八年级上册数学知识点详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学知识点

第十一章全等三角形

1.全等三角形的性质:全等三角形对应边相等、对应角相等。

2.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等教学活动:教师可以分析角平分线的性质,由学生自己总结,教师改正,引导学生在观察图形的同时加深对图形的理解,对初三的三角形的外接圆和内切圆有一定的知识准备。建议课时2-3课时。

3.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

4.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

第十二章轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

教学建议:12.1和12.2可以和在一起教学,给出一些学生知道的几何图形和其他图形,即课本中的“试一试” 然后将对称物体抽象成图形,让学生通过仔细观察,并且自己动手折一折,来发现这些物体是对称的,揭示出“完全重合”

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数这样一个概念,使学生初步感知到平面图形的对称性,随后,让学生继续动手折纸,进一步揭示出"轴对称图形"的概念,以及让学生初步了解对称轴。建议课时1-2课时。

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60°,

12.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

13.直角三角形中,30°角所对的直角边等于斜边的一半。

14.直角三角形斜边上的中线等于斜边的一半

第十三章 实数

※算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x

叫做a 的算术平方根,记作a 。0的算术平方根为0;从定义可

知,只有当a ≥0时,a 才有算术平方根。

※平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b

数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

())0,0(0,0>≥=≥≥=⨯b a b a b

a b a ab b a 教学建议:本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义,教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标,建议课时2-3课时。

第十四章 一次函数

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3.若两个变量x,y 间的关系式可以表示成y=kx+b(k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。特别地,当b=0时,称y 是x 的正比例函数。

4

,其图象是经过原点(0,0)5.正比列函数y=kx (当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大,当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,在一次函数y=kx+b 中: 当k>0时,y 随x 的增大而增大; 当k<0时,y 随x 的增大而减小。

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

5.会从函数图象上找到一元一次方程的解(既与x 轴的交点坐标横坐标值),一

元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

7.

第十五章 整式的乘除与因式分解

1.同底数幂的乘法

※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法

则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、

n 、p 均为正数);

⑤公式还可以逆用:n

m n m a a a

⋅=+(m 、n 均为正整数) 2.幂的乘方与积的乘方

※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2.

),()()(都为正数n m a a a mn m n n m ==. ※3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方

法则化成同底,

如将(-a )3化成-a 3