文科第一轮复习 基本初等函数

合集下载

基本初等函数知识点(一轮复习)

基本初等函数知识点(一轮复习)

基本初等函数中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。

什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。

力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。

一、一次函数初中的一个函数,Primary基本、简单而又很重要。

解析式:y=kx+b或y=ax+b,通常我们会这样设。

那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下……画出以下解析式的图像:要求快(1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x根据以下条件,设出一次函数的解析式:(1)直线经过(1,2)点(2)直线的斜率是2总结:两个参数主宰斜率和与y轴的交点位置。

因为两个参数,所以要有两个条件才能解得解析式。

二、二次函数二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。

十分重要的内容,属于幂函数中最重要的一类。

二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质.1、二次函数的三种表示形式(1)一般式:y=ax2+bx+c,(a≠0);(2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k));(3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0))求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式.Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1.∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a.∵x21+x22=7 即(x1+x2)2-2x1x2=7∴4-2(15+a)a=7,∴a =-6.2、二次函数在特定区间上的最值问题EX :函数y=x 2+4x+3在[-1,0]上的最大值是________,最小值是________.解析:y=x 2+4x+3=(x+2)2-1,对称轴x=-2,在[-1,0]的左侧,所以在[-1,0]上单调递增.故当x=0时,f(x)取最大值f(0)=3;当x=-1时,f(x)取最小值f(-1)=0. 答案:3 0进阶Eg :(建议一做):已知函数f(x)=-x 2+2mx+1-m 在0≤x ≤1时有最大值2, 求m 的值 (1)若(2b x a =-<=0) (2)若(0<2b x a =-<1) (3)若(2bx a=->=1) key:m=-1 or m=2 解析:每种情况分别画出草图。

高考数学一轮复习 基本初等函数、函数与方程及函数的应用专题训练(1)

高考数学一轮复习 基本初等函数、函数与方程及函数的应用专题训练(1)

基本初等函数、函数与方程及函数的应用一、基础知识要记牢指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图像和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2012·四川高考)函数y =a x-1a(a >0,且a ≠1)的图像可能是( )(2)(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c[解析] (1)当x =-1时,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32, b =log 510=log 55+log 52=1+log 52, c =log 714=log 77+log 72=1+log 72, ∵log 32>log 52>log 72,∴a >b >c . [答案] (1)D (2)D比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较. 三、预测押题不能少1.(1)函数y =x -x 13的图像大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A. (2)若x ∈(e-1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .a >b >cD .b >a >c解析:选B 依题意得a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =x ∈(e -1,1),因此b >c >a .一、基础知识要记牢确定函数零点的常用方法:(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例2] (1)函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( )A .2B .3C .4D .5[解析] (1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点. [答案] (1)B (2)C函数的零点、方程的根,都可以转化为函数图像与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图像,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. 三、预测押题不能少2.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1. 答案:(0,1]一、经典例题领悟好[例3] 某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如表:(单位:万美元)其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计m ∈[6,8].另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划.[解] (1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈N,0≤x ≤200),y 2=18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈N,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1 980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元). 因为y 1max -y 2max =1 980-200m -460 =1 520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.解决函数实际应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题;二是要合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解. 二、预测押题不能少3.某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元), 则 f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3). 所以当t =2时,f (t )max =4,即当集团投入两百万元广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3). 对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0, 得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增; 当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减. ∴当x =2时,g (x )max =g (2)=253.故在三百万元资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的收益最大,最大收益为253百万元.函数的性质与零点的交汇函数零点(方程的根)的问题,常见的类型有: (1)零点或零点存在区间的确定; (2)零点个数的确定;(3)利用零点求参数范围问题.函数的性质与零点的交汇问题成为新的命题点. 一、经典例题领悟好[例] (2012·湖南高考)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,(x -π2)f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8学审题——审结论之逆向分析函数y =f (x )-sin x 的零点――→转化 y =f (x )与y =sin x 图像交点――→作用 f (x )的范围――――→函数f x的性质确定f ′(x )的正负――――→分类讨论 ⎝ ⎛⎭⎪⎫x -π2·f ′(x )>0. 用“思想”——尝试用“转化与化归思想”解题∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增.∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π. 又f (x )是以2π为最小正周期的偶函数, 知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点. [答案] B1本题在求解时,用了转化与化归、数形结合、分类讨论思想.个别学生不会利用题设条件判定y =f x 的值域以及函数y =f x 图像的变化趋势,导致求解受阻. 2函数与方程应用转化与化归的常见类型①判断函数零点个数常转化为两函数的图像交点.②由函数的零点情况确定参数范围,常转化为利用函数图像求解. ③方程根的讨论转化为函数零点的问题. 二、预测押题不能少函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,当x ∈[-1,4]时,f (x )=x 2-2x ,则f (x )在区间[0,2012]上零点的个数为( )A .2 011B .2 012C .1 026D .1 027解析:选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2 012=402×5+2,故函数在区间[0,2 010]内有402×3=1 206个零点,在区间(2 010,2 012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2 012]上零点的个数为1 207.1.(2013·广州惠州调研)已知幂函数y =f (x )的图像过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)的值为( )A.14 B .-14 C .2 D .-2解析:选A 设f (x )=x a,由其图像过点⎝ ⎛⎭⎪⎫12,22得⎝ ⎛⎭⎪⎫12a =22=⎝ ⎛⎭⎪⎫1212⇒a =12,故log 4f (2)=log 4212=14.2.(2013·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:选B 利用对数的换底公式进行验证,log a b ·log c a =log c blog c a ·log c a =log c b ,则B 对.3.(2013·河北质检)若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x+1C .y =e x f (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.(2013·天津一中模拟)设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b解析:选C 由题意得0<a <1,b >1,而log 34>1,c =log 34(log 34),得c <0,故c <a <b .5.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎢⎡⎦⎥⎤-1,43 C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析:选D 法一:当2-x >1,即x <1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D. 法二:f (x )=|ln(2-x )|的图像如图所示.由图像可得,函数f (x )在区间[1,2)上为增函数,故选D.6.(2013·东北三校联合模拟)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)解析:选B 若a =0,当x ≤0时,f (x )=0,故f (f (x ))=f (0)=0有无数解,不符合题意,故a ≠0.显然当x ≤0时,a ·2x≠0,故f (x )=0的根为1,从而f (f (x ))=0有唯一根,即为f (x )=1有唯一根.而x >0时,f (x )=1有唯一根12,故a ·2x=1在(-∞,0]上无根,当a ·2x =1在(-∞,0]上有根可得a =12x ≥1,故由a ·2x =1在(-∞,0]上无根可知a <0或0<a <1. 7.已知a =5-22,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 解析:由题意知,a =5-22∈(0,1),故函数f (x )=a x是减函数,由f (m )>f (n )得m <n . 答案:m <n 8.(2013·陕西高考)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为________(m).解析:如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x 40=AD AB =AF AH ⇒AF =x ⇒FH =40-x .则S =x (40-x )≤x +40-x 22=⎝ ⎛⎭⎪⎫4022,当且仅当40-x =x ,即x =20时取等号.所以满足题意的边长x 为20(m).答案:209.(2013·江苏扬州中学期中)已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.解析:由已知∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则需x ≤1时,f (x )不单调即可,即对称轴a 2<1,解得a <2. 答案:a <210.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解:(1)∵g (x )=x +e 2x ≥2e 2=2e(x >0), 当且仅当x =e 2x时取等号. ∴当x =e 时,g (x )有最小值2e.因此g (x )=m 有零点,只需m ≥2e.∴m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图像有两个不同的交点.如图所示,作出函数g (x )=x +e 2x(x >0)的大致图像. ∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其对称轴为x =e ,f (x )max =m -1+e 2.若函数f (x )与g (x )的图像有两个交点,必须有m -1+e 2>2e ,即m >-e 2+2e +1.即g (x )-f (x )=0有两个相异实根,则m 的取值范围是(-e 2+2e +1,+∞).11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解:(1)当0<x ≤100时,p =60;当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .所以p =⎩⎪⎨⎪⎧ 60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ;当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.所以y =⎩⎪⎨⎪⎧ 20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600.当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000; 当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,所以当x =550时,y 最大,此时y =6 050.显然6 050>2 000.所以当一次订购550件时,利润最大,最大利润为6 050元.12.(2013·江西七校联考)已知函数f (x )=log 4(4x +1)+kx (k ∈R )为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围.解:(1)∵f (x )为偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,即(2k +1)x =0,∴k =-12. (2)依题意令log 4(4x +1)-12x =log 4(a ·2x -a ), 即⎩⎪⎨⎪⎧ 4x +1=a ·2x -a ·2x ,a ·2x -a >0.令t =2x ,则(1-a )t 2+at +1=0,只需其有一正根即可满足题意.①当a =1时,t =-1,不合题意,舍去.②上式有一正一负根t 1,t 2,即⎩⎪⎨⎪⎧ Δ=a 2-41-a >0,t 1t 2=11-a <0,经验证满足a ·2x-a >0,∴a >1. ③上式有两根相等,即Δ=0⇒a =±22-2,此时t =a 2a -1,若a =2(2-1),则有t =a 2a -1<0,此时方程(1-a )t 2+at +1=0无正根,故a =2(2-1)舍去; 若a =-2(2+1),则有t =a 2a -1>0,且a · 2x -a =a (t -1)=a ⎣⎢⎡⎦⎥⎤a 2a -1-1=a 2-a 2a -1>0, 因此a =-2(2+1).综上所述,a 的取值范围为{a |a >1或a =-2-22}.。

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

精品基础教育教学资料,仅供参考,需要可下载使用!第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-x C .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x , 所以g (x )=12(e x -e -x ).。

高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

奇偶性
定义
图象特点
如果对于函数f(x)的定义域内任意一个x, 偶函数 都有 f(-x)=f(x) ,那么函数f(x)是偶 关于
y轴


函数
奇函数
如果对于函数f(x)的定义域内任意一个x, 都有 f(-x)=-f(x) ,那么函数f(x)是奇 关于
原点


函数
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使 得当x取定义域内的任何值时,都有f(x+T)= f(x) ,那么就 称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最 小的正数,那么这个 最小 正数就叫做f(x)的最小正周期.
数f(x)在区间D上是减函数
(2)单调性、单调区间的定义 若函数f(x)在区间D上是增函数或 减函数 ,则称函数f(x)在这 一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间. 2.函数的最值
前提 设函数y=f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有 f(x)≤M ;
2
减函数,故 f(x)的单调递增区间为(-∞,-1).故选 C.
答案 C [点评] 判断函数的单调性,应首先求出函数的定义域,在定
义域内求解.
函数的奇偶性解题方略 奇偶性的判断 (1)定义法
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)[函数的单调递增(减)区间有多个时,不能用并集表示,:可
以 用 逗 号 或 “ 和 ”] 函 数
f(x)
=xBiblioteka +1 x的



数学(文)一轮复习:第二章 基本初等函数、导数及其应用 第讲对数与对数函数

数学(文)一轮复习:第二章 基本初等函数、导数及其应用 第讲对数与对数函数

第6讲对数与对数函数,)1.对数概念如果a x=N(a〉0,a≠1),那么数x叫做以a 为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0底数的对数是1:log a a=1对数恒等式:a log a N=N运算性质log a(M·N)=log a M+log a N a>0,且a≠1, log a错误!=log a M-log a Nlog a M n=n log a M(n∈R)M >0,N〉0 2.对数函数的图象与性质a〉10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x〉1时,y〉0当0〈x〈1时,y<0当x〉1时,y〈0当0<x<1时,y〉在(0,+∞)上是增函数在(0,+∞)上是减函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.1.辨明三个易误点(1)在运算性质中,要特别注意条件,底数和真数均大于0,底数不等于1。

(2)对公式要熟记,防止混用.(3)对数函数的单调性、最值与底数a有关,解题时要按0〈a 〈1和a〉1分类讨论,否则易出错.2.对数函数图象的两个基本点(1)当a>1时,对数函数的图象“上升”;当0<a〈1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象只在第一、四象限.3.换底公式及其推论(1)log a b=错误!(a,c均大于0且不等于1,b〉0);(2)log a b·log b a=1,即log a b=错误!(a,b均大于0且不等于1);(3)log am b n=错误!log a b(a〉0且a≠1,b>0,m≠0,n∈R);(4)log a b·log b c·log c d=log a d(a,b,c均大于0且不等于1,d>0).1.函数y=错误!ln(1-x)的定义域为()A.(0,1) B.D.B 因为y=错误!ln(1-x),所以错误!解得0≤x〈1.2.错误!(log29)·(log34)=()A.错误!B.错误!C.2 D.4D原式=错误!·错误!=4。

2025届高考数学一轮总复习第3章函数与基本初等函数第1节函数的概念及其表示新人教A版

2025届高考数学一轮总复习第3章函数与基本初等函数第1节函数的概念及其表示新人教A版

解析 因为f(x)=
故选D.
C.5
D.4
- + 1, < 0,
2=4,
所以f(-1)=-(-1)+1=2,所以f(f(-1))=f(2)=2
选择恰当的方法.
3.通过具体实例,了解简单的分段函数,并能简单应用.
目录索引
1 强基础 固本增分
知识梳理
1.函数的概念
一般地,设A,B是非空的 实数集
,如果对于集合A中
的 任意一个数x ,按照某种确定的对应关系f,在集合B
概念
中都有 唯一 确定的数y和它对应,那么就称f:A→B为
从集合A到集合B的一个函数
2 0232,相当于1个x值对应两个y值,不符合函数定义,即A错误;对于B选项,
取x=0和x=π,有f(g(0))=f(0)=0,f(g(π))=f(0)=π2,不符合函数定义,所以B
错误;对于 C 选项,若 f(2x-1)=x
+1
+1 2
+1 2
,令 t=2x-1,得 x= ,则 f(t)=( ) ,即 f(x)=( ) ,
选BCD.
考点二函数的定义域
例 2(1)(2024·江西赣州模拟)若函数 f(x-1)的定义域为[-2,3],则函数
f(2x-4)
g(x)= x ቤተ መጻሕፍቲ ባይዱ -4
的定义域为( B )
1
A.[2,3]
1
B.[2,2)∪(2,3]
C.[-1,2)∪(2,4]
D.[-6,2)∪(2,4]
解析 函数 f(x-1)的定义域为[-2,3],所以由-2≤x≤3,得-3≤x-1≤2,故 f(x)的定

.
+ 1 > 0,

( 一轮复习用卷)基本初等函数

( 一轮复习用卷)基本初等函数

基本初等函数第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于 ( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.下列四个函数中,与y =x 表示同一函数的是 ( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3.设a =log 3π,b =log 23,c =log 32,则 ( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a4.由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是 ( )A .增函数B .减函数C .先增后减D .先减后增5.函数f (x )=|x |-k 有两个零点,则 ( )A .k =0B .k >0C .0≤k <1D .k <06.若0<x <y <1,则 ( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y 7.函数y =lg|x |x 的图象大致是 ()8.若函数f (x )=212log ,0,log (),0,x x x x >⎧⎪⎨-<⎪⎩若f (a )>f (-a ),则实数a 的取值范围( ) A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)9.已知幂函数f (x )的图象经过点(18,24),P (x 1,y 1),Q (x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论:①x 1f (x 1)>x 2f (x 2);②x 1f (x 1)<x 2f (x 2);③f (x 1)x 1>f (x 2)x 2; ④f (x 1)x 1<f (x 2)x 2. 其中正确结论的序号是 ( )A .①②B .①③C .②④D .②③10.已知函数f (x )=112log (421)x x +-+的值域为[0,+∞),则它的定义域可以是 ( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 选择题答题栏题 号1 2 3 4 5 6 7 8 9 10 11 12 答 案第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知对不同的a 值,函数f (x )=2+a x -1(a >0,且a ≠1)的图象恒过定点P ,则P 点的坐标是________.14.定义在R 上的函数f (x )满足f (x )=2log (1),0(1)(2),0x x f x f x x -≤⎧⎨--->⎩,则f (2 011)的值为__________.15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.18.(本小题满分12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.19.(本小题满分12分)已知函数f (x )=2x -12|x |. (1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.(本小题满分12分)(2011·银川模拟)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.21.(本小题满分12分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.22.(本小题满分12分)(2011·合肥模拟)对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,求f(0)的值;(2)判断函数f(x)=2x-1 (x∈[0,1])是否为理想函数,并予以证明;(3)若函数f(x)为理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0.数学卷(三)1.B由2x-x2>0,得x(x-2)<0⇒0<x<2,故A={x|0<x<2},由x>0,得2x>1,故B={y|y>1},∁R B={y|y≤1},则(∁R B)∩A={x|0<x≤1}.2.B3.A ∵log 32<log 22<log 23,∴b >c .又∵log 23<log 22=log 33<log 3π,∴a >b ,∴a >b >c .4.B①当x ≥0且y ≥0时,x 2+y 2=1,②当x >0且y <0时,x 2-y 2=1,③当x <0且y >0时,y 2-x 2=1,④当x <0且y <0时,无意义.由以上讨论作图如右,易知是减函数.5.B[令y =|x |,y =k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象,得k >0.6.C ∵0<x <y <1,∴由函数的单调性得3x <3y ,log x 3>log y 3,(14)x >(14)y ,即选项A 、B 、D 错,故选C.7.D8.C 由分段函数的表达式知,需要对a 的正负进行分类讨论.f (a )>f (-a )⇒⎩⎪⎨⎪⎧ a >0log 2a >log 12a 或 ⎩⎪⎨⎪⎧ a <0log 12(-a )>log 2(-a )⇒⎩⎨⎧ a >0a >1或⎩⎨⎧a <0-1<a ⇒a >1或-1<a <0.9.D 依题意,设f (x )=x α,则有(18)α=24,即(18)α=(18)12,所以α=12,于是f (x )=x 12. 由于函数f (x )=x 12在定义域[0,+∞)内单调递增,所以当x 1<x 2时,必有f (x 1)<f (x 2),从而有x 1f (x 1)<x 2f (x 2),故②正确;又因为f (x 1)x 1,f (x 2)x 2分别表示直线OP 、OQ 的斜率,结合函数图象,容易得出直线OP 的斜率大于直线OQ 的斜率,故f (x 1)x 1>f (x 2)x 2,所以③正确. 10.A ∵f (x )的值域为[0,+∞),令t =4x -2x +1+1,∴t ∈(0,1]恰成立,即0<(2x )2-2·2x +1≤1恰成立,0<(2x -1)2成立,则x ≠0,(2x )2-2·2x +1≤1可化为2x (2x -2)≤0,∴0≤2x ≤2,即0≤x ≤1,综上可知0<x ≤1.11.D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,-f (1)<0,即f (-25)<f (80)<f (11).12.C 将f (x )<12化为x 2-12<a x ,利用数形结合,分a >1和0<a <1两种情况求解.结合图象得⎩⎪⎨⎪⎧ a >1a -1≥12或⎩⎪⎨⎪⎧ 0<a <1a ≥12,解得1<a ≤2或12≤a <1. 13.(1,3)14.-1解析 由已知得f (-1)=log 22=1,f (0)=0,f (1)=f (0)-f (-1)=-1,f (2)=f (1)-f (0)=-1,f (3)=f (2)-f (1)=-1-(-1)=0,f (4)=f (3)-f (2)=0-(-1)=1,f (5)=f (4)-f (3)=1,f (6)=f (5)-f (4)=0,所以函数f (x )的值以6为周期重复性出现,所以f (2 011)=f (1)=-1.15.154解析 由0≤|log 0.5x |≤2解得14≤x ≤4, ∴[a ,b ]长度的最大值为4-14=154. 16.①②④解析 由f (x +1)=f (x -1)可得f (x +2)=f [(x +1)+1]=f (x +1-1)=f (x ),∴2是函数f (x )的一个周期.又函数f (x )是定义在R 上的偶函数,且x ∈[0,1]时,f (x )=(12)1-x , ∴函数f (x )的简图如右图,由简图可知②④也正确.17.解 (1)∵f (x )的不动点为(1,1)、(-3,-3),∴有⎩⎪⎨⎪⎧a +b -b =1,9a -3b -b =-3,∴a =1,b =3.………………………………………………4分 (2)∵函数总有两个相异的不动点,∴ax 2+(b -1)x -b =0,Δ>0,即(b -1)2+4ab >0对b ∈R 恒成立,……………………………………………………7分 Δ1<0,即(4a -2)2-4<0,………………………………………………………………9分 ∴0<a <1.…………………………………………………………… …………………10分18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a 20=1-a =0. ∴a =1.……………………………………………………………………………………3 设x ∈[0,1],则-x ∈[-1,0].∴f (-x )=14-x -12-x =4x -2x . 又∵f (-x )=-f (x )∴-f (x )=4x -2x .∴f (x )=2x -4x .……………………………………………………………………………8分(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2,∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.……………………………………………12分19.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .…………………………………………………………………3分 由条件可知2x -12x =2,即22x -2·2x -1=0, 解得2x =1±2.∵2x >0,∴x =log 2(1+2).……………………………………………………………6分(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1).∵22t -1>0,∴m ≥-(22t +1).…………………………………………………………9分 ∵t ∈[1,2],∴-(1+22t )∈[-17,-5],故m 的取值范围是[-5,+∞). (2)20.解 (1)设f (x )图象上任一点坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,……………………………………………………………………………2分∴2-y =-x +1-x+2,∴y =x +1x , 即f (x )=x +1x.……………………………………………………………………………6分 (2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2]. ∵x ∈(0,2],∴a +1≥x (6-x ),…………………………………………………………8分 即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,∴a ≥7.……………………………………………12分21.解 (1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧(30+t )(40-t ), 0≤t <10,(40-t )(50-t ), 10≤t ≤20.……………………………………………………4分(2)当0≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值为1 225;……………………………………………………8分当10≤t≤20时,y的取值范围是[600,1 200],在t=20时,y取得最小值为600.所以第5天,日销售额y取得最大值为1 225元;第20天,日销售额y取得最小值为600元.………………………………………12分22.(1)解取x1=x2=0,可得f(0)≥f(0)+f(0)⇒f(0)≤0.又由条件①得f(0)≥0,故f(0)=0.………………………………………………………4分(2)解显然f(x)=2x-1在[0,1]满足条件①f(x)≥0;也满足条件②f(1)=1.若x1≥0,x2≥0,x1+x2≤1,则f(x1+x2)-[f(x1)+f(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即满足条件③,故f(x)是理想函数.………………………………8分(3)证明由条件③知,任给m、n∈[0,1],当m<n时,n-m∈[0,1],∴f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).若x0<f(x0),则f(x0)≤f[f(x0)]=x0,前后矛盾.若x0>f(x0),则f(x0)≥f[f(x0)]=x0,前后矛盾.故f(x0)=x0.……………………………………………………………………………12分。

2022届新高考一轮复习 第三章 函数的概念及基本初等函数 第3讲 函数的奇偶性 教案

2022届新高考一轮复习 第三章 函数的概念及基本初等函数 第3讲 函数的奇偶性 教案

1.理解函数奇偶性的定义,以及几何意义.2.能够准确的判断函数的奇偶性,并能利用函数奇偶性求函数解析式,函数值等.1.奇函数、偶函数的代数特征(1)一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 叫做奇函数;(2)一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 叫做偶函数. 2.奇函数、偶函数的几何特征 (1)奇函数图象关于原点成中心对称; (2)偶函数图象关于y 轴成轴对称. 注意:1.具有奇偶性的函数的定义域关于原点对称. 2.若奇函数()f x 在原点处有定义,则()00f =.3.既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的集合.【例1】(1)已知下面四个函数中:①412x x y +=,②(ln 2y x =,③2ln 2x y x -=+,④()x xy x e e -=-,是奇函数的是()A .①②B .②③C .②④D .②③④【答案】B【解析】对①,函数的定义域为R ,关于原点对称,且()()411412222x x xx x x f x f x --++-==+==,故函数为偶函数;对②,20x >恒成立,故函数定义域为R ,关于原点对称, 且()(22ln 2x x f x x --=-=(()lnln 2x f x ==-=-,故函数为奇函数;对③,由202xx->+可解得22x -<<,即函数定义域为()2,2-,关于原点对称, 且()()22lnln 22+--==-=--+x xf x f x x x,故函数为奇函数; 对④,函数的定义域为R ,关于原点对称,且()()()()x x x xf x x e e x e e f x ---=--=-=,故函数为偶函数,综上,②③为奇函数,故选B . (2)下列函数中:①2y x =,②21(1)y x =+,③21y x =+,④1,0()1,0x x f x x x +<⎧=⎨->⎩偶函数的个数是() A .0 B .1 C .2 D .3【答案】C 【解析】①2y x=,定义域是{|0}x x ≠,满足()()f x f x -=-,所以是奇函数; ②21(1)y x =+,定义域是{|1}x x ≠-,定义域不关于原点对称,所以是非奇非偶函数;③21y x =+,定义域是R ,满足()()f x f x -=,所以是偶函数;④1,0()1,0x x f x x x +<⎧=⎨->⎩,定义域是{|0}x x ≠,当0x <时,()1()1()f x x x f x -=--=+=; 当0x >时,()1()1()f x x x f x -=+-=-=,满足()()f x f x -=,所以是偶函数, 故选C .(3)判断下列函数的奇偶性.(1)()f x =(2)()22,0,0x x x f x x x x ⎧+>=⎨-<⎩;(3)()22f x x x a =--+.【答案】(1)函数()f x 既不是奇函数,也不是偶函数;(2)函数是偶函数;(3)答案见解析.【解析】(1)因为函数()f x =32⎧⎫⎨⎬⎩⎭,不关于坐标原点对称,所以函数()f x 既不是奇函数,也不是偶函数. (2)易知函数的定义域为()(),00,-∞+∞,关于原点对称,又当0x >时,()2f x x x =+,则当0x <时,0x ->,故()()2f x x x f x -=-=; 当0x <时,()2f x x x =-,则当0x >时,0x -<,()()2f x x x f x -=+=,故原函数是偶函数.(3)函数()f x 的定义域为R ,当0a =时,()()f x f x -=,所以()f x 是偶函数.当0a ≠时,()22f a a =+,()222f a a a -=-+,()()f a f a ≠-,且()()()2217222022f a f a a a a ⎛⎫+-=-+=-+≠ ⎪⎝⎭,所以()f x 是非奇非偶函数.【变式1.1】(多选)下列函数是奇函数的是()A .()cos f x x x =B .()21x xf x x -=-C .()lg f x x =D .()x xf x e e -=-【答案】AD【解析】对于A ,定义域为R ,()()()cos cos f x x x x x f x -=--=-=-,()f x 是奇函数; 对于B ,定义域为()(),11,-∞+∞,不关于原点对称,()f x 是非奇非偶函数;对于C ,定义域为()(),00,-∞+∞,()()lg lg f x x x f x -=-==,()f x 是偶函数;对于D ,定义域为R ,()()()x x x xf x e e e e f x ---=-=--=-,()f x 是奇函数,故选AD .【变式1.2】(多选)下列函数中,是奇函数且在()0,1上单调递减的函数是() A .1112x y e =-+B .3sin 3sin y x x =+C .1lg1xy x-=+D .1,00,01,0x x y x x x -+<⎧⎪==⎨⎪-->⎩【答案】ACD【解析】对于A ,设()1112xy f x e ==-+,该函数的定义域为R , 且()()111121210x x f x f x e e --+=-+-=++,所以该函数为奇函数, 又函数10x y e =+>在()0,1上恒成立且单调递增, 所以函数1112x y e =-+在()0,1上单调递减,故A 正确; 对于B ,设()3sin 3sin y g x x x ==+,该函数的定义域为R ,且()()()()33sin 3sin sin 3sin g x x x x x g x -=-+-=--=-,所以该函数为奇函数,又sin y x =在()0,1上单调递增,所以函数3sin 3sin y x x =+在()0,1上单调递增,故B 错误;对于C ,设()1lg1xy h x x-==+,该函数的定义域为()1,1-, 且()()11lglg 11x xh x h x x x+--==-=--+,所以该函数为奇函数, 又12111x y x x-==-+++在()0,1上单调递减, 所以函数1lg1xy x-=+在()0,1单调递减,故C 正确; 对于D ,设()1,00,01,0x x y p x x x x -+<⎧⎪===⎨⎪-->⎩,定义域为R , 且当0x >时,()()1p x x p x -=+=-;当0x <时,()()1p x x p x -=-=-, 所以该函数为奇函数,当()0,1x ∈时,()1p x x =--,单调递减,故D 正确, 故选ACD .1.函数奇偶性的判断方法 (1)定义法①判断函数的定义域是否关于原点对称 ②计算()f x -③判断()f x -与()f x 的关系:当()()f x f x -=或()()0f x f x --=时,()f x 为偶函数; 当()()f x f x -=-或()()0f x f x -+=时,()f x 为奇函数; 当()()f x f x -≠或()()0f x f x --≠时,()f x 为非奇非偶函数. (2)奇偶性的“运算”①奇函数±奇函数=奇函数,偶函数±偶函数=偶函数②奇函数⨯奇函数=偶函数,奇函数⨯偶函数=奇函数,偶函数⨯偶函数=偶函数 2.常见的奇偶性模型①()x x f x a a -=+()0,1a a >≠且为偶函数; ②()x x f x a a -=-()0,1a a >≠且为奇函数;③()x xx x a a f x a a ---=+()0,1a a >≠且为奇函数;④()log a b xf x b x-=+()0,1,0a a b >≠≠且为奇函数;⑤())log af x x=()0,1a a >≠且为奇函数;⑥类似于()432f x ax bx cx dx e =++++这种由幂函数乘以一个系数再相加形式的函数, 当()f x 为奇函数时,偶次项系数都为0,即0,0,0a c e ===; 当()f x 为偶函数时,奇次项系数都为0,即0,0b d ==. 3.分段函数的奇偶性判断判断分段函数的奇偶性,应判断每段期间上()f x 与()f x -的关系,只有每段函数都满足相同的奇偶关系,我们才能说函数具有奇偶性.【例2】已知函数()f x 为奇函数,当0x <时,()22xf x =+,则()1f =()A .4-B .52-C .4D .52【答案】B【解析】由题设知:15(1)(1)(22)2f f -=--=-+=-,故选B .【变式2.1】函数()f x 是定义在R 上的奇函数,并且当()0,x ∈+∞时,()2xf x =,那么21log 5f ⎛⎫= ⎪⎝⎭______.【答案】5-【解析】因为函数()f x 是定义在R 上的奇函数,所以2211log log 055f f ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,所以()2log 5221log log 5=255f f ⎛⎫=--=- ⎪⎝⎭,故答案为5-.【例3】已知3()1f x ax bx =++,且()57f =,则()5f -的值是() A .-5 B .-7 C .5 D .7【答案】A【解析】因为3()1f x ax bx =++,令3()g x ax bx =+,()()1f x g x =+,则()()()()33()g x a x b x ax bx g x -=-+⋅-=-+=-,即3()g x ax bx =+为奇函数,又()57f =,所以()()5517f g =+=,所以()56g =,所以()()556g g -=-=-, 所以()()551615f g -=-+=-+=-,故选A .【变式3.1】已知()()tan 6x xe f x x e -=⋅++,()8f t =,则 ()f t -=______.【答案】4【解析】∵()()6tan x xe f x x e --=⋅+,∴()()()6tan()tan ()[()6]x x x x e f x x ex e f e x ------=-⋅+=-⋅+=--, 即()6f x -为奇函数,∴()6()6f t f t --=-+,故()12()1284f t f t -=-=-=, 故答案为4.【变式3.2】已知函数()22421x xx f x +++=+的最大值为M ,最小值为m ,则M m +等于___________. 【答案】8 【解析】()2244244212121x xx xx x x xf x +++⋅++===++++,()21x xg x =+, 因为()()2121xxx x g x g x ---==-=-++,所以函数()21xx g x =+是奇函数,因此()min max ()0g x g x +=,因此max min ()4()48M m g x g x +=+++=, 故答案为8.【变式3.3】已知函数()f x 的定义域为R ,函数()g x 是奇函数,且()()2x g x f x =+,若(1)1f =-,则(1)f -=__________.【答案】32-【解析】因为()g x 是奇函数,所以(1)(1)0g g +-=, 即1(1)2(1)02f f ++-+=,所以53(1)122f -=-=-, 故答案为32-.【变式3.4】已知3sin x x m +=,311sin 288y y m +=-,且π,4π,,4x y m ⎛⎫∈-∈ ⎪⎝⎭R ,则πtan 23x y ⎛⎫++= ⎪⎝⎭_________.【解析】设3()sin f x x x =+,因为()()()33()sin sin ()f x x x x x f x -=-+-=-+=-,所以3()sin f x x x =+是奇函数,又331(2)8sin 28sin 28f y y y y y m ⎛⎫=+=+=- ⎪⎝⎭,()(2)0f x f y m m ∴+=-=,20x y ∴+=,tan 2ππtan33x y ⎛⎫∴++== ⎪⎝⎭【例4】已知函数(),()f x g x 分别是定义在R 上的偶函数和奇函数,()()23x f x g x +=⋅,则函数()f x =__________. 【答案】33x x -+【解析】因为()()23x f x g x +=⋅,所以()()23x f x g x --+-=⋅, 又(),()f x g x 分别是定义在R 上的偶函数和奇函数,所以()()()(),f x f x g x g x -=-=-;所以()()()()23xf xg x f x g x --+-=-=⋅,则()()()()2323xx f x g x f x g x -⎧+=⋅⎪⎨-=⋅⎪⎩, 两式相加得()22323x x f x -=⋅+⋅,所以()33x xf x -=+,故答案为33x x -+.【变式4.1】已知函数)(f x 是定义在R 上的奇函数,当)(0,x ∈+∞时,)(21f x x x =--,则当)(,0x ∈-∞时,)(f x =_________. 【答案】21x x --+【解析】函数()f x 是定义在(),-∞+∞上的奇函数,当)(0,x ∈+∞时,)(21f x x x =--,则当(),0x ∈-∞时,()0,x -∈+∞,()()()2211f x x x x x -=----=+-,故()()21f x f x x x =--=--+,故答案为21x x --+.【例5】已知()y f x =是定义在R 上的奇函数,当0x ≥时,()23f x x x =--,则当0x <时,()f x =_________. 【答案】23x x -【解析】当0x ≥时,()23f x x x =--,当0x <时,则0x ->,∴()()()2233f x x x x x -=----=-+, 由于函数()y f x =是定义在R 上的奇函数,则当0x <时,()22()()33x x x x f x f x =--=--+=-,故答案为23x x -.【变式5.1】定义在R 上的偶函数()f x 和奇函数()g x 满足()()f x g x +=432421x x x +-+,若()2522f x a a ≥-恒成立,则实数a 的取值范围为()A .31,24⎡⎫-⎪⎢⎣⎭B .13,42⎡⎤-⎢⎥⎣⎦C .31,24⎛⎤-- ⎥⎝⎦D .13,42⎛⎫ ⎪⎝⎭【答案】B【解析】因为定义在R 上的偶函数()f x 和奇函数()g x 满足()()432421f x g x x x x +=+-+,所以()()()()432432421421f x g x x x x f x g x x x x ⎧+=+-+⎪⎨-+-=--+⎪⎩, 所以()()()()432432421421f xg x x x x f x g x x x x ⎧+=+-+⎪⎨-=--+⎪⎩,所以()42421f x x x =-+, 因为x ∈R ,所以20x ≥,令2t x =,则0t ≥,()()2421f x h t t t ==-+,由二次函数的性质知()h t 在10,4⎛⎫ ⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,所以()211134214444h t h ⎛⎫⎛⎫≥=⨯-⨯+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的值域为3,4⎡⎫+∞⎪⎢⎣⎭. 因为()2522f x a a ≥-恒成立,所以253224a a -≤,解得1342a -≤≤,所以实数a 的取值范围为13,42⎡⎤-⎢⎥⎣⎦,故选B .【例6】已知函数()f x 为奇函数,当0x >时,2()log (1)f x x ax =++,且()3f a -=,则a =() A .12B .12-C .2log 3D .2【答案】B【解析】函数()f x 为奇函数,(3)(3)f f a ∴-=-=.又2()log (1)f x x ax =++,则2(3)log 43f a a =+=-,解得12a =-,故选B .【变式6.1】已知()g x 是定义在R 上的奇函数,()()2f xg x x =+,若()2f a =,2(2)f a a -=+,则a =()A .2B .1-C .2或1-D .2或1【答案】C【解析】()g x 是奇函数,()()0g x g x ∴+-=,2()()2f x f x x ∴+-=, 而()2f a =,2(2)f a a -=+,所以2422a a +=,解得2a =或1-, 故选C .【例7】已知函数()()x xf x e ae a -=+∈R 的图象关于原点对称,则()f a =()A .1e e-B .1C .1e e -D .1e e+【答案】A【解析】函数()()x xf x e ae a -=+∈R 的图象关于原点对称,可得()f x 在定义域R 上为奇函数, 根据奇函数性质()()f x f x -=-, 令0x =,可得()00f =, 又()0000f e ae =+=,1a ∴=-,()x x f x e e -∴=-,故()()1111f e e a f e e--==-=-,故选A .【变式7.1】已知()f x 是定义在R 上的奇函数,当0x ≥时,2()log (2)f x x t =++,()6f -=__________. 【答案】2- 【解析】()f x 是定义在R 上的奇函数,又当0x ≥时,2()log (2)f x x t =++,()2log (02)00f t =∴++=,1t ∴=-,∴当0x ≥时,2()log (2)1f x x =+-,()()[]()322log (626)1log 2621f f +-=-∴-=-=--=-, 故答案为2-.【例8】已知函数()()222f x ax a x a =+++为偶函数,则不等式()()20x f x -<的解集为()A.(()2,+∞B.()+∞C .()2,+∞D.()2【答案】A【解析】因为函数()()222f x ax a x a =+++为偶函数,所以()()f x f x -=, 所以()()222222ax a x a ax a x a -++=+++,所以2(2)0a x +=,所以20a +=,得2a =-,所以()224f x x =-+,所以不等式()()20x f x -<可转化为20()0x f x -<⎧⎨>⎩或20()0x f x ->⎧⎨<⎩,即22240x x <⎧⎨-+>⎩或22240x x >⎧⎨-+<⎩,解得x <<或2x >,故原不等式的解集为(()2,+∞,故选A .【变式8.1】已知函数()22x xa f x a -=+是奇函数,则()f a 的值等于__________. 【答案】13-或3【解析】()f x 为奇函数,()()f x f x ∴-=-,即2222x xx xa a a a ----=-++, 212212212212x x x x x x xx a a a a a a ⋅--⋅-∴==⋅++⋅+,整理可得222222x x x x a a -⋅=⋅-, 21a ∴=,解得1a =±.当1a =时,()1212xx f x -=+,()()1211123f a f -∴===-+; 当1a =-时,()1212x xf x +=-,()()11213112f a f +∴=-==-, 综上所述:()13f a =-或3,故答案为13-或3.【变式8.2】已知函数())lnf x x =是奇函数,则a =_________.【答案】1【解析】函数())lnf x x =是奇函数,()()f x f x ∴-=-,))lnln x x ∴=-,即))ln ln 0x x +=, )ln 0x x =,)1x x ∴=,1a ,故答案为1.【例9】已知()21f x ax bx =-+是定义域为[],1a a +的偶函数,则2b a a -=()A .0B .34CD .4【答案】B【解析】∵()21f x ax bx =-+在[],1a a +上是偶函数,∴1a a -=+,解得12a =-,所以()f x 的定义域为11,22⎡⎤-⎢⎥⎣⎦,()2112f x x bx =--+,∵()f x 在区间11,22⎡⎤-⎢⎥⎣⎦上是偶函数,所以有1122⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭f f ,代入解析式可解得0b =, ∴213144b a a -=-=,故选B . 【变式9.1】已知函数()()()sin 1xx f x a x =+-为奇函数,则a =() A .1- B .12C .12- D .1【答案】D【解析】函数的定义域为{1x x ≠-且}x a ≠, 因为()()()sin 1xx f x a x =+-为奇函数,所以定义域关于原点对称,则1a =,所以()()()2sin sin 111x xx x x f x ==+--,因为()22sin()sin ()()11x xf x x x f x --===-----,满足()f x 为奇函数,故选D .【变式9.2】设函数()f x ,()g x 均是定义在241,22m m m --++⎡⎤⎣⎦上的偶函数和奇函数,且满足()()2221x f x g x x +=++,则()f m 的值为()A .12 B .32C .134D .174【答案】D【解析】∵函数()f x ,()g x 均是定义域为241,22m m m --++⎡⎤⎣⎦的偶函数和奇函数,即有24122m m m +=++,解得1m =,∵()()()()()22221221x xf xg x x f x g x x -⎧+=++⎪⎨-+-=+-+⎪⎩, ∴有()()()()22221221x x f x g x x f x g x x -⎧+=++⎪⎨-=++⎪⎩,解得()()2122212x x f x x -=+++, ()()1714f m f ∴==,故选D . 【例10】已知奇函数()22,0,0x x x f x x ax x ⎧-≥=⎨-+<⎩,则不等式()13x f x ++≤的解集为________. 【答案】(],1-∞【解析】因为()f x 是奇函数且()10f =,所以()10f -=,所以1a =-,所以不等式()13x f x ++≤等价于()()210113x x x x +≥⎧⎪⎨++-+≤⎪⎩或()()210113x x x x +<⎧⎪⎨-+-+≤⎪⎩,所以1x ≤,所以不等式()13x f x ++≤的解集为(],1-∞,故答案为(],1-∞.【变式10.1】已知函数22sin ,0(),[0,2π)3cos(),π0x x x f x x x x αα⎧⎛⎫++>⎪ ⎪=∈⎝⎭⎨⎪-++<⎩是奇函数, 则α=__________. 【答案】7π6【解析】函数22sin ,0(),[0,2π)3cos(),π0x x x f x x x x αα⎧⎛⎫++>⎪ ⎪=∈⎝⎭⎨⎪-++<⎩是奇函数, 设0x <,则0x ->,()2sin(π)3x f x x +-+-=,()()2sin(π)3f x x f x x -=--∴=--+,即22cos()sin()3πx x x x α---++=-+,πcos()sin()sin()π32x x x αα∴+=-=++,故π2ππ23x x k α-=+++,5π2π,6k k α∴=--∈Z , 当1k =-时,满足7π6α=, 故答案为7π6.1.利用函数的奇偶性求参数值的方法(1)若函数定义域含有参数,则可以利用奇(偶)函数定义域关于原点对称的性质求解;(2)若函数解析式含参数①对于在0x =处有定义的奇函数,利用()00f =求解; ②可以利用奇(偶)函数()f x 与()f x -的关系求解.一、选择题.1.若函数()2f x x =,()cosg x x x =,则()A .()f x 为奇函数,()g x 为偶函数B .()f x 与()g x 均为偶函数C .()f x 为偶函数,()g x 为奇函数D .()f x 与()g x 均为奇函数【答案】C【解析】22()()()f x x x f x -=-==且定义域为R ,则()f x 为偶函数;()()cos()cos ()g x x x x x g x -=--=-=-且定义域为R ,则()g x 为奇函数, 故选C . 2.设函数1()1xf x x-=+,则下列函数中为奇函数的是() A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数, 故选B .3.已知函数()1lg 1x f x x +=-,()(),11,x ∞∞∈--+,()f a b =,则()f a -=()A .bB .b -C .1bD .1b-【答案】B【解析】由题得()(),11,x ∞∞∈--+,()111lglg lg ()111x x x f x f x x x x -+-+-===-=---+-,所以函数()f x 是奇函数,所以()()f a f a b -=-=-,故选B . 4.若函数()(1)()xf x x x a =+-为奇函数,则a =()A .1B .2C .3D .1-【答案】A【解析】因为函数()(1)()xf x x x a =+-为奇函数,所以定义域必须关于原点对称,由题意得100x x a +≠⎧⎨-≠⎩,即1x x a ≠-⎧⎨≠⎩,所以1a =,又当1a =时,2()(1)(1)1x xf x x x x ==+--,满足()()f x f x =--,函数()f x 是奇函数,所以1a =成立, 故选A .5.设()f x 为奇函数,且当0x ≥时,()1xf x e =-,则当0x <时,()f x =()A .1x e +B .1x e -C .1x e -+D .1x e --+【答案】D【解析】设0x <,则0x ->,()1x f x e -∴-=-,设()f x 为奇函数,()1x f x e -∴-=-,即()1x f x e -=-+,故选D .6.设()f x 为定义在R 上的奇函数,当0x ≥时,1()3x f x a +=-(a 为常数)则(1)f -的值为() A .6- B .3-C .2-D .6【答案】A【解析】由题意知:(0)0f =,即30a -=,则3a =, ∴0x ≥时,1()33x f x +=-,由奇函数对称性知:2(1)(1)(33)6f f -=-=--=-,故选A . 二、填空题.7.已知函数()f x 是定义在R 上的偶函数,且(0)2f =,(1)3f =.写出()f x 的一个解析式为__________.【答案】2()2f x x =+(答案不唯一)【解析】二次函数2()f x ax b =+,显然满足()()f x f x -=,所以该函数是偶函数, 由(0)22f b =⇒=,由(1)3231f a a =⇒+=⇒=,所以2()2f x x =+, 故答案为2()2f x x =+. 8.函数2()21xxf x ax =+-是偶函数,则实数a =__________. 【答案】1【解析】因为2()(0)21xxf x ax x =+≠-,且()f x 是偶函数,则()()f x f x -=, 222121x x x x ax ax ---=+--,222121x x a a ---=+--,222202121xxx a ⨯+-=--, 即22a =,所以实数1a =, 故答案为1.9.函数()f x 是定义在R 上的奇函数,当0x ≥时,()()12xx a x f =+-,则()()3f f =________. 【答案】11【解析】()010f a =-=,1a =,当0x <时,0x ->,()()12xx f f x x -=-+-=--,即()12xf x x -=-+,()12,00,012,0x x x x f x x x x -⎧+->⎪==⎨⎪-+<⎩, ()34234f =-=-,()414521f =-+=-,()()311f f =, 故答案为11.10.函数22(1)22()1x xx f x x -++-=+在区间[2021,2021]-上的最大值为M ,最小值为m ,则M m +=___________.【答案】2【解析】222(1)22222()111x x x xx x f x x x --++-+-==+++, 设2222()1x x x g x x -+-=+,则()2222()1x xx g x g x x --+-==-+-,则()g x 为奇函数, ∴函数()f x 的最大值为1T +,最小值为1T -+,则1M T =+,1m T =-+,2M m ∴+=, 故答案为2.11.函数()()()2x a bx a f x -=+(常数a ,b ∈R )是偶函数,且它的值域为[)10,-+∞,则该函数的解析式()f x =__________. 【答案】2210x -【解析】()()()()22222x a bx a bx a b x a f x -+=-=+-,定义域为R ,()()2222bx a f b x a x -=---,因为函数()f x 为偶函数,所以()()f x f x -=, 所以()20a b -=,即0a =或2b =.当0a =时,()2f x bx =,值域不是[)10,-+∞,舍去; 当2b =时,()222222f x a x a =-≥-,所以2210a -=-,则()2210f x x =-,故答案为2210x -. 三、解答题.12.函数()f x 是定义在R 上的偶函数,当0x ≥时,2()2f x x x =-. (1)求函数()f x 在(,0)x ∈-∞的解析式; (2)当0m >时,若|()|1f m =,求实数m 的值.【答案】(1)2()2f x x x =+;(2)1或1 【解析】(1)令(,0)x ∈-∞,则(0,)x -∈+∞,由()()f x f x =-,此时2()2f x x x =+.(2)由0m >,2|()|21f m m m =-=,所以221m m -=±,解得1m =或1m =1m =-.13.(1)()f x 是R 上的奇函数,当(),0x ∈-∞时,()()31f x x x =-,求x ∈R 时,()f x 的解析式;(2)设()f x 为奇函数,()g x 为偶函数,且()()()210,1,1f x g x x x x-=≠-+,求()f x 和()g x 的解析式.【答案】(1)()()()331,00,01,0x x x f x x x x x ⎧+>⎪⎪==⎨⎪-<⎪⎩;(2)()()()()10,1,111f x x x x x =-≠-+-,()()()()10,1,111g x x x x =-≠-+-.【解析】(1)由于()f x 是定义在R 上的奇函数,所以()00f =,当0x >时,0x -<,所以()()()()3311f x f x x x x x ⎡⎤=--=--=+⎣⎦. 所以()()()331,00,01,0x x x f x x x x x ⎧+>⎪⎪==⎨⎪-<⎪⎩. (2)由于()f x 为奇函数,()g x 为偶函数,且()()()210,1,1f x g x x x x-=≠-+, 所以()()21f x g x x x ---=-,即()()21f xg x x x--=-, 由()()()()2211f x g x x x f x g x x x ⎧-=⎪⎪+⎨⎪--=⎪-⎩,解得()()()()10,1,111f x x x x x =-≠-+-,()()()()10,1,111g x x x x =-≠-+-.。

2025版高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第1讲函数的概念及其表示

2025版高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第1讲函数的概念及其表示

第一讲函数的概念及其表示知识梳理学问点一函数的概念及其表示1.函数的概念函数两个集合A,B 设A,B是两个非空数集对应关系f:A→B 假如依据某种确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应名称称f:A→B为从集合A到集合B的一个函数记法函数y=f(x),x∈A2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)假如两个函数的定义域相同,并且对应关系完全一样,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.学问点二分段函数1.若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数表示的是一个函数.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.学问点三函数的定义域函数y=f(x)的定义域1.求定义域的步骤(1)写出访函数式有意义的不等式(组);(2)解不等式(组);(3)写出函数定义域.(留意用区间或集合的形式写出)2.求函数定义域的主要依据(1)整式函数的定义域为R.(2)分式函数中分母 不等于0 .(3)偶次根式函数被开方式 大于或等于0 . (4)一次函数、二次函数的定义域均为 R . (5)函数f (x )=x 0的定义域为 {x |x ≠0} . (6)指数函数的定义域为 R . (7)对数函数的定义域为 (0,+∞) . 学问点四 函数的值域 基本初等函数的值域:1.y =kx +b (k ≠0)的值域是 R .2.y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为 ⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a <0时,值域为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≤4ac -b24a . 3.y =kx (k ≠0)的值域是 {y |y ≠0} .4.y =a x (a >0且a ≠1)的值域是 (0,+∞) . 5.y =log a x (a >0且a ≠1)的值域是 R . [延长]6.y =x +ax (a >0)的值域为(-∞,-2a )∪(2a ,+∞). 7.y =x -ax (a >0)的值域为(-∞,+∞).8.y =cx +d ax +b (a ≠0,ad -bc ≠0)的值域为⎝ ⎛⎭⎪⎫-∞,c a ∪⎝ ⎛⎭⎪⎫c a ,+∞. 归 纳 拓 展1.推断两个函数相等的依据是两个函数的定义域和对应关系完全一样. 2.分段函数虽由几个部分组成,但它表示的是一个函数. 3.与x 轴垂直的直线和一个函数的图象至多有1个交点.4.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应当用并集符号“∪”连接.5.函数f (x )与f (x +a )(a 为常数a ≠0)的值域相同.双 基 自 测题组一 走出误区1.推断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)A =N ,B =N ,f :x →y =|x -1|,表示从集合A 到集合B 的函数.( √ ) (3)已知f (x )=m (x ∈R ),则f (m 3)=m 3.( × ) (4)y =ln x 2与y =2ln x 表示同一函数.( × )(5)函数y =xx -1定义域为x >1.( × )题组二 走进教材2.(必修1P 67T1改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( B )[解析] A 中函数的定义域不是[-2,2];C 中图象不表示函数;D 中函数的值域不是[0,2].3.(必修1P 67T2改编)已知奇函数f (x )的图象经过点(1,3),则f (x )的解析式可能为( D ) A .f (x )=2x B .f (x )=-3x C .f (x )=3x 2D .f (x )=3x 3[解析] 依据f (1)=3以及函数的奇偶性确定正确答案.f (1)=2≠3,A 选项错误;f (1)=-3≠3,B 选项错误;f (x )=3x 2是偶函数,C 选项错误;f (1)=3,f (x )=3x 3为奇函数,符合题意.故选D.4.(必修1P 73T11改编)(多选题)函数y =f (x )的图象如图所示,则以下描述正确的是( BD )A .函数f (x )的定义域为[-4,4)B .函数f (x )的值域为[0,+∞)C .此函数在定义域内是增函数D .对于随意的y ∈(5,+∞),都有唯一的自变量x 与之对应[解析] 由图象得此函数定义域为[-4,0]∪[1,4),值域为[0,+∞),在定义域内不具备单调性,当y ∈(5,+∞)时都有唯一的x 与之对应.因此,A 、C 不正确.故选BD.5.(必修1P 67T2改编)由f (u )=u 2,u =2+x 复合而成的复合函数是y =_(2+x )2__.[解析] 利用复合函数的性质干脆求解.由f (u )=u 2,u =2+x 复合而成的复合函数是y =(2+x )2.题组三 走向高考6.(2024·北京卷)函数f (x )=1x +1-x 的定义域是 (-∞,0)∪(0,1] . [解析] 因为f (x )=1x +1-x ,所以x ≠0,1-x ≥0,解得x ∈(-∞,0)∪(0,1].7.(2024·浙江,12,4分)已知a ∈R ,函数f (x )=⎩⎪⎨⎪⎧x 2-4,x >2,|x -3|+a ,x ≤2.若f [f (6)]=3,则a = 2 .[解析] 因为6>4=2,所以f (6)=(6)2-4=2,所以f [f (6)]=f (2)=|2-3|+a =1+a =3,解得a =2.。

高考一轮复习——基本初等函数

高考一轮复习——基本初等函数

高考一轮复习——基本初等函数一、基础练习1.已知幂函数f (x )=k ·x α的图像过点(12,22),则k +α=( )A. 12B. 1C.32 D .2 2.给出下列结论:①当a <0时,(a 2)3 =a 3;②na n =|a |(n >1,n ∈N *,n 为偶数);③函数f (x )=x -2-(3x -7)0的定义域是{x |x ≥2,且x ≠73};④若2x =16,3y =127,则x +y =7.其中正确的是( )A .①②B .②③C .③④D .②④3.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图像经过点(2,1),则f (x )的值域( ) A .[9,81] B .[3,9] C. [1,9] D .[1,+∞)4.设函数f (x )=a -| x | (a >0,且a ≠1),f (2)=4,则( )A. f (-2)>f (-1)B. f (-1)>f (-2)C. f (1)>f (2)D. f (-2)<f (2)5.函数y =(12)2x -x 2的值域为( )A. [12,+∞)B. (-∞,12]C. (0,12] D. (0,2]6.函数y =a 1-x (a >0,a ≠1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n的最小值为__________.7.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg2)+f (lg 12)=( )A .-1B .0C .1D .28.函数f (x )=2ln x 的图像与函数g (x )=x 2-4x +5的图像的交点个数为( ) A .3个 B .2个 C .1个 D .0个9.设a >0且a ≠1,函数f (x )=a lg(x 2-2x +3)有最大值,则不等式log a (x 2-5x +7)>0的解集为__________.10.若函数y =(12)|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是__________.11.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝⎛⎭⎫x +19 ,x >0的图像如图所示,则a +b +c =________.12.函数f (x )=2x |log0.5x |-1的零点个数为( )A .1个B .2个C .3个D .4个13.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.(0,12)B.(12,1) C .(1,2) D .(2,+∞)二、考题演练1.【2015高考四川,理8】设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 ( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件2.【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤3.【2015高考山东,理10】设函数()31,1,2,1x x x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的a 取值范围是( )(A )2,13⎡⎤⎢⎥⎣⎦ (B )[]0,1 (C )2,3⎡⎫+∞⎪⎢⎣⎭(D )[)1,+∞4.【2015高考新课标2,理5】设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .125.【2015高考新课标1,理13】若函数f (x)=ln(x x +为偶函数,则a = 6.【2015高考浙江,理12】若4log 3a =,则22aa-+= .7.【2015高考浙江,理10】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 .8.【2015高考福建,理14】若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的取值范围是 .9.【2015高考湖南,理5】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A.奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D. 偶函数,且在(0,1)上是减函数10. 【2016高考新课标1文数】若0a b >>,01c <<,则( ) (A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b 11. [2016高考新课标Ⅲ]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c <<(C) b c a <<(D) c a b <<A B Oxy -122C。

高考一轮复习 基本初等函数 知识点+例题+练习

高考一轮复习 基本初等函数 知识点+例题+练习

1.指数幂的概念(1)根式如果一个数的n次方等于a(n>1且n∈N*),那么这个数叫做a的n次实数方根.也就是,若x n=a,则x叫做______________,其中n>1且n∈N*.式子na叫做________,这里n叫做____________,a叫做____________.(2)根式的性质①当n为奇数时,正数的n次实数方根是一个正数,负数的n次实数方根是一个负数,这时,a的n次实数方根用符号________表示.②当n为偶数时,正数的n次实数方根有两个,它们互为相反数,这时,正数a的正的n次实数方根用符号______表示,负的n次实数方根用符号________表示.正负两个n次实数方根可以合写成________(a>0).③(na)n=____.④当n为偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.⑤当n为奇数时,na n=____.⑥负数没有偶次方根.⑦零的任何次方根都是零.2.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是mna=________(a>0,m,n∈N*,n>1).②正数的负分数指数幂是mna-=____________=____________(a>0,m,n∈N*,n>1).③0的正分数指数幂是____,0的负分数指数幂无意义.(2)有理指数幂的运算性质①a s a t=________(a>0,s,t∈Q).②(a s)t=_______(a>0,s,t∈Q).③(ab)t=_______(a>0,b>0,t∈Q).3.指数函数的图象与性质a >10<a<1图象定义域值域性质(1)过定点________(2)当x>0时,______;当x<0时,________(2)当x>0时,________;当x<0时,______(3)在(-∞,+∞)上是______(3)在(-∞,+∞)上是______自我检测1.下列结论中正确的有________(填序号).①当a<0时,322()a=a3;②na n=|a|;③函数y=12(2)x -(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.2.函数y=(a2-3a+3)a x是指数函数,则a=________.3.如图所示的曲线C1,C2,C3,C4分别是函数y=a x,y=b x,y=c x,y=d x的图象,则a,b,c,d的大小关系为____________.4.若a>1,b>0,且a b+a-b=22,则a b-a-b的值为________.5.函数f(x)=a x-b的图象如图,其中a、b为常数,则下列结论正确的是________(填序号).①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.探究点一 有理指数幂的化简与求值例1 已知a ,b 是方程9x 2-82x +9=0的两根,且a <b ,求:(1)a -1+b -1(ab )-1; 733338152a a a a --.变式迁移1 3322114443()a b ab ba b a(a 、b >0)的结果为____________.探究点二 指数函数的图象及其应用例2 已知函数y =(13)|x +1|.(1)作出函数的图象(简图); (2)由图象指出其单调区间;(3)由图象指出当x 取什么值时有最值,并求出最值.变式迁移2 若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围为________.探究点三 指数函数的性质及应用例3 如果函数y =a 2x +2a x -1(a >0且a ≠1)在区间[-1,1]上的最大值是14,求a 的值.变式迁移3 已知函数f (x )=(12x -1+12)x 3.(1)求f (x )的定义域; (2)证明:f (-x )=f (x ); (3)证明:f (x )>0.分类讨论思想例 已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1).(1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围.一、填空题1.已知a =133()4-,b =143()4-,c =343()2-,则a 、b 、c 的大小关系为______________.2.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围为________.3.已知集合M ={-1,1},N ={x ∈Z |12<2x +1<4},则M ∩N =________.4.定义运算a b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),则函数f (x )=12x 的值域为________.5.若关于x 的方程|a x -1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围为________.6.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围为________.7.设函数f (x )=x (e x +a e -x ),x ∈R 是偶函数,则实数a =________. 8.若函数f (x )=a x -1(a >0且a ≠1)的定义域和值域都是[0,2],则实数a 的值为________.二、解答题9.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.10.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值.(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.11.函数y =1+2x +4x a 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围.。

最新高三第一轮复习基本初等函数资料

最新高三第一轮复习基本初等函数资料

第二章基本初等函数(1)(基础训练)测试题 1.下列函数与x y =有相同图象的一个函数是( ) A .2x y =B .xx y 2= C .)10(log ≠>=a a a y xa 且 D .x a a y log = 2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a xy x +=-A .1B .2C .3D .43.函数y x =3与y x=--3的图象关于下列那种图形对称( ) A.x 轴 B.y 轴 C.直线y x = D.原点中心对称 4.已知13x x -+=,则3322x x -+值为( )A .B .C .D . -5.函数y =的定义域是( )A .[1,)+∞ B.2(,)3+∞ C.2[,1]3 D.2(,1]36.三个数60.70.70.76log 6,,的大小关系为( )A . 60.70.70.7log 66<<B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<< 7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3x e D .34x e + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。

2.化简11410104848++的值等于__________。

3.计算:(log )log log 2222545415-++= 。

4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。

5.方程33131=++-x x的解是_____________。

6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =+的奇偶性 。

高考数学一轮复习 第二章 基本初等函数、导数的应用 第2讲 函数的定义域与值域课件 文

高考数学一轮复习 第二章 基本初等函数、导数的应用 第2讲 函数的定义域与值域课件 文
[解析] 要使函数的定义域为 R,则 mx2+4mx+3≠0 恒成立. (1)当 m=0 时,得到不等式 3≠0 恒成立; (2)当 m≠0 时,要使不等式恒成立,
须mΔ>=0,(4m)2-4×m×3<0,
12/13/2021
第三十三页,共四十一页。
或mΔ<=0,(4m)2-4×m×3<0,
即m>0,
12/13/2021
第三十一页,共四十一页。
已知函数的值域求参数的值或取值范围问题,通常按求函数 值域的方法求出其值域,然后依据已知信息确定其中参数的 值或取值范围.
12/13/2021
第三十二页,共四十一页。
若函数 y=mx2m+x4-m1x+3的定义域为 R,则
实数 m 的取值范围是___0_,__34__.
【解析】 (1)要使函数 y= 3-2x-x2有意义, 则 3-2x-x2≥0, 解得-3≤x≤1, 则函数 y= 3-2x-x2的定义域是[-3,1]. (2)要使函数 g(x)=(f(x-2x1))0有意义,则必须有1x≤-21x≠≤02,,
所以12≤x<1,故函数 g(x)的定义域为12,1.
0≤x+12≤2, 0≤x-12≤2,
解得12≤x≤32,
所以函数 g(x)的定义域是12,32.
12/13/2021
第二十二页,共四十一页。
求函数的值域(高频考点) 求下列函数的值域. (1)y=x2+2x(x∈[0,3]); (2)y=11-+xx22; (3)y=x+4x(x<0); (4)f(x)=x- 1-2x.
或m<0,
解得
m(4m-3)<0 m(4m-3)<0.
所以 1≤f(x)≤10.

高三第一轮复习基本初等函数

高三第一轮复习基本初等函数

第二章基本初等函数(1)(基础训练)测试题 1.下列函数与x y =有相同图象的一个函数是( ) A .2x y =B .xx y 2= C .)10(log ≠>=a a a y xa 且 D .x a a y log = 2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a xy x +=-A .1B .2C .3D .43.函数y x =3与y x=--3的图象关于下列那种图形对称( ) A.x 轴 B.y 轴 C.直线y x = D.原点中心对称4.已知13x x -+=,则3322x x -+值为( )A .B .C .D . -5.函数y =的定义域是( )A .[1,)+∞ B.2(,)3+∞ C.2[,1]3 D.2(,1]36.三个数60.70.70.76log 6,,的大小关系为( )A . 60.70.70.7log 66<<B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<< 7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3x e D .34x e + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。

2.化简11410104848++的值等于__________。

3.计算:(log )log log 2222545415-++= 。

4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。

5.方程33131=++-x x的解是_____________。

6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =+的奇偶性 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科第一轮复习 基本初等函数
一、 分数指数幂与根式的转化 母外子内
________= ________m n
a = ________m n
a
-
=
2
=__________
1. 化简下列各式
(1)=3
28 (2)31()4-= (3) 12100-= (4) 3416
()81
-=
2.化简[32
)5(-]4
3的结果是( ) A .5
B .5
C .-5
D .-5
二、 指数运算性质
(1)(,)(2)()(,)(3)()()
m n m n m n mn n n n
a a a m n Q a a m n Q a
b a b n Q +⋅=∈=∈=⋅∈
1.计算:21
03
19)4
1()2(4)21(----+-⋅- =____ ____.
2.1020.5231(2)2(2)(0.01)54
--+⋅-=_______________ 1.计算:48
373)27102(1.0)972(0
32
25.0+-++--π.
解:原式48373)2764(1
.01)925(32
2
21+-++=-1004837316910035
=+-++=. 2115113366
222.(2)(6)(3);a b a b a b -÷-
2
115113
3
6
6
2
2
2111150326
236
=(2)(6)(3)[2(6)(3)]44a b a b a b a
b
ab a
++++-÷-=⨯-÷-==解:原式
3.计算:48
373)27102(1.0)972(0
32
25.0+-++--π.
解:原式48373)2764(1
.01)925(32
2
21+-++=-1004837316910035
=+-++=.
三、 指数函数的图像与性质
1.若(21)x
y a =+是指数函数,则a 的取值范围_____________ 2.函数y =a
x -2
+1(a >0,a ≠1)的图象必经过点( )
A .(0,1)
B .(1,1)
C .(2,0)
D .(2,2)
3.函数f (x )=a x -1
+3的图象一定过定点P ,则P 点的坐标是___________.
4.解不等式
(1)2
22x x
<
(2)21
311()
()2
2x x +-< (3)2213()3
x x --> 5.(1)若6235
a a <,则a 的范围_________;(2)若6
5
5
a a <,则a 的范围_________ 6.求下列函数定义域
1112-1
x
y =+() 2y =()
7.函数y =a x
在[0,1]上的最大值与最小值和为3,则函数y =3ax -1在 [0,1]上的最大值是( ) A .6
B .1
C .3
D .
2
3 8.平移变化与对称变化:设f (x )=x
)2
1(,x ∈R ,那么f (x )是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数
10.()46210[1,2].x x g x =-⋅+求在上的值域
四、 对数运算练习
(一) 对数与指数关系:log (0,1)x
a a N N x a a =⇔=>≠且
1.计算下列各式的值
25log 5= .
1l o g 4.0= . 2
1
log 8
= . 5100lg = . ln e =__________
2.求下列各式中x 的值
(1)642
log 3
x =- (2)log 162x = (3)lg100x = (4)2ln e x -=
(二) 运算性质:1log ()log log ;a a a M N M N ⋅=+()
2log ()a
M
N
log -log ;a a M N = 3l o g l o g n a a M n M =()
3.化简(1)22log 6log 3;- (2) 2.5 2.51
log 3log 3
+ (3)522log 253log 64;+
(三)换底公式:log log ,0,1,0,1,0log m a m N
N a a m m N a
=
>≠>≠>(且且)
推论:log log 1a b b a ⋅=(1) 1
log log ;n a a M M n
=(2)
324.lg 2,lg 3,.3
(1)lg 6;
(2)log 4
(3)log 12;
(4)lg .
2
a b ==已知求下列各式的值2355.(1)log 3log 5log ________
⋅⋅=4(2)
9
1
log 81log 251log 532
∙∙=__________ 5532log 10log 0.25________+=() 484log 3log 3________+=()
100(5)lg20log 25_____+=
49
2
(6)l o g 3l o g 2g 32_______
⋅-= 6.已知732
log [log (log )]0x =,那么x = .
(四)指对数公式log a N
a
N =
5log 3(1)5______=0.2log 3(2)5______=0.21log 3(3)5______-=
五、对数函数的图像与性质
1.11
log log a
a
b b
-之值为 ( ) A .0
B .1
C .2log a b
D .2log a b -
2.如果lgx =lga +3lgb -5lgc ,那么
( )
A .x =a +3b -c
B .c
ab
x 53=
C .53
c
ab x = D .x =a +b 3-c 3
3、log 7[log 3(log 2x )]=0,则x 等于( ) A . 1
B . 2
C .4
D .8
4、函数f (x )=)1(log 2
1-
x 的定义域是( ) A .(1,+∞) B .(2,+∞) C .(-∞,2)
D .]21
(, 5.函数)3(log )1(x y x -=-的定义域是________
6、已知定义域为R 的偶函数f (x )在[0,+∞]上是增函数,且f (2
1
)=0,则不等式f (l og 4x )的解集是______. 7.解不等式
112
2
(1)log (2x 1)log 2+> 22(2)log (2x 1)log 2+> (3)log2(x+3) > 2
8.求下列函数值域
()21()log ,[1,2]f x x x =∈ ()12
2()l o g ,[1,2]
f
x x x
=∈
五、 幂函数,方程的根与函数的零点
1.下列所给出的函数中,是幂函数的是
( )
A .3x y -=
B .3-=x y
C .32x y =
D .13-=x y 2.下列命题中正确的是
( )
A .当0=α时函数αx y =的图象是一条直线
B .幂函数的图象都经过(0,0)和(1,1)点
C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数
D .幂函数的图象不可能出现在第四象限 3.函数2-=x y 在区间]2,2
1[上的最大值是 ( )
A .
4
1
B .1-
C .4
D .4-
4.函数2422-+=
x x y 的单调递减区间是
( ) A .]6,(--∞ B .),6[+∞-
C .]1,(--∞
D .),1[+∞-
5.下列函数有2个零点的是 ( )
A 、24510y x x =+-
B 、310y x =+
C 、235y x x =-+-
D 、2441y x x =-+ 6.已知方程3
10x x --=仅有一个正零点,则此零点所在的区间是 ( )
A .(3,4)
B .(2,3)
C .(1,2)
D .(0,1)
[]()7.⇔⋅2下列说法不正确的是 ( )A.方程f(x)=0有实根函数y=f(x)有零点B.-x +3x+5=0有两个不同实根
C.y=f(x)在a,b 上满足f(a)f(b)<0,则y=f(x)在a,b 内有零点
D.单调函数若有零点,则至多有一个
8.用二分法计算2
3380x x +-=在(1,2)x ∈内的根的过程中得:(1)0f <,(1.5)0f >,(1.25)0f <,则方程的根落在区间 ( )
A 、(1,1.5)
B 、(1.5,2)
C 、(1,1.25)
D 、(1.25,1.5) 9、方程12x
x +=根的个数为( )
A 、0
B 、1
C 、2
D 、3
10.若关于x 的方程2
68x x a -+=恰有两个不等实根,则实数以的取值范围为________.。

相关文档
最新文档