求曲率半径例题
曲率与曲率半径问题(解析版)-高中数学
曲率与曲率半径问题1.(2024·浙江温州·二模)如图,对于曲线Γ,存在圆C满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 03);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.【解析】(1)记f x =x 2,设抛物线y =x 2在原点的曲率圆的方程为x 2+y -b 2=b 2,其中b 为曲率半径.则f x =2x ,f x =2,故2=f0 =b 2b -03=1b ,2=r 2b 3,即b =12,所以抛物线y =x 2在原点的曲率圆的方程为x 2+y -122=14;(2)设曲线y =f x 在x 0,y 0 的曲率半径为r .则法一:f x 0 =-x 0-ay 0-bfx 0 =r 2b -y 03,由x 0-a 2+y 0-b 2=r 2知,fx 0 2+1=r 2y 0-b 2,所以r =fx0 2+132f x 0,故曲线y =1x在点x 0,y 0 处的曲率半径r =-1x 202+1 322x 30,所以r 2=1x 40+132x 302=14x 20+1x 23≥2,则r 23=2-23x 20+1x 20≥213,则r =12x 20+1x 232≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.法二:-1x 20=-x 0-a y 0-b 2x 30=r 2b -y 0 3,a +bx 20-2x 0x 40+1=r ,所以y 0-b =-x 0⋅r 23213x 0-a =-r 23213x 0,而r 2=x 0-a 2+y 0-b 2=x 20⋅r 43223+r 43223⋅x 20,所以r 23=2-23x 20+1x 20,解方程可得r =12x 20+1x 2032,则r 2=14x 20+1x 203≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.(3)法一:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,故r 23=e 43x +e-23x ,由题意知:e 43x1+e -23x 1=e43x 2+e-23x 2令t 1=e 23x1,t 2=e23x 2,则有t 21+1t 1=t 22+1t 2,所以t 21-t 22=1t 2-1t 1,即t 1-t 2 t 1+t 2 =t 1-t 2t 1t 2,故t 1t 2t 1+t 2 =1.因为x 1≠x 2,所以t 1≠t 2,所以1=t 1t 2t 1+t 2 >t 1t 2⋅2t 1t 2=2t 1t 2 32=2e x 1+x 2,所以x 1+x 2<-ln2.法二:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e 2x=e 4x +3e 2x +3+e -2x令t 1=e 2x 1,t 2=e 2x 2,则有t 21+3t 1+3+1t 1=t 22+3t 2+3+1t 2,则t 1-t 2 t 1+t 2+3-1t 1t 2=0,故t 1+t 2+3-1t 1t 2=0,因为x 1≠x 2,所以t 1≠t 2,所以有0=t 1+t 2+3-1t 1t 2>2t 1t 2+3-1t 1t 2,令t =t 1t 2,则2t +3-1t2<0,即0>2t 3+3t 2-1=(t +1)22t -1 ,故t <12,所以e x 1+x 2=t 1t 2=t <12,即x 1+x 2<-ln2;法三:函数y =e x 的图象在x ,e x处的曲率半径r =e 2x +1 32e x.故r 23=e 43x +e23x 设g x =e 43x +e 23x ,则gx =43e 43x -23e -23x =23e -23x 2e 2x -1 ,所以当x ∈-∞,-12ln2 时g x <0,当x ∈-12ln2,+∞ 时g x >0,所以g x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增,故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证g x 2 =g x 1 >g -ln2-x 2 将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有g x >g -ln2-x ,设函数G x =g x -g -ln2-x (其中x >-12ln2),则G x =g x +g -ln2-x =232e 2x -1 e 23x -2-13 ⋅e -43x >0,故G x 单调递增,G x >G -12ln2 =0,故g x 2 >g -ln2-x 2 ,所以x 1+x 2<-ln2.法四:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e2x=e 4x +3e 2x +3+e -2x ,设h x =e 4x +3e 2x +3+e -2x .则有h x =4e 4x +6e 2x -2e -2x =2e -2x e 2x +1 22e 2x -1 ,所以当x ∈-∞,-12ln2 时h x <0,当x ∈-12ln2,+∞ 时h x >0,故h x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增.故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证h x 2 =h x 1 >h -ln2-x 2 .将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有h x >h -ln2-x ,设函数H x =h x -h -ln2-x (其中x >-12ln2),则H x =h x +h -ln2-x =2e 2x -1 21+12e -2x +14e -4x >0,故H x 单调递增,故H x >H -12ln2 =0,故h x 2 >h -ln2-x 2 ,所以x 1+x 2<-ln2.2.有一种速度叫“中国速度”,“中国速度”正在刷新世界对中国高铁的认知.由于地形等原因,在修建高铁、公路、桥隧等基建中,我们常用曲线的曲率(Curvature )来刻画路线弯曲度.如图所示的光滑曲线C 上的曲线段AB ,设其弧长为Δs ,曲线C 在A ,B 两点处的切线分别为l A ,l B ,记l A ,l B 的夹角为ΔθΔθ∈0,π2,定义K =ΔθΔs为曲线段AB 的平均曲率,定义K (x )=lim Δx →0ΔθΔs=f (x )1+f (x ) 232为曲线C :y =f (x )在其上一点A (x ,y )处的曲率.(其中f (x )为f (x )的导函数,f (x )为f (x )的导函数)(1)若f (x )=sin (2x ),求K π4;(2)记圆x 2+y 2=2025上圆心角为π3的圆弧的平均曲率为a .①求a 的值;②设函数g (x )=ln (x +45a )-xe x -1,若方程g (x )=m (m >0)有两个不相等的实数根x 1,x 2,证明:x 2-x 1 <1-(5e -2)m3e -3,其中e 为自然对数的底数,e =2.71828⋯.【解析】(1)f (x )=sin (2x ),f (x )=2cos (2x ),f (x )=-4sin (2x ),所以f π4 =2cos π2=0,f π4 =-4sin π2=-4,因此K π4 =f π4 1+f π4 232=-4 1+0 32=4.(2)①由圆的性质知圆x 2+y 2=2025上圆心角为π3的圆弧的弧长为ΔS =π3⋅R .弧的两端点处的切线对应的夹角Δθ=π3,所以该圆弧的平均曲率K =Δθ ΔS=1R =12025=145,也即a =145.②由于a =145,故g x =ln x +1 -xe x -1,x ∈-1,+∞ ,又g (0)=0,g x =1x +1-x +1 e x -1,g x =-1x +12-x +2 e x -1<0,所以g (x )在-1,+∞ 上单调递减,而g 0 =1-1e >0,g 1 =12-2=-32<0.因此必存在唯一的x 0∈(0,1)使得g (x 0)=0且g (x )在-1,x 0 上为正,在x 0,+∞ 为负,即g (x )在-1,x 0 上单调递增,在x 0,+∞ 上单调递减,而g (0)=0,又g 12 =ln 32-12e>ln 32-13>0∵2e >3⇔e >94,ln 32>13⇔e 13<32⇔e <278,g (1)=ln2-1<0,所以∃t ∈12,1 使得g (t )=0,即g (x )的图象与x 轴有且仅有两个交点(0,0),(t ,0),易得g (x )在(0,0)处的切线方程为l 0:y =1-1e x =e -1ex ,在(t ,0)处的切线方程为l t :y =1t +1-t +1 e t -1 x -t ,下面证明两切线l 0,l t 的图象不在g (x )的图象的下方:令h x =g x -1t +1-t +1 e t -1 x -t =g (x )-g (t )(x -t ),则h (x )=g (x )-g (t ).因为h (x )=g (x )<0,所以h (x )在(-1,+∞)单调递减,而h (t )=0,所以h (t )在(-1,t )上为正,在(t ,+∞)为负,即h (x )在(-1,t )上单调递增,在(t ,+∞)单调递减,因此h (x )≤h (t )=g (t )-0=0,即g x ≤1t +1-t +1 e t -1 x -t ,即g (x )的图象恒在其图象上的点(t ,0)处的切线的下方(当且仅当x =t 时重合).同理可证(将t 视为0即可),g x ≤1-1ex设直线y =m (m >0)与两切线l 0,l 1交点的横坐标分别为X 0,X t ,则易得X 0=me e -1,X t =m1t +1-t +1 e t -1+t 且X 0<x 1<x 2<X t ,因为t ∈12,1,故1t +1-t +1 e t -1∈-32,23-32e⊆-32,0 ,所以X t =m 1t +1-t +1 e t -1+t <m -32+t <1-2m3,因此x 2-x 1 <X t -X 0<1-2m 3-mee -1=1-5e -2 m 3e -3.3.定义:若h (x )是h (x )的导数,h (x )是h (x )的导数,则曲线y =h (x )在点(x ,h (x ))处的曲率K =h (x )1+h(x ) 232;已知函数f (x )=e x sin π2+x,g (x )=x +(2a -1)cos x ,a <12,曲线y =g (x )在点(0,g (0))处的曲率为24;(1)求实数a 的值;(2)对任意x ∈-π2,0,mf (x )≥g (x )恒成立,求实数m 的取值范围;(3)设方程f (x )=g (x )在区间2n π+π3,2n π+π2n ∈N * 内的根为x 1,x 2,⋯,x n ,⋯比较x n +1与x n +2π的大小,并证明.【解析】(1)由已知g (x )=-2a -1 sin x +1,g (x )=-2a -1 cos x ,所以2a -1 1+12 32=24,解得a =0(a =1舍去),所以a =0;(2)由(1)得g (x )=x -cos x ,f (x )=e x sin π2+x=e x cos x ,则g x =1+sin x ,对任意的x ∈-π2,0,mf x -gx ≥0,即me x cos x -sin x -1≥0恒成立,令x =-π2,则m ⋅0+1-1=0≥0,不等式恒成立,当x ∈-π2,0时,cos x >0,原不等式化为m ≥sin x +1e x cos x ,令h x =sin x +1e x cos x,x ∈-π2,0 ,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x =1-cos x 1+sin x e x cos 2x≥0,所以h x 在区间-π2,0单调递增,所以h x max =h 0 =1,所以m ≥1,综上所述,实数m 的取值范围为1,+∞ ;(3)x n +1>x n +2π,证明如下:由已知方程f x =g x 可化为e x cos x -sin x -1=0,令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x ,因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0,所以φ x <0,所以φx 在区间2n π+π3,2n π+π2n ∈N * 上单调递减,故φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=12e 2n π+π3-32-1≥12e 2π+π3-32-1>22×3+1×12-32-1>0,φ2n π+π2=-2<0,所以存在唯一x 0∈2n π+π3,2n π+π2,使得φx 0 =0,又x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2 ,则φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n ,所以x n +1>x n +2π.4.(2024·湖北黄冈·二模)第二十五届中国国际高新技术成果交易会(简称“高交会”)在深圳闭幕.会展展出了国产全球首架电动垂直起降载人飞碟.观察它的外观造型,我们会被其优美的曲线折服.现代产品外观特别讲究线条感,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB 运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δ→0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ,y 分别表示y =f x 在点A 处的一阶、二阶导数)(1)已知抛物线x 2=2py (p >0)的焦点到准线的距离为3,则在该抛物线上点3,y 处的曲率是多少?(2)若函数g x =12x +1-12,不等式g e x +e -x 2 ≤g 2-cos ωx 对于x ∈R 恒成立,求ω的取值范围;(3)若动点A 的切线沿曲线f x =2x 2-8运动至点B x n ,f x n 处的切线,点B 的切线与x 轴的交点为x n +1,0 n ∈N * .若x 1=4,b n =x n -2,T n 是数列b n 的前n 项和,证明T n <3.【解析】(1)∵抛物线x 2=2py (p >0)的焦点到准线的距离为3,∴p =3,即抛物线方程为x 2=6y ,即f x =y =16x 2,则f x =13x ,f x =13,又抛物线在点3,y 处的曲率,则K =131+19⋅3232=1322=212,即在该抛物线上点3,y 处的曲率为212;(2)∵g -x =12-x +1-12=2x 2x +1-12=12-12x +1=-g x ,∴g x 在R 上为奇函数,又g x 在R 上为减函数.∴g e x +e -x 2≤g 2-cos ωx 对于x ∈R 恒成立等价于cos ωx ≥2-e x +e -x2对于x ∈R 恒成立.又因为两个函数都是偶函数,记p x =cos ωx ,q x =2-e x +e -x2,则曲线p x 恒在曲线q x 上方,p x =-ωsin ωx ,qx =-e x -e -x 2,又因为p 0 =q 0 =1,所以在x =0处三角函数p x 的曲率不大于曲线q x 的曲率,即p 0 1+p 20 32≤q 01+q 232,又因为p x =-ω2cos ωx ,qx =-e x +e -x 2,p 0 =-ω2,q 0 =-1,所以ω2≤1,解得:-1≤ω≤1,因此,ω的取值范围为-1,1 ;(3)由题可得f x =4x ,所以曲线y =f x 在点x n ,f x n 处的切线方程是y -f x n =f x n x -x n ,即y -2xn 2-8 =4x n x -x n ,令y =0,得-x n 2-4 =2x n x n +1-x n ,即x n 2+4=2x n x n +1,显然x n ≠0,∴x n +1=x n 2+2x n,由x n +1=x n 2+2x n ,知x n +1+2=x n 2+2x n +2=x n +2 22x n ,同理x n +1-2=x n -2 22x n,故x n +1+2x n +1-2=x n +2x n -22,从而lg x n +1+2x n +1-2=2lg x n +2x n -2,设lg x n +2x n -2=a n ,即a n +1=2a n ,所以数列a n 是等比数列,故a n =2n -1a 1=2n -1lg x 1+2x 1-2=2n -1lg3,即lg x n +2x n -2=2n -1lg3,从而x n +2x n -2=32n -1,所以x n =232n -1+132n -1-1,∴b n =x n -2=432n -1-1>0,b n +1b n =32n -1-132n-1=132n -1+1<132n -1≤1321-1=13,当n =1时,显然T 1=b 1=2<3;当n >1时,b n <13b n -1<13 2b n -2<13n -1b 1,∴T n =b 1+b 2+⋯+b n <b 1+13b 1+⋯+13 n -1b 1=b 11-13 n1-13=3-3⋅13n<3,综上,T n <3n ∈N * .5.(2024·高三·浙江宁波·期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y 3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【解析】(1)K =ΔθΔs=π3π3=1.(2)y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24 -32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.(3)fx =ln x -1,fx =1x ,故φy =22y 1+y 3=22x ln x 3=223s ln s3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -12ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.6.(2024·高三·辽宁·期中)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,fx 是fx 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f (x )1+f (x ) 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x (x ∈R )曲率K 2的最大值;【解析】(1)因为f x =ln x +x ,则f x =1x +1,f x =-1x 2,所以K 1=f 11+f 1 232=11+2232=1532,故K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,则h x =-sin x ,h x =-cos x ,所以K 2=h x 1+hx 2 32=-cos x1+sin 2x 32,则K 22=cos 2x 1+sin 2x 3=cos 2x2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,则pt =-t 3-3t 22-t t 6=2t -6t 4,显然当t ∈1,2 时,p t <0,p t 单调递减,所以p (t )max =p 1 =1,则K 22最大值为1,所以K 2的最大值为1.7.曲线的曲率定义如下:若f '(x )是f (x )的导函数,f "(x )是f '(x )的导函数,则曲线y =f (x )在点(x ,f (x ))处的曲率K =|f "(x )|1+[f '(x )]232.已知函数f x =e x cos x ,g x =a cos x +x a <0 ,曲线y =g (x )在点(0,g (0))处的曲率为24.(1)求实数a 的值;(2)对任意的x ∈-π2,0,tf x -g x ≥0恒成立,求实数t 的取值范围;(3)设方程f x =g x 在区间2n π+π3,2n π+π2(n ∈N +)内的根从小到大依次为x 1,x 2,⋯,x n ,⋯,求证:x n +1-x n >2π.【解析】(1)由已知g (x )=-a sin x +1,g (x )=-a cos x ,,所以a 1+1232=24,解方程得a =-1(2)对任意的x ∈-π2,0,tf x -gx ≥0,即te x cos x -sin x -1≥0恒成立,令x =-π2,则t ⋅0+1-1≥0,不等式恒成立当x ∈-π2,0时,cos x >0,原不等式化为t ≥sin x +1e x cos x 令h x =sin x +1e x cos x,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x=1-cos x 1+sin xe x cos 2x所以h x 在区间-π2,0单调递增,所以最大值为h 0 =1所以要使不等式恒成立必有t ≥1(3)由已知方程f x =g x 可化为e x cos x -sin x -1=0令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0所以φ x <0,φx 在区间2n π+π3,2n π+π2(n ∈N +)上单调递减,φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=e 2n π+π312-32-1≥e 2π+π312-32-1>22⋅3+112-32-1>0φ2n π+π2=-2<0所以存在唯一x 0∈2n π+π3,2n π+π2,φx 0 =0x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n 即x n +1-x n >2π8.(2024·湖南永州·三模)曲线的曲率定义如下:若f (x )是f (x )的导函数,令φ(x )=f (x ),则曲线y =f (x )在点x ,f x 处的曲率K =φ (x )1+f (x ) 232.已知函数f (x )=x 2a +x (a >0),g (x )=(x +1)ln (x +1),且f (x )在点(0,f (0))处的曲率K =24.(1)求a 的值,并证明:当x >0时,f (x )>g (x );(2)若b n =ln (n +1)n +1,且T n =b 1⋅b 2⋅b 3⋯b n (n ∈N ∗),求证:(n +2)T n <e 1-n 2.【解析】(1)f ′(x )=2x a +1=φ(x ),φ′(x )=2a,f ′(0)=1,a >0,∵f (x )在点(0,f (0))处的曲率K =24,∴2a(1+12)32=24,解得a =2.当x >0时,h (x )=f (x )-g (x )=12x 2+x -(x +1)ln (x +1),h ′(x )=x +1-ln (x +1)-1=x -ln (x +1),令u (x )=x -ln (x +1),则u ′(x )=1-1x +1=xx +1>0,∴u (x )在x >0时单调递增,∴u (x )>u (0)=0,∴h ′(x )>0,∴函数h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,因此f (x )>g (x ).(2)证明:由(1)可得:12x 2+x >(x +1)ln (x +1),∴ln (x +1)x +1<x (x +1)2(x +1)2,x >0,令x =n ∈N *,则:ln (n +1)n +1<n (n +2)2(n +1)2,∴T n =b 1⋅b 2⋅b 3⋅⋯⋅b n <12n ×1×322×2×432×3×542×4×652×⋯⋯×(n -1)(n +1)n 2×n (n +2)(n +1)2=12n ×12×n +2n +1要证明:(n +2)T n <e 1-n 2,只要证明:2ln (n +2)-(n +1)ln2-ln (n +1)-1+n2<0即可,n =1时,左边=2ln3-2ln2-ln2-12<0n ≥2时,令v (x )=2ln (x +2)-(x +1)ln2-ln (x +1)-1+x 2,v ′(x )=2x +2-ln2-1x +1+12=s (x ),s ′(x )=1(x +1)2-2(x +2)2=-x 2+2(x +1)2(x +2)2<0,∴v ′(x )<v ′(2)=23-ln2<0,∴v (x )在(2,+∞)上单调递减,∴v (x )<v (2)=4ln2-3ln2-ln3=ln2-ln3<0,综上可得:(n +2)T n <e1-n2成立.9.曲率是曲线的重要性质,表征了曲线的“弯曲程度”,曲线曲率解释为曲线某点切线方向对弧长的转动率,设曲线C :y =f x 具有连续转动的切线,在点x ,f x 处的曲率K =f x1+f x 232,其中f x为f x 的导函数,f x 为f x 的导函数,已知f x =x 2ln x -a 3x 3-32x 2.(1)a =0时,求f x 在极值点处的曲率;(2)a >0时,f x 是否存在极值点,如存在,求出其极值点处的曲率;(3)g x =2xe x -4e x +a 2x 2,a ∈0,1e,当f x ,g x 曲率均为0时,自变量最小值分别为x 1,x 2,求证:x1ex 2>e 2.【解析】(1)当a =0时,f x =x 2ln x -32x 2,x >0,可得f x =2x ln x +x -3x =2x (ln x -1),令f x =0,可得x =e ,当0<x <e 时,f x <0,当x >e 时,f x >0,所以当x =e 为f x 在极小值点,又f x =2ln x ,所以f e =2ln e =2,所以K =f e 21+f e 2232=2[1+02]32=2;(2)由f x =x 2ln x -a 3x 3-32x 2,可得f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,令h (x )=f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,则h x =2ln x -2ax ,令h x =0时,可得a =ln x x ,令φ(x )=ln x x ,可得φ (x )=1-ln xx 2,当0<x <e 时,φ x >0,φ(x )=ln xx 单调递增,当x >e 时,φ x <0,φ(x )=ln x x 单调递减,则φ(x )max =1e,所以0<a <1e时,f x =2ln x -2ax =0有解,且有两解x 1,x 3且1<x 1<e <x 3,x 1为f x 的极小值点,x 3为f x 的极大值点,当a =1e 时,f x =2ln x -2ax =0有解,且有唯一解,但此解不是f x 极值点,当a >1e时,f x =2ln x -2ax =0无解,所以f x 无极值点,所以当0<a <1e 时,f x 存在极值点,所以K =f x1+f x 2 32=0;(3)由题意可得g x =2xe x -4e x +a 2x 2,可得g x =2(x +1)e x -4e x +2ax ,要g x ,f x 曲率为0,则g x =f (x )=0,即2ln x -2ax =2a +2xe x =0,可得a =ln x x ,a 2=-xe x ,所以0<a <1e 时,φ(x )=ln xx有两解x 1,x 3,1<x 1<e <x 3,可证x 1x 3>e 2,由(2)可得ln x 1-ax 1=0,ln x 3-ax 3=0,可得ln x 1+ln x 3=ax 1+ax 3,ln x 1-ln x 3=ax 1-ax 3.要证明x 1x 3>e 2,即证明ln x 1+ln x 3>2,也就是a (x 1+x 3)>2.因为a =ln x 1-ln x 3x 1-x 3,所以即证明ln x 1-ln x 3x 1-x 3>2x 1+x 3,即ln x 1x 3<2(x 1-x 3)x 1+x 3,令x1x 3=t ,则0<t <1,于是ln t <2(t -1)t +1,令f (t )=ln t -2(t -1)t +1,则f(t )=1t -4(t +1)2=(t -1)2(t +1)2>0,故函数f (t )在(0,1)上是增函数,所以f (t )<f (1)=0,即ln t <2(t -1)t +1成立.所以x 1x 3>e 2成立.又因为a 2<a ,则-x 2e x 2=ln e-x2e-x 2<ln x 3x 3,由(2)可得φ(x )=ln xx在(e ,+∞)上单调递减,因为e -x 2>e ,x 3>e ,所以x 1ex 2=x 1e -x2>x 1x 3>e 2,10.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇,衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,f x 是f x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f x1+f x 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x x ∈R 曲率K 2的最大值;(3)余弦曲线h x =cos x x ∈R ,若g x =e x h x +xh x ,判断g x 在区间-π2,π2上零点的个数,并写出证明过程.【解析】(1)因为f x =ln x +x ,所以f x =1x +1,f x =-1x2,所以K 1=f 11+f 1 232=11+2232=1532,∴K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,h x =-sin x ,h x =-cos x ,所K 2=h x 1+h x 2 32=-cos x 1+sin 2x32,K 22=cos 2x 1+sin 2x 3=cos 2x 2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,t ∈1,2 ,则pt =-t 3-3t 22-t t 6=2t -6t4,显然当t ∈1,2 时,p t <0,p t 在1,2 上单调递减,所以p t max =p 1 =1,所以K 22最大值为1,所以K 2的最大值为1.(3)g x 在区间-π2,π2上有且仅有2个零点.证明:g x =e x cos x -x sin x ,所以g x =e x cos x -sin x -x cos x +sin x ,①当x ∈-π2,0时,因为cos x ≥0,sin x ≤0,则cos x -sin x >0,-x cos x +sin x >0,∴g x >0,g x 在-π2,0上单调递增,又g 0 =1>0,g -π2 =-π2<0.∴g x 在-π2,0上有一个零点,②设φx =e x -x ,则φ x =e x -1,当x ∈0,π4时,φx ≥0,φx 单调递增,φx =e x -x ≥φ0 =1,又cos x ≥sin x >0,∴g x =e x cos x -x sin x ≥e x sin x -x sin x =sin x e x -x >0恒成立,∴g x 在0,π4上无零点.③当x ∈π4,π2 时,0<cos x <sin x ,g x =e x cos x -sin x -x cos x +sin x <0,∴g x 在π4,π2 上单调递减,又g π2 =-π2<0,g π4 =22e π4-π4>0.∴g x 在π4,π2上必存在一个零点,综上,g x 在区间-π2,π2上有且仅有2个零点.。
物理方法求曲率半径
用物理方法求常见曲线的曲率半径求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如江苏理综14题涉及到曲率半径,高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看高考安徽理综17题:一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。
则在其轨迹最高点P 处得曲率半径是( )A .g v 20B .g v α220sinC .gv α220cosD .ααsin cos 220g v[解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力.由rv m F 2=向得: ρα20)cos (v m mg =则有:gv αρ220cos = 本题正确答案为C上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 221gt y = ②联立①②式得222x v g y =图1x yO 图2v 0令202v g a =,则2ax y = 研究抛物线的顶点,从向心力出发,有: ρ2mv mg =则有a g v 2120==ρ,即抛物线2ax y =顶点的曲率半径为a21=ρ 二、求椭圆顶点的的曲率半径理论力学可以证明:飞行物在有心力场中运动,如果总机械能E <0则其轨迹必为椭圆,且引力源在其椭圆的一个焦点上.太阳系中,行星绕太阳运动的轨道是椭圆,太阳位于轨道的一个焦点上.多数人造卫星绕地球的轨道也是椭圆,地球位于卫星轨道的一个焦点上.如图3,质量为m 卫星绕质量为M 地球做椭圆运动,轨迹椭圆方程为:12222=+b y a x 地球位于椭圆左焦点上. 设椭圆顶点A 、A ′距离左焦点的距离为r ,易知:c a r A -= ,c a r A +=',设卫星在椭圆顶点A 、A ′处的速度v , 则对地球和卫星系统而言,机械能守恒同时角动量守恒.卫星在椭圆顶点A 、A ′处均满足以下两个方程:E rMm G mv =-221 ①mvr L = ②联立①②得关于r 的二次方程:0222=-+mEL r E Mm G r ③ 可以肯定方程③的两根就是A r 和'A r ,由韦达定理知:EGMma r r A A -==+2' 则: aGMmE 2-= ④ 卫星位于顶点A121ρv m = ⑤把c a r A -=带入方程①: E ca Mm G mv =--2121 ⑥联立方程④⑤⑥得: ab 21==ρ ⑦由对称性可知, 椭圆顶点A ′的曲率半径也是ab 21=ρ.卫星位于顶点B 时:万有引力可分为向心力θτcos 2aMmGF =和切向力θsin 2a MmGF n =. 由向心力公式得: 2222cos ρθv m aMmG = ⑧由几何关系易知: ab=θcos ⑨ 由方程①得: a GMm a Mm G mv 22122-=- ⑩ 联立⑧⑨⑩得: ba 22=ρ ○11 由对称性可知,椭圆顶点B ′的曲率半径也是ba 22=ρ.所以椭圆12222=+b y a x 长半轴上的两顶点曲率半径为a b 21==ρ,短半轴上两曲率半径为ba 22=ρ三、求双曲线顶点的曲率半径理论力学可以证明:飞行物在有心力场中运动,如果总机械能E >0则其轨迹必为双曲线的一支,且引力源在其双曲线的一个焦点上.实际上某些彗星的轨迹就是双曲线的一支(此时的有心力为万有引力),另外散射实验中,α粒子在库仑场中的运动轨迹也是双曲线的一支(此时的有心力为库仑斥力).假设某彗星m 进入太阳系中,彗星m 和太阳M 系统总能量E>0. 则彗星轨道为双曲线的一支,太阳在双曲线的一个焦点上,双曲线标准方程为12222=-b y ax ,如图4所示.彗星m 闯入太阳系,可认为是从无穷远出发,∞→r 时,引力势能为0,系统总机械能为E 就是天体的动能,则有2021mv E =研究彗星从无穷远到达双曲线顶点的过程,由机械能守恒定律得:ac GMm mv mv --=2202121 ○12 由角动量守恒定律得:)(0a c mv b mv -⋅=⋅ ○13 彗星到达双曲线顶点时有:22)(a c GMmmv -=ρ○14 联立方程○12○13○14得: ab 2=ρ ○15 由对称性可知双曲线12222=-b y ax 两个顶点的曲率半径均为a b 2=ρ.。
(完整版)高中物理竞赛_话题4:曲率半径问题
话题4:曲率半径问题一、曲率半径的引入在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。
因为在0t ∆→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。
对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。
因为直线运动不能反映速度方向变化的因素。
亦即,它不能全面反映加速度的所有特征。
如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。
也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。
可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。
二、曲线上某点曲率半径的定义在向心加速度公式2n v a ρ=中ρ为曲线上该点的曲率半径。
圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。
我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。
曲率半径是微积分概念,中学数学和中学物理都没有介绍。
曲率k 是用来描述曲线弯曲程度的概念。
曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1kρ=。
这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。
二、曲线上某点曲率半径的确定方法1、 从向心加速度n a 的定义式2n v a ρ=出发。
将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2n v a ρ=求出该点的曲率半径ρ。
例1、将1kg 的小球从A 点以10/m s 的初速度水平抛出,设重力加速度210/g m s =,求:(1)在抛出点的曲率半径; (2)抛出后1s 时的曲率半径。
曲率及其曲率半径的计算课件
提示: 设直线方程为y=ax+b,则y =a, y = 0.于是
K
| (1
y | y2 )3
2
0.
2. 若曲线由参数方程
x j (t)
y
(t
)
给出,那么曲率如何计算?
提示:
K
| j(t) (t) j(t) (t) [j2 (t) 2 (t)]3 2
|
.
10
三、曲率圆与曲率半径
y
曲线在M点的曲率半径
2a ,
代入曲率公式, 得
K
| (1
y | y2 )3
2
. [1
| 2a | (2ax b)2 ]3
2
要使K 最大, 只须2ax b 0, 即 x b .而 x b 对应的点为
2a
2a
抛物线的顶点. 因此,抛物线在顶点处的曲率最大,最大曲率为
K |2a| .
9
讨论:
1.直线上任一点的曲率等于什么?
|
2
|
MM |2 (Dx)2
|
MM MM
|
2
(Dx)2 (Dy (Dx)2
)2
(
|
MM MM
|
2
1
Dy Dx
2
(
Ds Dx
|
MM MM
|
2
1
Dy Dx
2
y M0
M
Ds M
Dy
Dx
O x0
x x+Dx x 3
(
Ds
Dx
|
MM MM
|
2
1
,y
2 x3
.
因此,y |x 1 1,y |x 1 2.
高中物理竞赛_话题4:曲率半径问题
话题4:曲率半径问题一、曲率半径的引入在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。
因为在0t ∆→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。
对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。
因为直线运动不能反映速度方向变化的因素。
亦即,它不能全面反映加速度的所有特征。
如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。
也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。
可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。
二、曲线上某点曲率半径的定义在向心加速度公式2n v a ρ=中ρ为曲线上该点的曲率半径。
圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。
我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。
曲率半径是微积分概念,中学数学和中学物理都没有介绍。
曲率k 是用来描述曲线弯曲程度的概念。
曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1kρ=。
这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。
二、曲线上某点曲率半径的确定方法1、 从向心加速度n a 的定义式2n v a ρ=出发。
将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2n v a ρ=求出该点的曲率半径ρ。
例1、将1kg 的小球从A 点以10/m s 的初速度水平抛出,设重力加速度210/g m s =,求:(1)在抛出点的曲率半径; (2)抛出后1s 时的曲率半径。
理论力学万能解题法(运动学)
理论力学万能解题法(未完手稿,内部资料,仅供华中科技大学2009级学生参考)郑慧明编华中科技大学理论力学教研室序言理论力学是工科机械、能源、动力、交通、土木、航空航天、力学等专业的一门重要基础课程,一方面可解决实际问题,此外,培养学生对物理世界客观规律内在联系的理解,有助于培育出新的思想和理论,并为后续专业课程打基础。
但其解题方法众多,不易掌握。
有时为了了解系统的更多信息,取质点为研究对象,其计算复杂。
有时仅需要了解系统整体某方面信息,丢失部分信息使问题计算简单,有时又将局部和整体分析方法结合在一起,用不太复杂的方法获得我们关心的信息。
解题方法众多的根本原因是,静力学所有定理都是由5大公理得到,动力学三大定理都是由公理和牛顿第2定理得到。
因为这些定理起源有很多相同之处,故往往可用来求解同一个问题,导致方法众多。
正是因为方法众多,但因为起源可能相同,对于复杂题目,往往需要列出多个多立方程才能求解。
若同时应用多个定理解题时,往往列出线形相关的方程,而他们的相关性有时很难看出来,而却未列出该列的方程,或列方程数目过多,使解题困难,一些同学感到理论力学不好学,感觉复杂的理论力学题目。
虽然可以条条大路通罗马,但因为可选择的途径太多,有时象进入迷宫,绕来绕去,不知下一步路如何走,甚至回到同一点,比如用功率方程和动静法列出的方程表面上不同,实际上是同一个,一些学生会感到困惑,因为有些教科书上并未直接说明功率方程可由动静法推导得到,其本质上也是一个力/矩方程。
我们组织编写了本辅导书,主要目的是帮助那些对理论力学解题方法多样性无所适从的同学,了解各解题方法的内在关联和差异,容易在众多的解题方法中找到适合自己的技巧性不高的较简单方法,而该方法可以推广到一种类型的题目。
大学阶段要学的东西很多,为了高效率掌握一门课程的主要思想,对许多题目可能用同一种较合理的方法来解决,也是同学们所期望的,对于理论力学的学习,因为其方法的多样性,这种追求同一性的求知愿望可能更强烈。
曲率及其曲率半径的计算课件
明确报告收集方式,如电子邮件、在线平台提交 等。
3
报告整理与反馈
强调教师将对学生的自我评价报告进行整理和分 析,并针对普遍存在的问题进行反馈和解答。
下节课预告及作业布置
下节课预告
预告下节课将要学习的内容,为学生做好预习准 备。
作业布置
布置相关作业,要求学生应用本节课所学知识进 行计算和练习,以巩固所学内容。作业难度适中 ,题量适当。
方法选择
根据数据类型和精度要求选择合适的方法 。
结果整理
整理计算结果,包括曲率半径、误差等信 息。
结果展示与误差分析
01
02
03
结果展示
以表格或图形形式展示计 算结果,包括曲率半径、 误差等信息。
误差分析
分析计算结果的误差来源 ,如数据质量、方法精度 等。
改进措施
根据误差分析结果,提出 改进措施,如优化算法、 提高数据质量等。
THANKS
感谢观看
非弧长参数化下曲率公式
非弧长参数化
以其他参数(如时间、角度等)为参数,将曲线进行参数化,得到非弧长参数 化下的曲线方程。
曲率公式推导
在非弧长参数化下,通过引入切向量和法向量等概念,可以推导出曲率公式 k(t)=|dθ(t)/dt|/|dr(t)/dt|,其中t为非弧长参数,θ(t)为切向量与某一固定方向 的夹角,r(t)为非弧长参数化下的曲线方程。
实际应用案例分享与讨论
螺旋线曲率计算
以螺旋线为例,介绍如何应用曲 率计算公式求解其曲率半径,并 分析曲率半径随参数变化的规律
。
曲线设计与优化
讨论如何利用曲率概念进行曲线设 计与优化,例如在道路工程、机械 工程等领域中的应用。
曲线拟合与插值
高等数学典型例题与解法(一)01-第38讲 曲率与曲率半径_38
d 些= 亜
fcsc2t —2sint
孜=无=克赢=一乎毗
d%2 dx
dt
dt
____________
从而,曲率K= 伊〃 I g— 10 g_
3, 10
5 4sin3t"
(1 _|_ y,2)a (4sin2t + 25cos2*)2 (4 + 21cos^)2
当cost = 0即% = 0时曲率最大,当cost = ±1即工=±2时曲率最小.
K="
3,
(1+門2
NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY'
r
国防科学技术大学
第38讲曲率与曲率半径
(3)曲率半径与曲率中心
____
过曲线上。上点M作一个与其相切的圆(即它在
点M处与曲线有公共 切线),使该圆与曲线。 线在在点点MM处处有的相曲同率的圆凹,向其和圆曲心率和,半称径这分个别圆称为曲 为曲线C在点M处的曲率中心和曲率半径.
N«3I Mvtniey of Maw
高等数学典型例题与解法(一)
第38讲曲率与曲率半径
理学院李建平教授
主要内容
第38讲曲率与曲率半径
i弧微分平面光滑曲线的弧长微分(弧微分)在几何上是用切线长 作为曲线长的一种局部线性近似.
⑴平面光滑曲线C\y = y(x)的弧微分
ds = 1 + y,2dx.
国防科学技术大学
第38讲曲率与曲率半径
2、曲率曲率是曲线的切线的转角关于弧长的变化率.
(1)曲率定义 设M是光滑曲线Gy = y(x)上一定点,N是。上
异于M的任意一点.设弧段标力的长度为4s , 设 点M处的切线转动到点N处的切线位置时, 切线 转过的角度为,如果极限
一般曲线运动 求曲率半径
一般曲线运动求曲率半径?
答:对于一般的曲线运动,曲率半径是一个重要的概念。
曲率半径描述的是曲线上某一点处的弯曲程度。
曲率半径的计算公式可以根据曲线的方程和该点处的导数得出。
对于平面曲线,曲率半径R可以用以下公式计算:R = 1 / K
其中K是曲率,其定义为曲线上某点处切线方向角对弧长的转动率,它表明曲线偏离直线的程度。
在实际应用中,求曲率半径有多种方法,其中比较常用的方法是利用微积分中的曲率公式。
对于一个参数方程,其曲率半径可以表示为R = |v^2/|a||,其中v是速度矢量的大小,a是加速度矢量的大小。
另外,对于曲线上的某个点,如果能够找到一个与其曲率相等的圆形,那么曲线上这个点的曲率半径就是该圆形的半径。
这个圆形的半径也被称为该点的曲率半径。
需要注意的是,曲率半径是针对曲线上某个点的切线方向角对弧长的转动率而言的,因此不同的点具有不同的曲率半径。
同时,在计算曲率半径时需要注意单位的统一。
以上是关于一般曲线运动中求曲率半径的介绍,希望对你有所帮助。
曲率半径及其计算公式
曲率半径及其计算公式曲率半径是描述曲线弯曲程度的一个重要参数,它在数学、物理学、工程学等领域都有着广泛的应用。
在本文中,我们将介绍曲率半径的概念、计算公式以及其在不同领域中的应用。
一、曲率半径的概念。
曲率是描述曲线在某一点处的弯曲程度的物理量,而曲率半径则是描述曲线弯曲程度的一个参数。
在数学上,曲率半径可以用来描述曲线的弯曲程度,它是曲线在某一点处的切线与曲线的曲率圆的半径。
在物理学和工程学中,曲率半径也被广泛应用,例如在光学中用于描述光线的折射和反射,以及在车辆运动学中用于描述车辆行驶轨迹的弯曲程度等。
二、曲率半径的计算公式。
曲率半径的计算公式可以根据曲线的参数方程或者函数方程来进行推导。
对于参数方程表示的曲线,曲率半径的计算公式如下:\[ R = \frac{[(x'(t))^2 + (y'(t))^2]^{3/2}}{|x'(t)y''(t) y'(t)x''(t)|} \]其中,\( x(t) \) 和 \( y(t) \) 分别表示曲线在参数 \( t \) 下的横纵坐标,\( x'(t) \) 和\( y'(t) \) 分别表示曲线在参数 \( t \) 下的横纵坐标的一阶导数,\( x''(t) \) 和 \( y''(t) \) 分别表示曲线在参数 \( t \) 下的横纵坐标的二阶导数。
对于函数方程表示的曲线,曲率半径的计算公式如下:\[ R = \frac{[1 + (f'(x))^2]^{3/2}}{|f''(x)|} \]其中,\( f(x) \) 表示曲线的函数方程,\( f'(x) \) 和 \( f''(x) \) 分别表示曲线在点\( x \) 处的一阶导数和二阶导数。
三、曲率半径的应用。
1. 光学中的应用。
题目:曲率的判定与性质 专题练习题
题目:曲率的判定与性质专题练习题
问题一
什么是曲率?
曲率是用来衡量曲线在某一点处弯曲程度的物理量。
在数学中,曲率可以通过计算曲线在该点处的曲率半径来确定。
问题二
如何判定曲线的曲率?
判定曲线的曲率通常有两种方法:
1.利用微分几何的知识,通过求曲线在某一点处的曲率半径来
判定曲线的曲率。
2.利用微积分的知识,通过求曲线在某一点处的切线与曲线的
夹角来判定曲线的曲率。
问题三
曲率具有什么性质?
曲率具有以下性质:
曲率越大,曲线在该点处的弯曲程度越大。
曲率为正表示曲线在该点处向外凸,曲率为负表示曲线在该点处向内凹。
曲线的直线段的曲率为0.
问题四
可以举一个具体的例子来说明曲率的应用吗?
举例来说,对于一个平面上的圆,其曲率在任意一点处都是相等的,且为圆的半径。
因此,我们可以利用曲率来判定一个曲线是否是圆。
以上是关于曲率的判定与性质的专题练习题。
希望能对您有所帮助!。
巧用各种运动求曲率半径
根据 图线 的对 称性 , 可得余 弦曲线 任 一点 则 的 曲率 半 径 。
5 利 用匀 速 直 线 运 动 和 一 般 变 速 直 线 运 动 的 合运 动
设 A 点 的 曲率 半径 为 p,I 2  ̄v ]
一
一
,
;g r i
即 一 l 1 i0 l I o 0 n + s, s c
运 动 的 轨 迹 为 椭 圆
一- 一 1
当质 点运 动到 P点 时 ,
口 一
d ’b
~
 ̄ + 一 / v 0 / +A s o  ̄1 i 7t n 3
l As v t — i 。 n
s 一
如 图 6所 示 在椭 圆上 取 一点 A( ) 物 体 x, ,
摘 要 : 文 结 合 物 理探 究 式教 学 法 的 概 念 、 理 学科 的 特 点 和 新 课 改 的 要 求 分 析 了探 究 式 教 学 法在 教 学 中 的 局 本 物
限性 , 并提 出 了一 些 适 合 我 国 目前 开 展 探 究 式 教 学 的 策 略 , 旨在 为 物 理 学教 学 和 新 一轮 课 改 的 实施提 供 一 定 参 考 。
5 i 一 / n . 、。 : : = ,
题 目 求 解 曲线 .一 的曲率半 径 随 的 ) ,
分布 p z 。 ( )
J ‘ y A
,
,
则 一
+
一一 a b
,
所 l兰 以一 一 D
则 l D一 。
,
《
0
.
:
.
7 利 用匀 变 速 曲线 运 动 与 匀 速 圆周 运 动 的 合
关 键 词 : 究教 学 法 ; 限性 ; 对 策 略 探 局 应
从曲率半径的得出推导函数在某一点处的曲率公式
从曲率半径的得出推导函数在某⼀点处的曲率公式
⼀、定义:
曲线的曲率:就是针对曲线上某个点的切线⽅向⾓对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。
数学上表明曲线在某⼀点的弯曲程度的数值。
曲率半径:最接近该点处曲线的圆弧的半径,⼤⼩等于曲率的倒数。
⼆、求曲率半径思路:
将某点极短相邻区域内函数近似看作圆弧,通过圆弧长度/夹⾓可得出半径再令长度趋于0即可得到曲率半径的⼤⼩。
三、公式推导:
1.求弧长(近似代替曲率圆弧长):
给定函数f(x),要求其上⼀点(x0,f(x0))处的曲率半径,在x0邻域内取⼀点(x1,f(x1)),由弧长计算公式有:
即
2.求夹⾓(近似代替曲率圆夹⾓):
由于|x0-x1|⾮常⼩,曲率圆上的夹⾓近似于A,B两点到曲率圆圆⼼之间的夹⾓。
夹⾓⽤两点处的切线的负倒数的反正切的差表⽰,
即
则曲率半径可表⽰为
3.求极限:
应⽤洛必达法则分⼦分母同时对x1求偏导数可得
化简得
即
因此,函数在任意⼀点处曲率圆的曲率半径为
由于曲率半径与曲率⼤⼩互为倒数,则该点处曲率的值为
注意:
如果要求函数⼀点处曲率圆⽅程,求出曲率半径后还需判断函数在该点处的凸凹性来判断曲率圆圆⼼在函数的哪⼀侧,若
,则圆⼼在函数上侧,即圆⼼纵坐标⼤于该点的纵坐标,若,则圆⼼在函数下侧,即圆⼼纵坐标⼩于该点的纵坐标。
如何求解曲率半径
如何求解曲率半径作者:王国华吴跃文来源:《中学物理·高中》2013年第03期有这样一道力学问题:在xOy的竖直平面内,有一根支在原点O的弯杆,其形状可以用来y=x2k描写,其中k为不为零的正常数,在杆上穿有一个质量为m的滑块,如图1所示.若不考虑摩擦,求滑块从高度为y处滑到最低点O时,杆对滑块的作用力大小.该题的求解思路为:物体滑到最低点O时,受竖直方向的支持力和重力作用,物体在该点的运动可以看作圆周运动一部分,由牛顿第二定律知N-mg=mv2ρ(1)其中滑到O点的速度可由机械能守恒很容易得到,v2=2gy,关键在于如何去求抛物线顶点O的曲率半径ρ.下面介绍几种该题中曲率半径的求解方法:方法一数学方法数学上曲率半径的计算需要用到高等数学的知识.曲线上某点的曲率半径公式ρ=(1+y′2)3/2|y″|(2)相应地,我们可以直接利用上面的曲率半径公式进行求解.由抛物线方程y=x2k,得方法二判别式法利用曲率圆与曲线相切的数学特点,通过初等数学的方法求得曲率半径.如图2所示,由于曲率圆与抛物线相切于O点,首先设曲率圆方程其中ρ即为曲率半径.联立抛物线方程y=x2k,消去x,可得一元二次方程由于两曲线只有一个交点,即上述方程只有一个解,对应判别式方法三利用曲线运动的加速度由于学生在高中阶段没有学习导数,也没有深入学习曲线的轨迹方程,所以上述两种方法对大部分同学不太适用,但是我们可以利用物理方法巧妙地求解曲率半径.由于曲线运动的速度方向总在该点的切线方向上,建立内禀坐标系,可知其法向加速度an=limΔt→0ΔvnΔt=v2ρ,这里的ρ即为曲线的曲率半径.该题中物体通过O点的情形完全类似于平抛运动初始位置,故我们类比平抛运动,只要求得作平抛运动的物体在最高点的曲率半径即可.如图4所示,物体在抛出点O,初速度v0水平,只受重力mg,方向竖直向下,与初速度垂直,故有又由平抛物体的轨迹方程上述第三种方法从动力学角度,利用曲线在该点的向心加速度和曲率半径的关系,很容易得到曲率半径的结果.该题中求解的是平抛运动的特殊点——抛出点的曲率半径,而这种方法还可以求解抛物线上任意一点的曲率半径.如下题所示.例由某一高度以初速度v0水平射出一粒子弹,取t=0为发射时刻,试求子弹在时刻t的曲率半径.解析如图5所示,设t时刻子弹速度为v,则显然有v=v20+(gt)2,分析子弹受力,可知重力沿法向的分量为mgcosα,由牛顿第二定律可知综上所述,对于求解曲率半径问题,不必死记硬背其数学公式,可以分析其特点,通过简单的物理方法或数学方法进行求解,具体选择哪种方法,取决于具体的问题情境.。
求曲率半径例题
求曲率半径例题
1. 求椭圆12222=+b
y a x 。
(a>b>0)在P 1(a,0)和P 2(0,b)及P 3(54,53b a )三点处的曲率半径。
2. 一半径为R 的圆柱表面画有一等距螺旋线,螺距为h 。
求:螺旋线上任一点的曲率半径。
3. 一曲线可表示为参数方程。
x=R Ø-RsinØ。
y =R (1-cosØ)
求:Ø1=600,Ø2=900时的曲率半径,及该曲线的曲率半径的最大值
4. 一细杆绕定轴匀速转动,一虫子自转轴处沿杆爬行,若虫子相对地面的速度大小不变,
试证明虫子相对地面运动的路径为一圆弧。
5. 三只蜗牛自边长为L 的正三角形三个顶点开始以相同大小的速度爬行,爬行中,A 始终
朝着B ,B 朝着C ,C 朝着A 。
求:(1)当它们运动到彼此相隔距离为
2L 时,每只蜗牛经历的路程?(2)每只蜗牛路径均为曲线,当它们彼此间距离为
2L 时,曲线在这一点的曲率半径为多大?。
牛顿环法测曲率半径
- --牛顿环法测曲率半径2021年11月28日牛顿环法测曲率半径光的干预现象说明了光的波动的性质,干预现象在科学研究与计量技术中有着广泛的应用。
在干预现象中,不管何种干预,相邻干预条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干预条纹间的距离或干预条纹的数目是可以计量的。
因此,通过对干预条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程差。
利用光的等厚干预可以测量光的波长,检验外表的平面度,球面度,光洁度,以及准确测量长度,角度和微小形变等一.实验容图1本实验的主要容为利用干射法测量平凸透镜的曲率半径。
1.观察牛顿环将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干预条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2.测牛顿环半径使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行〔〕与显微镜移动方向平行〕。
记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止〔N根据实验要求决定〕。
记录标尺读数。
3.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R的标准差。
二.实验原理图1如下列图,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下外表反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上外表相遇而产生干预,干预后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△′等于膜厚度e的两倍,即△′=2e此外,当光在空气膜的上外表反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下外表反射时,那么会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差p ,与之对应的光程差为l /2 ,所以相干的两条光线还具有l /2的附加光程差,总的光程差为〔1〕当△满足条件,〔k=1,2,3…〕〔2〕时,发生相长干预,出现第K级亮纹,而当〔3〕时,发生相消干预,出现第k级暗纹。
曲率半径概念
1 概念
来源:为了平衡曲线的弯曲程度。
平均曲率,这个定义描述了AB曲线上的平均弯曲程度。
其中表示曲线段AB上切线变化的角度,为AB弧长。
例:对于圆,。
所以:圆周的曲率为,是常数。
而直线上,所以,即直线“不弯曲”。
对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令,即定义
,为了方便使用,一般令曲率为正数,即:。
2 计算公式的推导:
由于,所以要推导与ds的表示法,ds称为曲线弧长的微分(T5-28,P218)
因为,所以。
令,同时用代替得
所以或
具体表示;
1、时,
2、时,
3、时,(令)
再推导,因为,所以,两边对x求导,得,推出。
下面将与ds代入公式中:
,即为曲率的计算公式。
3 曲率半径:
一般称为曲线在某一点的曲率半径。
几何意义(T5-29)如图为在该点做曲线的法线(在凹的一侧),在法线上取圆心,以ρ为半径做圆,则此圆称为该点处的曲率圆。
曲率圆与该点有相同的曲率,切线及一阶、两阶稻树。
应用举例:求上任一点的曲率及曲率半径(T5-30)
解:由于:
所以:,。
高中物理竞赛_话题4:曲率半径问题
话题4:曲率半径问题一、曲率半径的引入在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。
因为在0t ∆→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。
对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。
因为直线运动不能反映速度方向变化的因素。
亦即,它不能全面反映加速度的所有特征。
如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。
也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。
可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。
二、曲线上某点曲率半径的定义在向心加速度公式2n v a ρ=中ρ为曲线上该点的曲率半径。
圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。
我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。
曲率半径是微积分概念,中学数学和中学物理都没有介绍。
曲率k 是用来描述曲线弯曲程度的概念。
曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1kρ=。
这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。
二、曲线上某点曲率半径的确定方法1、 从向心加速度n a 的定义式2n v a ρ=出发。
将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2n v a ρ=求出该点的曲率半径ρ。
例1、将1kg 的小球从A 点以10/m s 的初速度水平抛出,设重力加速度210/g m s =,求:(1)在抛出点的曲率半径; (2)抛出后1s 时的曲率半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求曲率半径例题
1. 求椭圆12222=+b
y a x 。
(a>b>0)在P 1(a,0)和P 2(0,b)及P 3(54,53b a )三点处的曲率半径。
2. 一半径为R 的圆柱表面画有一等距螺旋线,螺距为h 。
求:螺旋线上任一点的曲率半径。
3. 一曲线可表示为参数方程。
x=R Ø-RsinØ。
y =R (1-cosØ)
求:Ø1=600,Ø2=900时的曲率半径,及该曲线的曲率半径的最大值
4. 一细杆绕定轴匀速转动,一虫子自转轴处沿杆爬行,若虫子相对地面的速度大小不变,
试证明虫子相对地面运动的路径为一圆弧。
5. 三只蜗牛自边长为L 的正三角形三个顶点开始以相同大小的速度爬行,爬行中,A 始终
朝着B ,B 朝着C ,C 朝着A 。
求:(1)当它们运动到彼此相隔距离为
2L 时,每只蜗牛经历的路程?(2)每只蜗牛路径均为曲线,当它们彼此间距离为
2L 时,曲线在这一点的曲率半径为多大?。