在某些情况下,众数可以反映数据的集中趋 势,尤其是当数据呈现出明显的偏态分布时。

《医学统计学》第二章定量数据的统计描述

《医学统计学》第二章定量数据的统计描述
630
累积频数
(3) 27
196 363 457 538 580 608 622 626 629 630

累积频率(%)
(4) 4.29 31.11 57.62 72.54 85.40 92.06 96.51 98.73 99.37 99.84 100.00
资料如表,试计算其中位数。
某地630名正常女性血清甘油三酯含量(mmol/L)
甘油三酯(mmol/L)
(1) 0.10~ 0.40~ 0.70~ 1.00~ 1.30~ 1.60~ 1.90~ 2.20~ 2.50~ 2.80~ 3.10~
合计
频数
(2) 27 169 167 94 81 42 28 14 4 3 1
练习
例 8名食物中毒患者的潜伏期分别为1,4,3,3,2,5,8,16小时,
求中位数。
n=8,为偶数
M
1
2
(
x (
8 2
)
x (
8
1)
)
2
1 2 ( x4
x5 )
1 3 4
2
3.5(小时)
例 某传染病11名患者的潜伏期(天)分别为1,3,2,2,3,7,5,6,
4,7,9,求中位数。
n=11,为奇数 M xn1 2 x(111) x6 4(天 ) 2
偏态分布
正偏态 负偏态
正偏态:集中位置偏向数值小的一侧 负偏态:集中位置偏向数值大的一侧
医学统计学(第7版)
正 态 分 布
医学统计学(第7版)
正偏态
集中位置偏向 数值小的一侧
负偏态
集中位置偏向 数值大的一侧
(麻疹年龄分布)
(肺癌年龄分布)

集中趋势和离散趋势的描述

集中趋势和离散趋势的描述

402 330 232 118 27 11 3 1123
第三节 离散趋势的描述
描述数据变异大小的常用统计指标: 描述数据变异大小的常用统计指标: 极差 四分位数间距 方差与标准差 变异系数
极差( 一、 极差(Range) ) 即一组变量值的最大值与最小值之差。 即一组变量值的最大值与最小值之差。 三组同龄男孩的身高值(cm) 例 三组同龄男孩的身高值(cm)
QR = 67.7 − 39.2 = 28.5
四分位数间距可以看成居中的一半变量值的 极差(数据两端各去除了25%的数据) 极差(数据两端各去除了25%的数据)。可表示为 25%的数据 QR=28.5(39.2~67.7)天。 天
三、方差与标准差 1.方差( 1.方差(variance)也称均方差(mean square 方差 )也称均方差( deviation),反映一组数据的平均离散水平。 ),反映一组数据的平均离散水平 ),反映一组数据的平均离散水平。 总体方差
适用条件: 适用条件: 1.适用于各种分布类型的资料 1.适用于各种分布类型的资料 2.特别适合大样本偏态分布资料或者 2.特别适合大样本偏态分布资料或者一端或两端 特别适合大样本偏态分布资料或者一端或两端 的资料。 无确切数值的资料 无确切数值的资料。
中位数的计算 n为奇数时
M=X
n为偶数时
(
一、算术均数(mean) 算术均数(mean) 简称均数,可用于反映一组呈对称分布 简称均数,可用于反映一组呈对称分布的 呈对称分布的 变量值在数量上的平均水平或者说是集中位置 的特征值。 的特征值。 适用条件:算数均数适用于对称分布 适用条件:算数均数适用于对称分布,特别 对称分布, 是正态分布资料。 正态分布资料。 资料
( X − µ )2 ∑ N

医学统计学课后答案

医学统计学课后答案

第二章1.答:在统计学中用来描述集中趋势的指标体系是平均数,包括算术均数,几何均数,中位数。

均数反映了一组观察值的平均水平,适用于单峰对称或近似单峰对称分布资料的平均水平的描述。

几何均数:有些医学资料,如抗体的滴度,细菌计数等,其频数分布呈明显偏态,各观察值之间呈倍数变化(等比关系),此时不宜用算术均数描述其集中位置,而应该使用几何均数(geometric mean)。

几何均数一般用G表示,适用于各变量值之间成倍数关系,分布呈偏态,但经过对数变换后成单峰对称分布的资料。

中位数和百分位数:中位数(median)就是将一组观察值按升序或降序排列,位次居中的数,常用M表示。

理论上数据集中有一半数比中位数小,另一半比中位数大。

中位数既适用于资料呈偏态分布或不规则分布时集中位置的描述,也适用于开口资料的描述。

所谓“开口”资料,是指数据的一端或者两端有不确定值。

百分位数(percentile)是一种位置指标,以P X表示,一个百分位数P X将全部观察值分为两个部分,理论上有X%的观察值比P X小,有(100-X)%观察值比P X大。

故百分位数是一个界值,也是分布数列的一百等份分割值。

显然,中位数即是P50分位数。

即中位数是一特定的百分位数。

常用于制定偏态分布资料的正常值范围。

2.答:常用来描述数据离散程度的指标有:极差、四分位数间距、标准差、方差、及变异系数,尤以方差和标准差最为常用。

极差(range,记为R),又称全距,是指一组数据中最大值与最小值之差。

极差大,说明资料的离散程度大。

用极差反映离散程度的大小,简单明了,故得到广泛采用,如用以说明传染病、食物中毒等的最短、最长潜伏期等。

其缺点是:1.不灵敏; 2.不稳定。

四分位数间距(inter-quartile range)就是上四分位数与下四分位数之差,即:Q=Q U-Q L,其间包含了全部观察值的一半。

所以四分位数间距又可看成中间一半观察值的极差。

其意义与极差相似,数值大,说明变异度大;反之,说明变异度小。

医学统计学基本概念与常用统计描述指标

医学统计学基本概念与常用统计描述指标

医学统计学基本概念与常用统计描述指标在医学研究领域中,统计学是一门重要的方法学科,它通过对研究对象进行数据收集、整理和分析,揭示事实真相,为医学研究提供支持。

本文将就医学统计学的基本概念以及常用的统计描述指标进行介绍和分析。

一、基本概念1.1 总体与样本在医学统计学中,研究对象可以是人群、器官、细胞等,被称为总体。

由于总体往往庞大,无法直接进行研究,因此需要从总体中抽取一部分个体,构成样本进行研究。

1.2 参数与统计量参数是总体的数学指标,如总体均值、总体方差等。

由于总体无法直接观察到,所以我们需要通过样本来估计总体的参数,这些样本的数学指标称为统计量。

1.3 假设检验假设检验是医学统计学中常用的方法之一,旨在通过对样本数据的分析,对某个研究问题的假设进行验证。

假设检验通常包括原假设和备择假设,通过对样本数据进行统计推断,判断原假设是否成立。

1.4 显著性水平与P值显著性水平是假设检验中的一个重要参数,通常用α表示,表示犯第一类错误的概率。

P值是指在给定原假设条件下,观察到的样本结果或更极端结果的概率。

当P值小于显著性水平时,我们拒绝原假设。

二、常用统计描述指标2.1 集中趋势指标集中趋势指标用于描述数据的中心位置,常用的统计描述指标包括均值、中位数和众数。

2.1.1 均值均值是一组数据总和除以数据个数的算术平均值,它能够反映数据的平均水平。

在医学研究中,常用均值来描述人群的平均生理指标或临床症状。

2.1.2 中位数中位数是将一组数据按照大小顺序排列后,位于中间位置的数值。

与均值相比,中位数更能反映数据的中间位置,不受异常值的影响。

2.1.3 众数众数是一组数据中出现次数最多的数值,可以反映数据的分布情况。

在医学研究中,常用众数来描述疾病的发病特点或患者的临床表现。

2.2 离散程度指标离散程度指标用于描述数据的分散程度,常用的统计描述指标包括标准差、方差和极差。

2.2.1 方差和标准差方差是一组数据与其均值的偏差平方和与数据个数之比,它能够反映数据的波动程度。

医学统计学——统计描述

医学统计学——统计描述
对称分布:高峰位于中部,左右两侧的频数大体对称。正态分
布为最常见的一种。
偏态分布:正偏态分布—儿童疾病年龄分布;负偏态分布— 老年疾病年龄分布。
对称分布
频数分布高峰位于 中部,左右两恻的 频数大体对称。
正偏
偏态分布
负偏
生物医学研究的统计方法 第2章
高峰偏于左侧, 长尾向右侧延伸, 则为正偏态
高峰偏于右侧,长 尾向左侧延伸,则 为负偏态。
G lg 1(lg X1 lg X 2 ... lg X n ) lg 1(
lg X )
n
n
例3.2 设有5份血清样品,滴度分别 为:1:1, 1:10, 1:100, 1:1000, 1:10000 求其平均滴度。
G= 5 110100100010000 100
或G=lg-1((lg1+lg10+lg100+lg1000+lg10000)/5) =lg-1((0+1+2+3+4)/5) =lg-12 =100
中位数、算术均数和众数的关系
正偏态分布
对称分布
众数 中位数 算术均数
众数 中位数 算术均数
负偏态分布
算术均数 中位数 众数
三、离散趋势指标
极差(Range, R) 四分位数间距(Quartile,Q) 方差(Variance) 标准差(Standard deviation)
(一)、极差(Range, R)
潜伏期(小时) 频数 f 累计频数 累计频率(%)




0—
21
21
15.24
12—
58
79
48.17
24—

医学统计学 描述性统计

医学统计学 描述性统计
位置指标 中位数:一组资料按大小顺序排列后,中间
位置上的观测值。
12 3 4 5 6 7 1 2 3 4 5 6----median=3.5
百分位数(percentile,Px)
位置指标 一组资料从小到大排序后,x%的观测值比
Px小,(100-x)%的观测值比Px大,则这 个位置点的数值,即为第x百分位数Px。 第5百分位数P5:有5%的观测值比P5小,有 95%的观测值比P5大。 中位数即第50百分位数。 用于偏态分布的资料。
位数间距。 如:年龄中位数为33.5岁,最小年龄3岁,最大 年龄55岁。
医学统计学
描述性统计 (一)
统计处理
统计描述: 描述样本特征:列表、图示、数字
统计推断:由样本信息来推断总体信息
计量资料分布特征和描述指标
集中趋势:平均水平 算术均数、几何均数、中位数
离散趋势:变异性 极差、四分位数间距、方差、标准差、变异 系数
频数表和直方图
集中趋势指标-均数mean
算术均数:简称均数,用以描述一组服从正 态分布或近似正态分布资料的平均水平。
总体均数 ,样本均数 x
离均差总和 离均差平方和
几何均数G(geometric mean)
用于对数正态分布的资料。即原变量值分布 不对称,但经对数转换后,近似或服从正态 分布的资料。
血清学平均抗体效价
中位数M(median)
变异系数CV
用于比较不同量纲上述指标都是用于计量资料的统计描述 除变异系数外,均有量纲 变异性指标中,指标值越大,说明数据变异越大 分布类型不同,适用的描述指标不同。 正态分布常用 x s 偏态分布常用中位数M和最小值、最大值或四分
离散趋势的指标-极差R
极差或全距range:最大值与最小值之差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 3 1 630
累积频数 27
196 363 457 538 580 608 622 626 629 630 -
累积频率 4.3
31.1 57.6 72.5 85.4 92.1 96.5 98.7 99.4 99.8 100.0
-
?
81
130
M
160
What is 城市轨道交通 urban rail transport
精品ppt模板
▪ 某地140名成年男子红细胞计数(1012个/升 )资料如下
4.76 5.26 5.61 5.95 4.46 4.57 4.31 5.18 4.92 4.27 4.77 4.88
5.00 4.73 4.47 5.34 4.70 4.81 4.93 5.04 4.40 5.27 4.63 5.50
➢ 本例数据已经按从小到大的升序排列,n=7 ,为奇数,其中位数为16天。
What is 城市轨道交通 urban rail transport
精品ppt模板
▪ 百分位数(percentile)
X%
PX
(100-X)%
▪ 50%分位数就是中位数 ▪ 25%,75%分位数称四分位数(quartile)
➢ 平均数要与变异指标结合使用
What is 城市轨道交通 urban rail transport
精品ppt模板
➢ 甲组 26 29 30 31 34 ➢ 乙组 24 27 30 33 36 ➢ 丙组 26 28 30 32 34
均数30kg 均数30kg 均数30kg



What is 城市轨道交通 urban rail transport
45
What is 城市轨道交通 urban rail transport
精品ppt模板
4000
3000


2000
1000
0
0
10
20
30
40
50
60
70
80
死亡年龄(岁)
What is 城市轨道交通 urban rail transport
精品ppt模板
400
300
人 数 200
100
0
0
10
13
5.3
68.9
5.4~
4
5.5
22.0
5.6~
2
5.7
11.4
5.8 ~6.0
1
5.9
5.9
What is 城市轨道交通 urban rail transport
精品pp合t模板计
140
669.8
➢ 几何均数(geometric mean,G)
➢ 定义
➢ 使用条件 呈倍数关系变化或对数正态 分布
What is 城市轨道交通 urban rail transport
精品ppt模板
➢ 分布不对称者称为偏态分布。
➢ 偏态分布又分为正偏分布和负偏分布。
➢ 正偏分布是指分布的长尾在峰的右侧, 又称右偏分布
➢ 负偏分布是指分布的长尾在峰的左侧, 又称左偏分布。
➢ 常见偏态分布
What is 城市轨道交通 urban rail transport
精品ppt模板
40
人 数
30
20
10
0 124
What is 城市轨道交通 urban rail transport
精品ppt模板
132
140
148
身高(cm)
156
164
70 60
50
人 40 数
30
20
10
0
1
3
What is 城市轨道交通 urban rail transport
精品ppt模板
30
20
10
0 124
What is 城市轨道交通 urban rail transport
精品ppt模板
132
140
148
身高(cm)
156
164
平均数(Average)
算术均数(Mean) 几何均数(Geometric Mean) 中位数(Median) 百分位数(Percentile)
What is 城市轨道交通 urban rail transport
20
What is 城市轨道交通 urban rail transport
精品ppt模板
30
40
50
60
70
自评分
80
90
100
40
30
人 数 20
10
0
0
5
10
15
20
25
30
生存时间(月)
35
40
45
What is 城市轨道交通 urban rail transport
精品ppt模板
40
人 数
精品ppt模板
全距(range),极差
精品ppt模板
三组儿童体重的离散程度
变异度
极差(Range) 四分位数间距(interquartile range) 方差(Variance) 标准差(Standard Deviation) 变异系数( coefficient of variation )
What is 城市轨道交通 urban rail transport
➢ 常用
What is 城市轨道交通 urban rail transport
精品ppt模板
▪ 1:10, 1:20, 1:40, 1:80, 1:160
What is 城市轨道交通 urban rail transport
精品ppt模板
▪ 中位数(median,M)
– 定义:将一组数据按从小到大的顺序排列,位 置居中的数即是中位数。
– 使用条件: 偏态分布资料、开口资料、分布不明 – 计算
What is 城市轨道交通 urban rail transport
精品ppt模板
➢ 9例正常人的发汞值: 1.1, 1.8 3.5 4.2 4.8 5.6 5.9 7.1 10.5
M=4.8
➢ 10例正常人的发汞值: 1.1, 1.8 3.5 4.2 4.8 5.6 5.9 7.1 10.5 16.3
4.76 4.88 4.61 3.97 4.08 4.58 4.31 4.05 4.16 5.04 5.15 4.50
4.62 4.73 4.47 4.58 4.70 4.81 4.55 4.28 4.78 4.51 4.63 4.36
4.48 4.59 5.09 5.20 5.32 5.05 4.41 4.52 4.64 4.75 4.49 4.22
What is 城市轨道交通 urban rail transport
精品ppt模板
甘油三酯 10~ 40~ 70~ 100~ 130~ 160~ 190~ 220~ 250~ 280~ 310~ 合计
What is 城市轨道交通 urban rail transport
精品ppt模板
频数 27 169 167 94 81 42 28 14
➢ 现状:医学研究得到的原始数据(raw data)往往 是庞大的、混乱的。
➢ 解决:频数分布表的基本思想:将原始数据按照 一定的标准划分为若干各组,合计各组的频数,
得到频数分布表;在将频数表绘制成频数分布图

What is 城市轨道交通 urban rail transport
精品ppt模板
➢ 计算极差(R)
4.71 5.21 4.94 4.68 5.17 4.91 5.02 4.76
What is 城市轨道交通 urban rail transport
精品ppt模板
➢ 原因:由于个体变异的存在,医学研究中某指标 在各个体上的观察结果不是恒定不变的,但也不 是杂乱无章的,而是有一定规律的,呈一定的分 布(distribution)。
频 率(%) (3) 1.4 4.3 7.9 17.9 22.9 19.3 12.1 9.3 2.9 1.4 0.7
100.00
图1
What is 城市轨道交通 urban rail transport
精品ppt模板
140名成年男性的血红细胞计数的频数分布
➢ 频数分布图用以表示数据的分布规律。 ➢ 观察有无可疑值 。 ➢ 考察分布的类型 。
R=max-min=5.95-3.82=2.13(1012个/升)
➢ 组数:8~15
➢ 组距:i=R/组数=2.13/10=0.213
≈ 0.2(1012个/升)
➢ 组段:含义:含下限不含上限。
第一组段下限≤ min
最后一组上限>max
➢ 划记:计算频数
What is 城市轨道交通 urban rail transport
精品ppt模板
100名成年男性血红细胞均数计算表
组段 (1)
频数 (2)
组中值 (3)
频 率(%) (4)
3.8~
2
3.9
7.8
4.0~
6
4.1
24.6
4.2~
11
4.3
47.3
4.4~
25
4. 5
112.5
4.6~
32
4.7
150.4
4.8~
27
4.9
132.3
5.0~
17
5.1
86.7
5.2~
精品ppt模板
组段 (1)
3.8~ 4.0~ 4.2~ 4.4~ 4.6~ 4.8~ 5.0~ 5.2~ 5.4~ 5.6~ 5.8 ~6.0 合计
相关文档
最新文档