C100型液压绞车设计
绞车液压系统结构设计与仿真
本科毕业设计任务书题目:绞车液压系统结构设计与仿真学生姓名届学院机械工程学院专业机械电子工程指导教师职称下达任务日期2013年10月30日天津理工大学教务处制一、毕业设计内容及要求要求:系统有较好的速度稳定性,绞车滚筒采用变量马达。
空载下降速度40m/s,滚筒采用液压制动,制动器松闸时的压力约为2MPa。
满载上升速度20 m/s。
提升架自重12KN,提升重30KN。
滚筒直径建议在0.4~0.5m之间,钢丝绳直径建议在18~22mm之间。
设计内容:1 拟定液压系统原理图。
2 液压站装配图(0号图一张,含cad)。
3 油箱零件图(0号图一张,含cad)。
4基于FluidSim的液压系统回路仿真图及电气控制原理图。
5毕业实习报告。
6参考文献不少于15篇。
7撰写毕业设计说明书,要求叙述清楚,符合论文撰写规范,不少于2万字。
8提交光盘一张,包括毕业设计所涉及的所有内容及图纸。
参考文献[1] 张利平. 液压站设计与使用.海洋出版社,2004[2] 雷天觉. 新编液压工作手册[M]. 北京:北京理工大学出版社2002[3] 张利平. 液压传动系统及设计. 化学工业出版社,2005[4] 成大先. 机械设计手册.单行本. 液压传动. 化学工业出版社,2004[5] 吴宗泽. 机械设计师手册. 机械工业出版社,2006[6] 杨培元. 简明液压系统设计手册. 机械工业出版社,2012[7] 张利平.现代液压技术应用220例. 化学工业出版社,2009[8] 杨征瑞,花克勤,徐轶. 电液比例与伺服控制.冶金工业出版社,2009[9] 张利平. 液压传动设计指南. 化学工业出版社,2009[10] 左健民. 液压与气压传动(第4版).机械工业出版社,2008[11] 张利平. 液压与气动技术.化学工业出版社,2007[12] 黄志坚等,液压设备故障诊断与检测实用技术. 机械工业出版社,2008[13] 刘军营等,液压传动系统设计与应用实例解析. 机械工业出版社,2011[14] 周士昌,液压系统设计图集,机械工业出版社,2005[15] 期刊文献[16] Fluidsim仿真资料二、毕业设计进度计划及检查情况记录表序号起止日期计划完成内容实际完成内容检查日期检查人签名1 2013.10.30~2014.3.3熟悉内容、查资料、准备开题2 2014.3.4~2014.3.22毕业实习、完成实习报告3 2014.3.25~2014.4.10搜集资料、调研确定设计方案拟定系统原理图4 2014.4.11~2014.5.25完成液压站装配图、油箱零件图、系统仿真5 2014.5.26~2014.6.9撰写毕业设计说明书6 2014.6.10~2014.6.14准备答辩注:(1)表中“实际完成内容”、“检查人签名”栏目要求用笔填写,其余各项均要求打印。
【精品】液压绞车设计任务书
[3]成大先主编.机械设计手册.第四版.北京:化学工业出版社,2002
[4]徐灏主编.机械设计手册.北京:机械工业出版社,1991
[5]章日晋主编.机械零件的结构设计.北京:机械工业出版社,1987
[6]吴宗泽主编.机械结构设计.北京:机械工业出版社,1988
[7]北京有色冶金设计研究总院主编.机械设计手册.第三版.北京:化学工业出版社,1993
[8]汝元功,唐照民主编.机械设计手册.北京:高等教育出版社,1995
[9]花家寿编.新型联轴器与离合器.上海:上海科学技术文献出版社,1991
[10]机械控制系统设计/中国机械工程学会,中国机械设计大典编委会.中国机械设计大典.南昌:江西科学技术出版社,2002
毕业设计(论文)任务书
题目
W1100型液压绞车设计
一、设计(论文)内容
卷筒底层拉力1100kfg,马达排量520ml/r,工作压力16.5MPa,钢丝
绳线速度60m/min,钢丝绳直径8mm,钢丝绳3层卷筒容绳量27m。
二、设计(论文)要求
1、总装配图0号1张;
2、零件图若干张;
3、设计计算说明书2份(打印)。
三、设计完成后应提交的文件和图表
(一)计算说明部分
(二)图纸部分
总装配图(0号)1张;
零件图(A3)2张;
原理图(A3)1张。
四、设计进度分配及最后完成日期
第1~3周查找资料;
第4~5周确定设计方案;
第6~8周设计、有关说明及计算;
第9~10周修改完善图纸及说明书。
五、主要参考资料
[1]张质文,虞和谦,王金诺,包起帆主编.起重机设计手册.北京:中国铁道出版社,1997
液压绞车毕业设计负载满卷上升制动器松闸压力
液压绞车毕业设计负载满卷上升制动器松闸压力引言液压绞车是一种常见的起重设备,广泛应用于工业、建筑、挖掘、航运等领域。
在液压绞车的设计中,负载满卷上升制动器松闸压力是一个重要的参数。
本文将对液压绞车毕业设计中的负载满卷上升制动器松闸压力进行讨论和分析。
1. 负载满卷上升制动器松闸压力的定义负载满卷上升制动器松闸压力是指液压绞车在负载满卷状态下,上升时制动器松闸所需的压力。
制动器起到控制绞车载荷下降的作用,而松闸后则允许绞车上升。
2. 影响负载满卷上升制动器松闸压力的因素负载满卷上升制动器松闸压力受到多种因素的影响,下面是几个主要因素的说明:2.1 上升速度上升速度是指液压绞车上升的速度,通常以米/秒(m/s)表示。
上升速度越快,制动器松闸压力需求越高,以确保绞车的安全和稳定。
2.2 载荷质量载荷质量是指液压绞车所携带的负重,通常以吨(t)表示。
载荷质量越大,制动器松闸压力需求越高,以确保绞车能够承受载荷并上升。
2.3 系统压力系统压力是指液压绞车所使用的液压系统的工作压力,通常以帕斯卡(Pascal,Pa)表示。
系统压力越高,制动器松闸压力需求越高,以确保绞车能够克服系统压力并上升。
3. 设计负载满卷上升制动器松闸压力的方法在液压绞车的毕业设计中,设计负载满卷上升制动器松闸压力的方法如下:3.1 确定上升速度和载荷质量根据设计需求和应用场景,确定液压绞车的上升速度和所携带的负重。
3.2 计算制动器松闸压力根据上升速度、载荷质量和系统压力,通过计算确定制动器松闸压力的大小。
一般可以使用以下公式进行计算:制动器松闸压力 = 上升速度 * 载荷质量 / 系统压力3.3 考虑安全因素在实际设计中,还需要考虑安全因素。
通常情况下,设计时应将制动器松闸压力增加一定的安全系数,以确保液压绞车在任何情况下都能安全并稳定地上升。
4. 总结液压绞车毕业设计中,负载满卷上升制动器松闸压力是一个重要的考虑因素。
通过分析影响制动器松闸压力的因素,并根据设计需求进行相应的计算,可以确保液压绞车能够在负载满卷状态下安全并稳定地上升。
10吨液压绞车课程设计
10吨液压绞车课程设计一、课程目标知识目标:1. 学生能理解液压绞车的基本工作原理,掌握其结构组成及各部分功能。
2. 学生能够掌握10吨液压绞车的操作流程和安全规范。
3. 学生能够描述液压绞车在工程中的应用场景,了解其在国民经济中的作用。
技能目标:1. 学生能够正确操作10吨液压绞车,完成简单的起吊任务。
2. 学生能够进行液压绞车的日常维护和故障排查。
3. 学生通过实际操作,培养解决实际工程问题的能力。
情感态度价值观目标:1. 学生通过学习液压绞车课程,培养对机械设备的兴趣,激发学习热情。
2. 学生在团队协作中,培养合作精神,提高沟通与交流能力。
3. 学生在学习过程中,树立安全意识,遵守操作规程,培养良好的职业道德。
课程性质:本课程为实践性较强的课程,结合理论知识和实际操作,使学生在掌握液压绞车基本知识的基础上,提高实际操作能力。
学生特点:学生处于中等职业教育阶段,具有一定的理论基础,好奇心强,喜欢动手实践。
教学要求:教师应注重理论与实践相结合,注重培养学生的实际操作能力,强调安全意识,提高学生的职业素养。
同时,关注学生的个体差异,因材施教,使每个学生都能在课程中取得实际的学习成果。
通过对课程目标的分解,为后续的教学设计和评估提供依据。
二、教学内容1. 液压绞车基础知识:介绍液压绞车的工作原理、结构组成、性能参数及其在工程领域的应用。
- 教材章节:第一章 液压绞车概述2. 液压绞车操作流程及安全规范:详细讲解10吨液压绞车的操作方法、步骤和安全注意事项。
- 教材章节:第二章 液压绞车操作与维护3. 液压绞车实际操作:分组进行实际操作,培养学生操作技能,提高实际操作能力。
- 教材章节:第三章 液压绞车实操训练4. 液压绞车日常维护与故障排查:介绍液压绞车的日常保养方法、常见故障及排除方法。
- 教材章节:第四章 液压绞车维护与故障处理5. 液压绞车在工程中的应用案例分析:分析液压绞车在实际工程中的应用案例,使学生了解其重要作用。
液压绞车设计
式可编辑1绪论1.1课题背景1.1.1 研究目的和意义总采工作面设备搬迁包括:采煤机、工作面刮板输送机、液压支架、转载机以及一些其他辅助设备的搬迁。
其中液压支架的搬迁量占到总搬迁量的70到%75,所以液压支架的搬迁效率直接影响综采工作面的工作效率。
本%设计的液压绞车主要是为了提高液压支架搬迁效率。
与传统煤矿井下电动绞车相比较液压绞车有着自己独特的优点[1]:(1)动力源由液压代替了电动,减少了电气设备可能带来的危险。
(2)可以通过液压马达自身实现高低速度调速,在带动负载时液压马达低速,没有负载时液压马达高速,这样可以提高钢丝绳的利用率。
(3)液压绞车管路采用了大量快换接头,通过高压橡胶管联接,乳化液泵站可以采用液压支架的泵站,加强了绞车的可移动性。
而且随着液压技术的迅速发展,液压传动已经在各种各样的机械上得到了广泛的应用,代替许多的机械结构。
液压传动具有很多优点:(1)易于获得很大的力和力矩,使液压传动成为最省力的有效手段。
(2)可以实现无级调速和稳定的低速运转性能,而且能获得很大的调速比,还容易获得极低的运转速度,使整个系统简化。
(3)能容量大,用较小的重量和尺寸的液压件就可以传递较大的功率使机械结构紧凑,体积小重量轻.矿用防暴绞车由于受井下空间尺寸的限制,就要求体积小。
同时液压系统的惯性小,起动快,工作平稳,易于实现快速而无冲击的变速与换向。
(4)易于获得更复杂的机械动作,以直接驱动工作装置。
(5)动力传递方便。
(6)易于实现安全保护,能只动防止过载,满足绞车安全工作的要求。
(7)液压元件能自行润滑,延长使用寿命。
(8)液压元件易于实现标准化,系列化,通用化。
采用专用液压绞车进行液压支架的搬迁可以加快搬迁速度,提高液压支架使用效率以及综采面生产效率,实现恒力控制和离机操作,对井下工作人员在搬迁液压支架时的安全起到非常大的保障。
1.1.2 国内外的发展现状20世纪年代后期,日本、美国又开始推广应用液压—机械传动绞车。
机械毕业设计绞车说明书
摘要绞车是用卷筒缠绕钢丝绳或链条以提升或牵引重物的轻小型起重设备(见起重机械),又称卷扬机。
绞车能够单独利用,也可作为起重、筑路和矿井提升等机械中的组成部件,因操作简单、绕绳量大、移置方便而普遍应用。
绞车又名卷扬机。
矿用提升绞车通用性高、结构紧凑、体积小、重量轻、起重大、利用转移方便,矿用提升绞车被普遍应用于建筑、水利工程、林业、矿山、码头等的物料起落或平拖,还可作现代化电控自动作业线的配套设备。
矿用提升绞车有手动和电动两类。
手动绞车的手柄回转的传动机构上装有停止器(棘轮和棘爪),可使重物维持在需要的位置。
装配或提升重物用的手动绞车还应设置平安手柄和制动器。
手动绞车一样用在起重量小、设施条件较差或无电源的地址。
电动绞车普遍用于工作繁重和所需牵引力较大的场所。
单卷筒电动绞车(图)的电动机经减速器带动卷筒,电动机与减速器输入轴之间装有制动器。
为适应提升、牵引和回转等作业的需要,还有双卷筒和多卷筒装置的绞车。
例:安装在直升机上的救援设备,要紧功用是将人或物吊起、放下,自有动力,可操纵,直升机在维持高度悬停时,通过绞车手的操纵可收放钢索将人或物吊起放下。
JT系列提升绞车可供煤矿、金属矿、非金属矿在倾斜巷道作起落物料和人员之用,也可作为小型竖井的提升设备。
据制造工艺的不同,可把提升机的滚筒结构分为铸造一焊接混合型(支轮为铸造,滚筒为焊接)和焊接型。
机械传动系统包括减速器和联轴器,矿井提升机主轴的转数由于受提升速度的限制,一样在l0一60转/|分之间,而用作拖动的电动机的转数,一样在480一960转/分之间。
如此,除采纳低速直流电动机拖动外,一样情形下不能将主轴与电动机直接联接,中间必需通过减速器。
因此减速器的作用是减速印传递动力。
联轴器由半联轴器、柱销等零件组成。
由于柱销具有缓冲和减震作用,因此具有传动平稳、噪音小、平安靠得住、易于保护等优势。
主轴与减速器输出轴的连接采纳齿式联轴器。
润滑系统是一切机械系统中很重要的一个环节。
液压绞车的设计正文
一、整体方案设计1.1产品的名称、用途及主要设计参数本次设计的产品名称是3吨调度绞车,调度绞车是一种小型绞车,通过緾绕在滚筒上的钢丝绳牵引车辆在轨道上运行,属于有极绳运输绞车。
调度绞车适用于煤矿井下或地面装载站调度编组矿车,在中间巷道中拖运矿车,亦可在其它地方作辅助运输工具。
主要设计参数为: 牵引力 T ≈30 kN 绳速 v ≈1.2 m/s 容绳 H ≈500 m1.2整体设计方案的确定该型绞车采用两级内啮合传动和一级行星轮传动。
Z1/Z2和Z3/Z4为两级内啮合传动,Z5、Z6、Z7组成行星传动机构。
在电动机轴头上安装着加长套的齿轮Z1,通过内齿轮Z2、齿轮Z3和内齿轮Z4,把运动传到齿轮Z5上,齿轮Z5是行星轮系的中央轮(或称太阳轮),再带动两个行星齿轮Z6和大内齿轮Z7。
行星齿轮自由地装在2根与带动固定连接的轴上,大内齿轮Z7齿圈外部装有工作闸,用于控制绞车滚筒运转。
若将大内齿轮Z7上的工作闸闸住,而将滚筒上的制动闸松开,此时电动机转动由两级内啮轮传动到齿轮Z5、Z6和Z7。
但由于Z7已被闸住,不能转动,所以齿轮Z6只能一方面绕自己的轴线自转,同时还要绕齿轮Z5的轴线(滚筒中心线)公转。
从而带动与其相连的带动转动,此时Z6的运行方式很类似太阳系中的行星(如地球)的运动方式,齿轮Z6又称行星齿轮,其传动方式称为行星传动。
A12 34 5 67B反之,若将大内齿轮Z7上的工作闸松开,而将滚筒上的制动闸闸住,因Z6与滚筒直接相连,只作自转,没有公转,从Z1到Z7的传动系统变为定轴轮系,齿轮Z7做空转。
倒替松开(或闸住)工作闸或制动闸,即可使调度绞车在不停电动机的情况下实现运行和停车。
当需要作反向提升时,必须重新按动启动按钮,使电机反向运转。
为了调节起升和下放速度或停止,两刹车装置可交替刹紧和松开。
1.3 设计方案的改进为了达到良好的均载效果,在设计的均载机构中采取无多余约束的浮动,既在行星轮中安装一个球面调心轴承。
浅谈液压防爆绞车可靠性设计
第2 卷第 5 ( 第 l7 5 期 总 1 期)
方
华 :浅谈液压 防爆 绞车可靠性设计
3 =ll R2 尼 4 ; ¨= — 2
4
=
. 尼4 =R2 4
( 6) () 7
% = 9 8 U.99 8 8。
则 系 统 的 可 靠 度 R O9 97 7 其 失 效 概 率 为 = . 8 。 9
2
R= 1 l 1R ) . 。R R 月 [ 一 。 1 一 l(
茼
() 3
22 机 械子 系统 的可靠度 . 机 械 子 系 统 为 一并 联 系 统 , 设其 可 靠 度 为 尼, 提
液压 I 制动 I
图 1 可靠性模型框 图
马 l油 达 I缸
从 图 1 可 以看 出 : 中 液压 防爆 绞车 主 机 系统 是 由 电气 、 机械 和 液压 三个 主要 系统 串联组 成 。在 三个 子 系统 中 , 只要一 个 系统 失效 都会 导致 主机 系统不 能正 常 工作 。 电气和 液压 子 系统是 串联 系统 , 只要 其 中某
第 2 卷 第 5 ( 第 17 ) 5 期 总 1期
V 1 5 N .(U N .1 ) o2 o S M o17 . 5
机 械 管 理 开 发
M ECHANI L M ANAGEM ENT AND DEVEL CA 0PM ENT
2 1年 l 00 0月
Oc.O1 t 2 O
收 稿 日期 :0 0 0 — 1 2 1— 5 2 作者简介: 方
・
升、 深度指示 、 制动和限速分系统的可靠度分别为 尼
尼 : 尼 尼 、 和 。
() 4 () 5
华 (9 7 ) 男 , 西 太原 人 , 专 , 究方 向 :ቤተ መጻሕፍቲ ባይዱ18一 , 山 大 研 电气 自动化 专业 。
液压绞车设计
液压绞车设计摘要起重设备中最重要的设备为绞车,而其机械运动是其机构运转的必要条件,绞车的驱动方式有许多种,而此次设计为液压驱动绞车,其机械运动是原动机提供动力带动液压泵,后在执行构件中注入工作液,将机构运作,在执行机构中注入工作液,控制其注入流量的大小来控制机构运转速度。
至今液压绞车在生活中广泛应用。
此次设计详细的分析液压绞车的工作原理,结合实际情况分析绞车的工作环境与特点,进行详细的对比分析后,设计了完整的液压绞车机构,设计并选择了构成机构的各个零部件。
此次液压绞车的设计,其主要机构为液压马达,在轴上布置平衡阀、离合器、制动器、卷筒等零部件,在外侧布置机架等。
其机械构造具有许多优点,其内部构造紧凑,外部体积小,其机器重量轻,在工作过程中安全性能好,稳定性高,工作过程中产生噪音小,启动时获取的扭矩大,工作安全可靠,其机构在升降过程中运转平稳,当绞车在离合器的作用下,可以实现可控的加速减速下降,此应用在生活中较为普遍。
本文设计了一个结构简单、使用方便、适合于多种起重情况的液压绞车,提升时扭矩大、可提升物体重量重、方便易操作等,具有一定实际应用价值。
关键词起重设备;液压驱动;液压马达;无极调速Hydraulic winch designAbstractThe most important heavy equipment for the winch, and the mechanical movement is a necessary condition of its institutions, there are many kinds of drive winch, and the design for the hydraulic winch, the mechanical movement is the original motive power to drive the hydraulic pump, after injection into the component in the implementation of the work, the mechanism of operation up into the working fluid in the actuator, control the injection rate to control the size of the operation speed. Hydraulic winches have been widely used in our lives so far.The working principle of the design and analysis of hydraulic winch in detail, combined with the actual situation of the work environment and the characteristics of the winch, analyzed in detail, the design of the hydraulic winch mechanism complete, design and selection of various parts of a mechanism. The hydraulic winch design, the main body for the hydraulic motor, in the axis of balancing valve, clutch, brake, drum and other parts, in the outer layout of the rack, etc.. The mechanical structure has many advantages, its internal structure is compact, the external volume is small, the weight is light, in the working process of good safety performance, high stability, low noise generated in the work process, the startup torque, safe and reliable work, the machine runs smoothly in the lifting process, when the winch in the clutch under the effect of acceleration can be controlled down, this is commonly used in life.In this paper, a hydraulic winch with simple structure, easy to use and suitable for various lifting conditions is designed. It has high torque, heavy weight, convenient operation and so on. It has some practical application value.Keywords Lifting equipment,Hydraulic drive,Hydraulic motor,Stepless speed regulation目录摘要 (I)Abstract ................................................................................................................ I I第1章绪论 (1)1.1 课题研究背景及研究的优点 (1)1.1.1 研究背景 (1)1.1.2 研究课题的优点 (1)1.2 液压绞车国内外研究近况分析 (2)1.2.1 国外研究现状 (2)1.2.2 国内研究现状 (2)1.3 研究的主要内容和方法 (3)1.4 液压传动系统概念 (3)1.4.1 传动类型及液压传动的定义 (3)1.4.2 液压系统的组成部分 (4)1.4.3 液压系统的类型 (4)1.4.4 液压技术的特点 (4)1.5 绞车的简介 (5)1.6 拟定绞车液压系统图 (6)第2章卷扬机构的方案设计 (7)2.1 常见卷扬机构结构方案及分析 (7)2.1.1 非液压式卷扬机构方案的对比 (7)2.1.2 设计减速器输出轴与卷筒轴连接方法 (9)2.1.3 液压卷扬机构的分类 (9)2.2 本设计所采用的方案 (12)2.3 卷扬机构方案设计时注意的事项 (12)2.4 本章小结 (13)第3章设计卷扬机卷筒和选取钢丝绳 (14)3.1 卷扬机卷筒的设计 (14)3.1.1 卷扬机卷筒组的分类、特点 (14)3.1.2 卷筒设计计算 (14)3.2 钢丝绳的选择 (17)3.3 本章小结 (18)第4章液压马达和平衡阀的选择 (19)4.1 液压马达的选用与验算 (19)4.1.1 液压马达的分类及特点 (19)4.1.2 液压马达的选用 (19)4.1.3 马达的验算 (19)4.2 平衡阀的计算与选用 (21)4.2.1 平衡阀的功能简介 (21)4.3 平衡阀的选用 (22)4.4 本章小结 (23)第5章绞车关键零部件设计 (24)5.1 制动器的设计与选用 (24)5.1.1 制动器的设计计算 (24)5.1.2 制动盘的设计选用 (24)5.1.3 制动盘有效摩擦直径计算 (25)5.1.4 全盘式制动器设计计算 (25)5.2 离合器的设计与选用 (26)5.2.1 圆盘离合器的详细参数计算 (27)5.2.2 圆盘摩擦片的主要尺寸关系 (27)5.2.3 摩擦式离合器的摩擦转矩 (29)5.2.4 圆盘摩擦式离合器压力的计算 (30)5.3 轴的设计 (30)5.3.1 轴的工作能力计算 (30)5.3.2 轴的结构设计 (33)5.3.3 计算轴的各段直径和长度 (34)5.4 本章小结 (34)结论 (35)致谢 (36)参考文献 (37)附录A (38)附录B (44)第1章绪论1.1课题研究背景及研究的优点1.1.1研究背景绞车是起重设备中的重要构成设备,起重设备则是机器传输中必备的,驱动绞车的方法有三种,即液压、内燃机、电动机驱动。
绞车设计说明书
绞车设计说明书2018年一、编制依据1、《煤矿安全规程》(2016版);2、《煤矿安全生产标准化基本要求及评分办法(试行)》(2017版);3、《煤矿矿井机电设备完好标准》;4、《煤矿用运输绞车检验规范》(AQ1030-2007)。
二、绞车最大提升能力计算(一)、绞车提升轨道斜巷技术数据最大坡度:α= 坡长:L= m(二)、拟选绞车技术数据绞车型号:绞车最大牵引力:F1= kN配用钢丝绳直径d= mm每m钢丝绳的重量P= ㎏/m钢丝绳破断拉力总和:F破= kN提升方式:提物(三)、绞车最大许用提升力计算由钢丝绳安全系数计算根据《煤矿安全规程》要求,只用于提升物料的钢丝绳安全系数必须大于6.5,由此可得钢丝绳的许用拉力F2满足F2= F破/6.5= kN故由上述两部分计算可得使用绞车最大许用提升力F满足F≤F1,F≤F2取F= kN(四)、计算绳端最大载荷和最大拉车数1)绞车提升时最大运行阻力发生在重车开始上提时,罐车受力分析图如下F=Wg (sinα±f1cosα) + P Lg(sinα±f2cosα)得W=[F/g- P L(sinα±f2cosα)]/ (sinα±f1cosα)= t(上提)/ (下回)其中上提取﹢,下回取-W---绳端最大载荷,即提升最大吨位,包括矿车、叉子车、或盘车的自重和货重F---绞车许用最大提升力。
α---为斜巷最大坡度α=g---重力加速度,取10m/s2 。
f1—为车轮与轨道之间的摩擦系数,u1=0.015;f2——为钢丝绳与地辊之间的摩擦系数,一般u2=0.2;P =每米钢丝绳的重量,P= ㎏/m。
L—为钢丝绳提升长度,取L= m。
2)绞车最大拉车数计算由上述计算得出W和下表计算填写表格最大拉车数三、绞车安装验收标准1、绞车使用单位要检查绞车的完好情况和设备编号、生产许可证、产品合格证、防爆合格证、矿用产品安全标志证,任一项不合格均不得使用。
液压绞车设计
目录摘要 (I)Abstract ........................................................ I I 1. 绪论 .. (3)1.1. 液压传动系统概论 (3)1.1.1. 传动类型及液压传动的定义 (3)1.1.2. 液压系统的组成部分 (3)1.1.3. 液压系统的类型 (3)1.1.4. 液压技术的特点 (4)2. 卷扬机构的方案设计 (5)2.1. 常见卷扬机构结构方案及分析 (5)2.1.1. 非液压式卷扬机构方案比较 (5)2.1.2. 液压卷扬机构的分类 (6)2.1.3. 液压式行星齿轮传动卷扬机构布置方案 (7)2.2. 本设计所采用的方案 (9)2.3. 卷扬机构方案设计注意事宜 (10)3. 卷扬机构组成及工作过程分析 (10)3.1. 卷扬机构的组成 (10)3.2. 卷扬机构工作过程分析 (11)3.2.1. 卷扬机构的工作周期 (11)3.2.2. 载荷升降过程的动力分析 (11)4. 卷扬机卷筒的设计和钢丝绳的选用 (13)4.1. 卷扬机卷筒的设计 (13)4.1.1. 卷扬机卷筒组的分类和特点 (13)4.1.2. 卷筒设计计算 (14)4. 2 钢丝绳的选择 (18)5. 液压马达与平衡阀的选择 (19)5.1. 液压马达的选用与验算 (19)5.1.1. 液压马达的分类及特点 (19)5.1.2. 液压马达的选用 (19)5.1.3. 马达的验算 (19)5.2. 平衡阀的选用 (22)5.2.1. 平衡阀的功能简介 (22)5.2.2. 平衡阀的选用 (23)6. 制动器的设计与选用 (24)6.1. 制动器的作用、特点及动作方式 (24)6.2. 制动器的设计计算 (25)6.2.1. 制动转矩的计算 (25)6.2.2. 制动盘的设计选用 (25)6.2.3. 制动盘有效摩擦直径计算 (26)6.2.4. 制动器散热的验算 (27)6.2.5. 全盘式制动器设计计算 (29)7. 离合器的设计与选用 (30)7.1. 离合器的功用、特点与分类 (30)7.2. 圆盘离合器主要性能参数的计算 (31)7.2.1. 离合器的计算转矩 (31)7.2.2. 圆盘摩擦片的主要尺寸关系 (32)7.2.3. 摩擦式离合器的摩擦转矩 (33)7.2.4. 圆盘摩擦离合器压力的计算 (34)8. 轴的设计 (35)8.1. 轴的材料 (35)8.2. 轴的工作能力的计算 (35)8.3. 轴的结构设计 (40)8.3.1. 拟定轴上零件的装配方案 (40)8.3.2. 根据轴向定位要求确定轴的各段直径和长度 (40)8.3.3. 轴上零件的周向定位 (41)9. 结束语 (42)参考文献 (43)致谢 (44)本次毕业设计是通过分析液压绞车的工作原理、特点及环境,结合实践,并在进行仔细考查后,对液压绞车的整体结构进行了设计,对各组成的元件进行了选型、计算和校核。
大功率绞车液压泵站及系统设计
大功率绞车液压泵站及系统设计2013年6月目录1概述2技术设计3技术特性4工作原理5结构特征6使用和操作7故障分析与排除8 维护与保养1概述液压动力装置用于驱动绞车实现正转和反转,从而达到收放钢缆进行试验的目的。
绞车液压动力装置主要由主泵组、冲洗泵组、阀组、油箱组件、液压马达组等构成。
2技术设计2.1绞车负载扭矩要求2.1.1主绞车:2.1.2副绞车:2.2绞车转速要求2.2.1主绞车:钢缆最高速度为3m/s。
钢缆的卷绕直径为:0.8m则主绞车卷筒最高转速为:71.7(r p m)2.2.2副绞车:钢缆最高速度为7m/s。
钢缆的卷绕直径为:1.25m则主绞车卷筒最高转速为:107.0(r p m)2.3液压动力装置设计计算2.3.1液压动力装置构成根据绞车技术要求,设计基于开式回路的液压传动及控制系统。
由于是大功率传动,需充分考虑节能,调速方式采用容积调速与节流调速相结合;并按钢丝绳收回和放出两个阶段,泵源压力进行高低压切换。
两台绞车均采用大扭矩马达直接带动卷筒的方式。
阀组由控制阀组、单向溢流阀组、2个换向阀组及压力阀组构成。
控制阀组由3个电磁换向阀6和溢流阀4(用作安全阀)组成,用于控制2个液压马达壳体冲洗的选择及2个液压马达制动器。
单向溢流阀组由2个单向阀10和2个溢流阀12组成,以防止液压马达的吸空及过载。
2个换向阀组C F1由插装式电液换向阀11、插装式液控单向阀9、插装式比例节流阀9组成,用于主绞车和副绞车的换向控制及放缆时的回油节流控制。
油箱组件由油箱、吸油过滤器1、吸油过滤器21、吸油过滤器23、冷却器5、冷却器20、空气滤清器31等组成,用于储油和冷却等。
液压马达组由2个液压马达、2个制动器和2个编码器等组成,用于驱动卷筒、制动及测速等。
2.3.2液压马达扭矩计算系统采用定量液压马达,C A140排量为8800c m3/r,C A100排量为6200c m3/r,最高允许工作压力可达35M P a。
液压绞车设计开题报告
液压绞车设计开题报告
液压绞车是一种以液压系统为动力来源的绞车,具有动力大、速度快、效率高等特点,广泛应用于各种需要大力矩、大扭矩的场合,如建筑工地、船舶、矿山等。
本研究拟设计一种适用于特定场合的液压绞车,以满足该场合对于绞车的特殊需求,具有重要的应用价值和实际意义。
二、研究目的和内容
本研究的主要目的是设计一种能够满足特定场合需求的液压绞车,并对其进行性能测试,确定其使用效果和优化方案。
具体内容包括:
1. 确定液压绞车设计的基本要求和技术指标;
2. 进行液压绞车的总体设计和构造设计,包括传动机构、液压系统等;
3. 进行液压绞车的性能计算和仿真分析;
4. 制作液压绞车样机并进行性能测试;
5. 优化设计方案,提高液压绞车的性能和使用效果。
三、研究方法和技术路线
本研究采用实验和理论相结合的方法,主要包括以下步骤:
1. 调研和分析液压绞车的现有设计方案和技术要求;
2. 进行液压绞车设计的初步方案设计,并对各部分进行性能计算和仿真分析;
3. 根据性能计算和仿真分析结果进行液压绞车的详细设计,并
制定制造方案;
4. 制作液压绞车样机并进行性能测试,分析测试结果并优化设计方案;
5. 最终确定最佳设计方案,撰写液压绞车设计报告。
四、预期成果和意义
本研究的预期成果是设计出一种能够满足特定场合需求的液压绞车,并进行性能测试和优化设计,最终确定最佳设计方案。
该成果具有以下意义:
1. 提高液压绞车的性能和使用效果,满足特定场合的需求;
2. 推动液压绞车的进一步发展和应用;
3. 为相关领域的研究和发展提供参考依据。
毕业设计:卷扬机(绞盘)绞车毕业设计
绞车,用卷筒缠绕钢丝绳或链条提升或牵引重物的轻小型起重设备,又称卷扬机,可单独使用,也可作起重、筑路和矿井提升等机械中的组成部件,因操作简单、绕绳量大、移置方便而广泛应用。
本次设计旨在以单卷筒行星齿轮传动调度绞车为依托,采用新的设计方法――三维实体设计来完成产品的设计。
三维实体设计(实体造型)是近年来发展起来的一种先进的设计方法,与传统设计方法相比较有许多优越性。
长期以来,传统的设计方法由于受到技术手段的限制,不得不放弃用直观感强的立体图来表达产品,而是遵循着一种工作量大、设计周期长的方式进行设计:三维构思-------平面图形---------三维产品,不仅使原本直观的立体抽象化了,而且耗费了大量的精力和时间。
因为在这样一个抽象思维和想象的环境中,既不符合由形象思维到抽象思维的认知规律,又不利于培养空间想象能力和创新设计能力。
而三维实体设计(实体造型)弥补了传统设计法的这种缺陷,在二维和三维空间中架起一座桥梁,让我们在三维空间中直接认知和感知三维实体,更加充分地发展和提高了设计师的空间想象能力及创新能力,为先进产品的开发提供了广阔而优越的设计平台。
本设计是应用以参数化为基础的CAD/CAE/CAM集成软件Pro/ENGINEER进行三维实体造型,来完成产品的零件、部件设计和整机的装配。
其最大的优点在于大大减少了设计师的工作量,从而加速了机械设计的过程。
另外,还可以对产品进行优化,使其结构更加合理,性能更加良好。
第一章方案评述绞车有手动、内燃机和电动机驱动几类。
①手动绞车的手柄回转的传动机构上装有停止器(棘轮和棘爪),可使重物保持在需要的位置。
装配或提升重物的手动绞车还应设置安全手柄和制动器。
手动绞车一般用在起重量小、设施条件较差或无电源的地方。
②内燃机驱动的绞车,在卷筒与内燃机之间装有离合器。
当离合器和卷筒轴上的制动器松开后,卷筒上的绳索处于无载状态,此时绳索一端可从卷筒上自由地拽出,以缩短再次提拉物件时的挂绳时间。
起重绞车液压系统的设计小结
起重绞车液压系统的设计小结
起重绞车是一种重要的起重设备,液压系统作为其关键组成部分之一,对其运行性能和安全性起着至关重要的作用。
本文将对起重绞车液压系统的设计进行小结,旨在提供一些有关液压系统设计的基本原则和注意事项。
在起重绞车液压系统的设计中,首先需要根据实际需求确定起重绞车的起重量和工作环境条件,以此来确定液压系统的工作压力、流量和泵的选择。
在选择液压泵时,应考虑到其功率、效率和可靠性,以确保系统能够稳定、高效地工作。
在液压系统的设计中,需要合理选择液压阀,如控制阀、安全阀和溢流阀等。
这些阀门的选择应根据其功能和性能来确定,以确保系统的控制和安全性能。
在设计液压系统时,还需要合理设计液压缸和管路系统。
液压缸的设计应考虑到其工作压力、工作速度和负载情况,以确保其能够满足起重绞车的起重要求。
管路系统的设计应合理布局,以减少压力损失和阻力,提高系统的工作效率。
在起重绞车液压系统的设计过程中,还需要考虑到系统的可靠性和安全性。
液压系统应具备足够的安全措施,如压力传感器、温度传感器和液位传感器等,以及相应的报警和保护装置,以防止系统因过载或故障而发生意外事故。
在液压系统的设计中,还应考虑到系统的维护和保养。
液压系统应设计为易于维修和保养,包括易于更换液压油、滤清器和密封件等。
定期的维护和保养对于保持液压系统的正常工作和延长使用寿命至关重要。
起重绞车液压系统的设计是一个复杂而关键的过程,在设计过程中,需要充分考虑实际需求、选择合适的液压元件、确保系统的安全性和可靠性,并注重系统的维护和保养。
只有在这些方面都得到充分考虑和落实时,起重绞车液压系统才能正常、高效地工作。
毕业设计:卷扬机(绞盘)绞车毕业设计
绞车,用卷筒缠绕钢丝绳或链条提升或牵引重物的轻小型起重设备,又称卷扬机,可单独使用,也可作起重、筑路和矿井提升等机械中的组成部件,因操作简单、绕绳量大、移置方便而广泛应用。
本次设计旨在以单卷筒行星齿轮传动调度绞车为依托,采用新的设计方法――三维实体设计来完成产品的设计。
三维实体设计(实体造型)是近年来发展起来的一种先进的设计方法,与传统设计方法相比较有许多优越性。
长期以来,传统的设计方法由于受到技术手段的限制,不得不放弃用直观感强的立体图来表达产品,而是遵循着一种工作量大、设计周期长的方式进行设计:三维构思-------平面图形---------三维产品,不仅使原本直观的立体抽象化了,而且耗费了大量的精力和时间。
因为在这样一个抽象思维和想象的环境中,既不符合由形象思维到抽象思维的认知规律,又不利于培养空间想象能力和创新设计能力。
而三维实体设计(实体造型)弥补了传统设计法的这种缺陷,在二维和三维空间中架起一座桥梁,让我们在三维空间中直接认知和感知三维实体,更加充分地发展和提高了设计师的空间想象能力及创新能力,为先进产品的开发提供了广阔而优越的设计平台。
本设计是应用以参数化为基础的CAD/CAE/CAM集成软件Pro/ENGINEER进行三维实体造型,来完成产品的零件、部件设计和整机的装配。
其最大的优点在于大大减少了设计师的工作量,从而加速了机械设计的过程。
另外,还可以对产品进行优化,使其结构更加合理,性能更加良好。
第一章方案评述绞车有手动、内燃机和电动机驱动几类。
①手动绞车的手柄回转的传动机构上装有停止器(棘轮和棘爪),可使重物保持在需要的位置。
装配或提升重物的手动绞车还应设置安全手柄和制动器。
手动绞车一般用在起重量小、设施条件较差或无电源的地方。
②内燃机驱动的绞车,在卷筒与内燃机之间装有离合器。
当离合器和卷筒轴上的制动器松开后,卷筒上的绳索处于无载状态,此时绳索一端可从卷筒上自由地拽出,以缩短再次提拉物件时的挂绳时间。
绞车设计说明书
摘要回柱绞车主要是用来回收液压支柱的小型机械设备,特别适用于中厚煤层和急倾斜煤层采煤工作面及顶板压力较小的采掘工作面,以及在各种采煤工作面上回收沉入底版或被矸石压卡住的单体液压支柱,同时作一般的牵引之用,但回柱绞车多为单速、单一牵引力慢速绞车,作牵引工作时工作效率低。
针对回柱绞车牵引工作时,速度慢的缺点,进行JHS-14型双速回柱绞车的设计,该设计采用一级蜗杆减速器传入,在二轴上采用花键配合牙嵌离合器,并在停车时通过操纵手柄直接操纵牙嵌离合器实现绞车快、慢两种速度,两种牵引力传入三级直齿,最终传入卷筒。
其采用牙嵌离合器,该离合器的结构简单,零件数量少便于操纵的特点,实现了设计任务要求,又可以在牵引搬运物料时提高工作效率,这样扩大了绞车的应用范围实现了一机多用。
关键词回柱绞车蜗杆减速器牙嵌离合器AbstractAwapping winch is used to Recovery Hydraulic Prop small-sized mechanical equipment, especially suitable vertical groove coal seam medium-thickness seam steep coal seam coal face and roof hallucal little hallucal extracting coal face, and every kind of coal face recovery Driven cast in place pile with soil drawn out dirly, simultaneouscan also be use of makes general traction, the intrinsic swapping winch JH model number swapping winch most of slow winch,,but slow winch makes general traction will be decreased mechanical efficiency.JH of the original series back to winch more than a single-speed, single traction slow winch, for general traction will reduce efficiency,Returns in view of the original JH series when the column winch transporting tows, the speed slow shortcoming, to JHS-14 returns to the column winch to carry on the redesign, uses the first-level worm reducer to spread, uses the spline fit claw clutch on two axes, and when parking realizes quickly, the slow two kind of speeds through the control handle direct control claw clutch's different position, two kind of forces of traction spread to the third-level straight tooth to spread to the reel finally. It uses the claw clutch, this coupling's structure is simple, components quantity little is advantageous for the operation the characteristic, has realized the task of design request, may also when the traction transport material raises the working efficiency, like this expanded winch's application scope to realize one machine multipurpose.Key words Back-winch Worm-Reducer Jaw clutch目录摘要 (I)Abstract........................................................................................... I I第1章绪论 (1)1.1 回柱绞车简介 (1)1.2 回柱绞车的发展 (1)第2章回柱绞车的主要参数确定 (4)2.1 电动机的选择 (4)2.1.1 计算所需主要参数 (4)2.1.2 初估电动机额定功率P (4)2.1.3 选择电动机 (5)2.2 传动比的分配 (5)第3章齿轮的设计 (7)3.1 蜗轮减速器的设计 (7)3.1.1 初步确定蜗轮、蜗杆的主要参数 (7)3.1.2 几何尺寸计算 (8)3.1.3 齿面接触强度校核 (10)3.1.4 齿面弯曲强度校核 (11)3.1.5 散热计算 (11)3.2 Z1、Z2齿轮的设计及强度计算 (12)3.2.1 初步确定齿轮主要的几何参数 (12)3.2.2 齿轮几何尺寸确定 (15)3.2.3 齿轮齿面接触强度校核计算 (16)3.2.4 齿轮齿根弯曲强度校核计算 (18)3.3 Z3、Z4齿轮的设计及强度计算 (21)3.3.1 初步确定齿轮主要的几何参数 (21)3.3.2 齿轮几何尺寸确定 (24)3.3.3 齿轮齿面接触强度校核计算 (25)3.3.4 齿轮齿根弯曲强度校核计算 (27)3.4 Z5、Z6变速齿轮的设计及强度计算 (30)3.4.1 初步确定齿轮主要的几何参数 (30)3.4.2 齿轮几何尺寸确定 (33)3.4.3 齿轮接触强度校核 (35)3.4.4 齿轮齿根弯曲强度校核 (37)第4章轴的设计计算 (39)4.1 I轴的设计校核及轴承的寿命计算 (39)4.1.1 初步估算轴径 (39)4.1.2 轴上受力分析 (39)4.1.3 求支反力 (40)4.1.4 求弯矩并作作弯矩图 (41)4.1.5 轴的强度校核 (42)4.1.6 静强度校核 (44)4.1.7 键强度校核 (45)4.1.8 轴承寿命计算 (46)4.2 II轴的设计校核及轴承寿命的计算 (47)4.2.1 初步估算轴径 (47)4.2.2 轴上受力分析 (47)4.2.3 求支反力 (48)4.2.4 求弯矩并作弯矩图 (49)4.2.5 轴的强度校核 (50)4.2.6 静强度校核 (52)4.2.7 键强度校核 (53)4.2.8 轴承寿命计算 (54)4.3 III轴的设计校核及轴承寿命的计算 (54)4.3.1 初步估算轴径 (54)4.3.2 轴上受力分析 (55)4.3.3 求支反力 (55)4.3.4 求弯矩并作弯矩图 (56)4.3.5 轴的强度校核 (57)4.3.6 静强度校核 (59)4.3.7 键强度校核 (60)4.3.8 轴承寿命计算 (61)4.4 卷筒轴的设计计算 (61)4.4.1 初步估算轴径 (61)4.4.2 轴上受力分析 (62)4.4.3 求支反力 (62)4.4.4 求弯矩并作弯矩图 (63)4.4.5 轴的强度校核 (64)4.4.6 静强度校核 (66)4.4.7 键强度校核 (67)4.4.8 轴承寿命计算 (68)4.5 牙嵌离合器的强度计算 (68)第5章卷筒的设计计算 (70)5.1 卷筒尺寸的确定 (70)5.2 卷筒容绳量计算 (71)5.3 卷筒筒壳受力计算 (71)结论 (73)致谢 (74)参考文献 (75)附录1 (77)附录2 (80)第1章绪论1.1 回柱绞车简介回柱绞车就是用于回采工作面回柱放顶的专用设备,以及在各种采煤工作面上回收沉入底版或被矸石压卡住的金属支柱,同时还可以做一般的牵引之用,绞车的电动机电器控制设备要具有防爆性能,适用于含有沼气,煤尘及含有瓦斯,工作温度一般为-10o~+40o,环境相对湿度不超过95%(在室温下);工作制为低速重载非连续,在煤矿使用较为广泛,随着国民经济的高速发展,煤炭需求的增加,我国综合机械化采煤技术正向高产量、大功率、重型化的趋势发展,但搬运设备却没有相应的更新与开发,原有的绞车设备将面临现代化生产的挑战。
液压绞车正文(带全套图纸)
第一章绪论1.1液压传动系统概论1.1.1传动类型及液压传动的定义此论文仅供参考,需要全套资料(CAD图纸)的马化腾:七九八零四八三九三一部完备的机器都是由原动机、传动装置和工作机组成。
原动机(电动机或内燃机)是机器的动力源;工作机是机器直接对外做功的部分;而传动装置则是设置在原动机和工作机之间的部分,用于实现动力(或能量)的传递、转换和控制,以满足工作机对力(或力矩)、工作速度及位置的要求。
按照传动件(或转速)的不同,有机械传动、电器传动、流体传动(液体传动和气体传动)及复合传动等的要求。
液体传动又包括液力传动和液压传动是以动能进行工作的液体传动。
液压传动则是以受压液体作为工作介质进行动力(或能量)的转换、传递、控制和分配的液体传动。
由于其独特的技术优势,以成为现代机械设备和装置实现传动及控制的重要技术手段之一。
1.1.2 液压系统的组成部分液压传动和控制的机械设备或装置中,其液压系统大部分使用具有连续流动性的液压油等工作介质,通过液压泵将驱动泵的原动机的机械能转换成液体的压力能,经过压力、流量、方向等各种控制阀,送至执行机器(液压缸、液压马达或摆动液压马达)中,转换为机械能去驱动负载。
这样的液压系统一般都是由动力源、执行器、控制阀、液压附件几液压工作介质的几部分所组成。
一般而言,能够实现某种特定功能的液压元件的组合,称为液压回路。
为了实现对某一机器或装置的工作要求,将若干特定的基本回路连接或复合而成的总体称为液压系统。
1.1.3 液压系统的类型液压系统可以按多种方式进行分类,见表1.1。
1.1.4 液压技术的特点和其它传动控制方式相比较,液压传动和控制技术的特点如下。
(1)优点1)、单位功率的重量轻。
2)、布局灵活方便。
表1-1 液压系统的分类3)、调速范围大。
4)、工作平稳、快速性好。
5)、易于操纵控制并实现过载保护。
6)、易于自动化和机电一体化。
7)、易于操纵控制并实现过载保护。
8)、液压系统设计、制造和使用维护方便。
液压绞车设计
液压绞车设计摘要本设计是通过对液压绞车工作原理、工作的环境和工作的特点进行分析,并结合实际,在进行细致观察后,对液压绞车的整体结构进行了设计,对组成的各元件进行了选型、计算和校核。
本绞车由液压马达、平衡阀、制动器、卷筒、承轴和机架等部件组成,还可根据需要设计阀组直接集成于马达配油器上,如带平衡阀、高压梭阀、调速换向阀或其它性能的阀组。
在结构上具有紧凑、体积小、重量轻、外型美观等特点,在性能上则具有安全性好、效率高、启动扭矩大、低速稳定性好、噪音低、操作可靠等特点,在提升和下放工作中运转相当平稳,带离合器的绞车可实现自由下放工况,广泛适用于铁道机车和汽车起重机、船舶、油田钻采、地质勘探、煤矿、港口等各种起重设备中。
第一章绪论液压传动系统概论传动类型及液压传动的定义一部完备的机器都是由原动机、传动装置和工作机组成。
原动机(电动机或内燃机)是机器的动力源;工作机是机器直接对外做功的部分;而传动装置则是设置在原动机和工作机之间的部分,用于实现动力(或能量)的传递、转换与控制,以满足工作机对力(或力矩)、工作速度及位置的要求。
按照传动件(或转速)的不同,有机械传动、电器传动、流体传动(液体传动和气体传动)及复合传动等的要求。
液体传动又包括液力传动和液压传动是以动能进行工作的液体传动。
液压传动则是以受压液体作为工作介质进行动力(或能量)的转换、传递、控制与分配的液体传动。
由于其独特的技术优势,以成为现代机械设备与装置实现传动及控制的重要技术手段之一。
液压系统的成部分液压传动与控制的机械设备或装置中,其液压系统大部分使用具有连续流动性的液压油等工作介质,通过液压泵将驱动泵的原动机的机械能转换成液体的压力能,经过压力、流量、方向等各种控制阀,送至执行机器(液压缸、液压马达或摆动液压马达)中,转换为机械能去驱动负载。
这样的液压系统一般都是由动力源、执行器、控制阀、液压附件几液压工作介质的几部分所组成。
一般而言,能够实现某种特定功能的液压元件的组合,称为液压回路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.1液压传动系统概论1.1.1传动类型及液压传动的定义.一部完备的机器都是由原动机、传动装置和工作机组成。
原动机(电动机或内燃机)是机器的动力源;工作机是机器直接对外做功的部分;而传动装置则是设置在原动机和工作机之间的部分,用于实现动力(或能量)的传递、转换与控制,以满足工作机对力(或力矩)、工作速度及位置的要求。
按照传动件(或转速)的不同,有机械传动、电器传动、流体传动(液体传动和气体传动)及复合传动等的要求。
液体传动又包括液力传动和液压传动是以动能进行工作的液体传动。
液压传动则是以受压液体作为工作介质进行动力(或能量)的转换、传递、控制与分配的液体传动。
由于其独特的技术优势,以成为现代机械设备与装置实现传动及控制的重要技术手段之一。
1.1.2 液压系统的组成部分液压传动与控制的机械设备或装置中,其液压系统大部分使用具有连续流动性的液压油等工作介质,通过液压泵将驱动泵的原动机的机械能转换成液体的压力能,经过压力、流量、方向等各种控制阀,送至执行机器(液压缸、液压马达或摆动液压马达)中,转换为机械能去驱动负载。
这样的液压系统一般都是由动力源、执行器、控制阀、液压附件几液压工作介质的几部分所组成。
一般而言,能够实现某种特定功能的液压元件的组合,称为液压回路。
为了实现对某一机器或装置的工作要求,将若干特定的基本回路连接或复合而成的总体称为液压系统。
1.1.3 液压系统的类型液压系统可以按多种方式进行分类,见表1.1。
.1.1.4 液压技术的特点与其它传动控制方式相比较,液压传动与控制技术的特点如下。
(1)优点1)、单位功率的重量轻。
2)、布局灵活方便。
表1-1 液压系统的分类3)、调速范围大。
4)、工作平稳、快速性好。
5)、易于操纵控制并实现过载保护。
6)、易于自动化和机电一体化。
7)、易于操纵控制并实现过载保护。
8)、液压系统设计、制造和使用维护方便。
(2)缺点1)、不能保证定比传动。
2)、传动效率低。
3)、工作稳定性易受温度影响。
4)、造价较高。
5)、故障诊断困难。
1.2绞车的简介在起重机械中,用以提升或下降货物的机构称为起升机构,一般采用卷扬式,而这样的机器叫做卷扬机又叫绞车。
卷扬机的卷扬机构一般由驱动装置、钢丝绳卷绕系统、取物装置和安全保护装置等组成。
驱动装置包括电动机、联轴器、制动器、减速器、卷筒等部件。
钢丝绳卷绕系统包括钢丝绳、卷筒、定滑轮和动滑轮。
取物装置有吊钩、吊环、抓斗、电磁吸盘、吊具挂梁等多种形式。
安全保护装置有超负载限制器、起升高度限位器、下降深度限位器、超速保护开关等,根据实际需要配用。
卷扬机的驱动方式有三种,分别为内燃机驱动、电动机驱动和液压驱动。
内燃机驱动的起升机构,其动力由内燃机经机械传动装置集中传给包括起升机构在内的各个工作机构,这种驱动方式的优点是具有自身独立的能源,机动灵活,适用于流动作业。
为保证各机构的独立运动,整机的传动系统复杂笨重。
由于内燃机不能逆转,不能带载起动,需依靠传动环节的离合实现起动和换向,这种驱动方式调速困.难,操纵麻烦,属于淘汰类型。
目前只有少数地方应用。
电动机驱动是卷扬机的主要驱动方式。
直流电动机的机械特性适合起升机构的工作要求,调速性能好,但获得直流电源较为困难。
在大型的卷扬机中,常采用内燃机和直流发电机实现直流传动。
交流电动机驱动能直接从电网取得电能,操纵简单,维护容易,机组重量轻,工作可靠,在电动卷扬机中应用广泛。
液压驱动的卷扬机,由原动机带动液压泵,将工作油液输入执行构件(液压缸或液压马达)使机构动作,通过控制输入执行构件的液体流量实现调速。
液压驱动的优点是传动比大,可以实现大范围的无级调速,结构紧凑,运转平稳,操作方便,过载保护性能好。
缺点是液压传动元件的制造精度要求高,液体容易泄漏。
目前液压驱动在建筑卷扬机中获得日益广泛的应用。
1.3拟定绞车液压系统图系统的工作原理及其特点简要说明如下:(见图1.1)液压马达9的排量切换由二位四通电磁换向阀5实现,控制压力由液压马达9自身提供,为了防止下放时因超越负载作用而失速,在马达回油路上设置了外控式平衡阀4。
另外,为了提高系统工作可靠性,以防污染和过热造成的故障,在回油路上设置了回油过滤器7及冷却器8。
三位四通电磁换向阀9的中位机能为K型,所以,绞车停止待命时,液压泵可以中位低压卸荷,有利于节能。
表1.2绞车液压系统电磁铁动作顺序由表1.2可知:当电磁铁2YA通电时,三位四通电磁换向阀5切换至右位,液压油经过单向阀进入液压马达2,驱动滚筒卷扬方向旋转。
当电磁铁1YA通电时,负载由平衡阀支撑的同时快速下放,当需要制动时,电磁铁3YA通电,制动器制动。
图1.1多片式摩擦离合器2、液压马达3、6、溢流阀4、外控式平衡阀5、三位四通电磁换向阀7、回油过滤器8冷却器9、液压马达10、油箱第二章卷扬机构的方案设计卷扬机方案设计的主要依据:机构的驱动方式;安装位置的限制条件和机型种类与参数匹配等。
2.1 常见卷扬机构结构方案及分析2.1.1 非液压式卷扬机构方案比较根据卷扬机构原动机和卷筒组安装相对位置不同,卷扬机构结构布置方案的基本型有并轴式和同轴式两种。
而这两种基本型中又有单卷筒和双卷筒之分。
下面介绍几种常见的卷扬机构结构方案。
图.卷扬机构图2.1所示为并轴式单卷筒卷扬机构,他们的卷筒轴与原动机轴线并列平行布置,结构简单、紧凑。
为了提高取物装置在空载或轻载时的下降速度,有的卷扬机构设置了重力下降装置(图2.1b)。
在卷筒上装有带式制动器和内涨式摩擦离合器。
当离合器分离时,驱动卷筒的动力源被切断,卷筒处于浮动状态,这时可利用装在卷筒上的带式制动器控制取物装置以重力快速下降。
卷扬机构方案设计中一个重要问题是卷筒轴与减速器输出轴的连接方式。
图2.1(a)、(b)所示方案,它们是把卷筒安装在减速器输出轴的延长部分上,从力学观点看,属于三支点的超静定轴,减小了轴承受的弯矩。
但是,这种结构对安装精度要求很高,而且使的卷筒组和减速器的装配很不方便,减速器也不能独立进行装配和试运转,更换轴承也较困难。
然而,它的外形尺寸小,结构简单,适用于中小型建筑机械的卷扬机构。
图2.1(c)、(d)所示方案,卷筒组与减速器输出端均采用了补偿式连接。
图2.1(c)减速器的输出轴利用齿轮连轴节与卷筒连接,且直接把动力传递给卷筒。
图2.1(d)是采用十字滑块联轴节将卷筒和减速器输出轴连成一体,卷筒轴的右端伸入到减速器输出轴上的联轴节半体中心孔内,构成了轴的一个支点,输出轴和卷筒轴均为筒支结构,构造紧凑,制造、安装均有良好的分组性。
并轴布置双卷筒卷扬机构(图2.2),由一台液压马达通过二级齿轮减速器分别驱动装在两根平行轴上的主、副卷筒。
在这两个卷筒上分别装有离合器和制动器。
通过液压操纵系统的控制可使主、副卷筒独立动作,并能实现重力下降。
图2.2 并轴布置双卷筒卷扬机构双卷筒集中驱动,可减少一套液压马达及传动装置。
2.1.2 卷筒轴与减速器输出轴连接方式设计的基本原则.式设计的基本原则是:1.尽量避免采用多支点的超静定轴。
因为多支承点受力复杂且轴安装精度 不易保证。
2.优先采用减速器输出端直接驱动卷筒的连接方式,使卷筒轴不传递扭距, 尽可能避免卷筒轴收弯曲和扭转的复合作用,以减少轴的直径。
3.使机构有良好的总成分组行,以利制造、安装、调试和维修。
4.结构紧凑、构造简单,工作安全可靠。
5.卷筒组与减速器输出轴优先采用补偿式连接,这样,在安装时允许总成 间有小量的轴向、径向和角度位移,以补偿安装位置误差和机件的变形。
2.1.3 液压卷扬机构的分类工作压力又受系统压力限制,一般取2ϕ=1.15~1.3; Q ——额定起升载荷(N ) v ——物品起升速度(m/s )η——机械总效率,初步计算时,取η=0.8~0.85。
额定起升载荷Q 根据下式计算 Q S m =⋅ 式中S ——钢丝绳自由端拉力(N );m ——滑轮组倍率。
根据已知S =10787.7N 。
一般当起升载荷50Q P kN ≤时,滑轮组倍率宜取2,250Q P kN ≤时,倍率取3~6,载荷量更大时,倍率可取8以上。
因此,2m =。
把数值代入到式子中得:10787.72Q =⨯=21575.4N物品提升速度按下式计算.:12v ==0.5m/s2ϕ根据需要选取2ϕ=1.3,机械总效率取η=0.85,卷筒机械效率m η=0.97,12v ==0.5m/s ,Q =21575.4N ,把数据代入式中得: 1.321575.40.510000.970.85m P ⨯⨯=⨯⨯=17.009kw (1)满载起升时液压马达输出扭矩m T 2[(21)]()2m Q D z d T N m mi ϕη+-=⋅式中i ——减速器传动比;z ——钢绳在卷筒上的卷绕层数。
其余符号同以前式子。
由于已知为大排量马达,选用低速方案。
因此不采用减速器,所以i =1。
又由已知卷筒钢丝绳卷绕三层,故z =3。
把所有数值代入式子中得:1.321575.4[0.2(231)0.008]220.970.85m T ⨯⨯+⨯-⨯=⨯⨯⨯=1004.845N m ⋅ 所选用的马达的额定转矩为T =1440N m ⋅,因为 m T T >,所以选用的马达转矩符合要求。
(2)计算液压马达的转速m n 和输入油量m Q 根据 60[(1)]m mivn D z d π=+-式中各符号同以前的式子。
把数值代入式中得:60210.5[0.220.08]m n π⨯⨯⨯=+⨯=176.43 r/min计算马达的输入油量用下式m mm m vq n Q η⋅⋅=式中m q ——液压马达的排量(ml/r );m v η⋅——液压马达容积效率。
马达的排量根据已知得m q =520 ml/r , m v η⋅根据下式计算: mm v m mηηη⋅⋅= 式中m η——液压马达总效率;m m η⋅——液压马达机械效率。
根据表查得m η取0.85,m m η⋅取0.9。
把数代入式中得:0.850.9m v η⋅==0.95 把所计算的数据代入式中得:.3(/)m r选用的液压马达转速范围为2~400r/min ,由于计算得m n =88.5 r/min ,所以马达的转速符合要求。
5.2 平衡阀的计算与选用5.2.1 平衡阀的功能简介平衡阀用于液压执行元件承受物体重力的液压系统。
在物体下降时,重力形成动力性负载,反驱动液压执行元件按重力方向或重力所形成的力矩方向运动,平衡阀在执行元件的排油腔产生足够的背压,形成制动力或制动力矩,使执行元件作匀速运动,以防止负载加速坠下。
5.2.2 平衡阀的选用根据已知的马达的排量、工作压力和计算所得的泵的流量选用3210/60FD FA B 型平衡阀,所代表的意义和阀的外型结构见(图5.1)和(图5.2)。