城市垃圾运输问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

魅力数模美丽师大浙江师范大学“同梦杯”第八届数学建模竞赛自信创新合作快乐

A B

论文题目城市垃圾运输问题

编号 56组

评分

监制:浙江师范大学数学建模研究会(2009年5月7日)

(说明:评分一栏为评阅人填写,请参赛者不要填写)

垃圾运输问题

摘要:该题我们的主要解题思路分三阶段:

第一阶段,我们先根据题设条件和基本假设画出该题的图。

第二阶段,我们根据图和点的位置关系结合题设,归纳出一些最基本的确定路线的原则:

在仔细分析该题后,我们认为该题为一个TSP与VRT相结合的问题。我们先抛开空载费用,若要把所有的垃圾运回垃圾处理站,这部分有效工的费用为∑*|Xi|*Yi(|Xi|为垃圾点Xi到原点的距离,Yi为垃圾点的垃圾量),是恒定不变的。只要我们能保证空载路线最小,则所花的时间和费用都最小。因此解题的关键在于找出一个调度方案,使空载行驶的线路最小。

第三阶段则是编制程序阶段,我们结合下山法逐点搜索,并引入随机生成器。在出现后继点权值相等难以判断以哪点继续搜索时,由随机生成器确定。为了让算法更接近人的思维,我们让更靠近父点的子点有更高的几率被作为下一个将去的垃圾点,这也与我们的算法原则对应。采用计算机模拟搜索的计算方法,搜索出运输车投入辆数以及运输车最佳调配方案,使得在不考虑铲车的情况下运营费用最低。总运营费用为运输车空载费与实际运输费之和。

问题的解答如下:第一问,求得所需总费用为元,所需总时间为23小时08分,路线分配图见正文;第二问,求得需4辆铲车,铲车费用为元,分配图及运输车调度表见正文;第三问,运营总费用为:,其中8吨、6吨、4吨载重量的运输车各需5、2、3辆,路线分配图见正文。

关键词:单目标优化计算机搜索 TSP

一、问题的重述

某城区有 38 个垃圾集中点,每天都要从垃圾处理厂(第 38 号节点)出发将垃圾运回。现有一种载重 6 吨的运输车。每个垃圾点需要用 10 分钟的时间装车,运输车平均速度为 40 公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作 4 小时。运输车重载运费元 / 吨公里;运输车和装垃圾用的铲车空载费用元 / 公里;并且假定街道方向均平行于坐标轴。请你给出满意的运输调度方案以及计算程序。

问题:

1.运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用)

2.铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用)

3.如果有载重量为 4 吨、 6 吨、 8 吨三种运输车,又如何调度(垃圾点地理坐标数

据表见附录一)

二、模型的假设

1.运输车匀速行驶且不计一切拐弯损耗时间;

2.车辆在任意两站点中途不停车;

3.只要平行于坐标轴即有街道存在;。

4.无论垃圾量多少,都能在十分钟内装上运输车;

5.每个垃圾站点的垃圾不允许分两次运输,而且也只需要一辆铲车。

6.假设运输车、铲车从A垃圾站到B垃圾站总走最短路线;

7.任意两垃圾站间的最短路线为以两垃圾站连线为斜边的直角三角形的两直角边

之和;

8.如果车可以跑第二趟,中间无休息时间;

9.假设铲车、运输车载工作途中不发生意外也不遇到意外;

10.所有运输车和铲车均从第38号点出发,且最后均回到38号点;

三、主要变量的说明

1、子点:本点的下一点;

2、Spend:运费;

3、Time:时间消耗;

4、|A|:A点横纵坐标之和,;

5、垃圾集中点在后面用顶点表示

6、v[i]:第i个顶点

7、v[i].X:第i个顶点的X坐标;v[i].Y表示第i个顶点的Y坐标;

8、v[i].laji:第i个顶点上有的垃圾重量,单位是吨;

9、L[i][j]:顶点i到顶点j的距离;

10、sum[i]:顶点i的横纵坐标之和;

11、访问一个顶点表示把它的垃圾装上车;

12、用到的相关定义

设 G = (V, E) 是连通无向图,

(1) 经过 G的每一个顶点正好一次的路,称为 G的一条哈密顿路或 H路;

(2) 经过 G的每一个顶点正好一次的圈,称为 G的一条哈密顿圈或 H圈;

(3) 含 H圈的图称为哈密顿图或 H图.

|A| A点横纵坐标之和

|B| B点横纵坐标之和

|A-B| 表示A,B两点之间的距离

Ta表示A点所在地的垃圾量

cost:运费;

time:时间消耗;

装的足够多运输车当前的载重离限载不大于吨(垃圾点的最小垃圾量)

序数号所在点的编号

四、问题的分析与模型的建立

这是一个遍历问题。由于运输车的载重与时间的约束,它不在是最小树能解决的问题,而是森林,包含了多个树。每一个树用一辆车去把其上面的垃圾运输回来,只要时间足够,同一辆车可能运输不止一颗树的垃圾。问题就变成了,在一个森林中,找到这样一些树,使其能用尽可能少的车遍历完所有顶点的,且这些树够成哈密顿圈。

将垃圾集中点抽象成坐标平面上的点,该点具有两个属性,即位置属性和重量属性;城市抽象成一个30*20的一个坐标方格网络。该模型假设如第二项中所述。垃圾运输问题最终可以归结为最优路径搜索问题,但注意到此图为森林而不是树,不能直接套用Krusal,Prim等现成算法,于是根据具体问题设计出随机下山法,用计算模拟搜索,可以搜寻到令人满意的可行解

先注意到两点的情况,设两点分别为A(x1,y1),B(x2,y2)。

主要有以下两种情况:

一.A,B明显有先后次序。--递减状态(如图1)

相关文档
最新文档