21.3.1二次根式的加减优秀课件

合集下载

《二次根式的加减运算》PPT课件

《二次根式的加减运算》PPT课件

步骤:
第一步:把每个二次根式 化为最简二次根式。 第二步:对能合并 的二次根式进行合并。
x2
3分钟
总结:
像 3, 12 , 75 这样的二次根式,化简后 被开方数 相同 我们把它们叫做同类二次根式。
因此对于二次根式的加减运算,
首先是将每个二次Байду номын сангаас式化为最简二次根式 ,
然后 是 将被开方数相同的最简二次根式的项进行合并 。
1.预习下一节 2.完成《中考考什么》本节的习题
只有登上山顶,才能看到那边的风光。 不要常常觉得自己很不幸,世界上比我们痛苦的人还要多。 多用心去倾听别人怎么说,不要急着表达你自己的看法。 越是没有本领的就越加自命不凡。——邓拓 生命力的意义在于拚搏,因为世界本身就是一个竞技场。 奋斗的双脚在踏碎自己的温床时,却开拓了一条创造之路。 狂妄的人有救,自卑的人没有救。 没有热忱,世间便无进步。 对于每一个不利条件,都会存在与之相对应的有利条件。 在幸运时不与人同享的,在灾难中不会是忠实的友人。——伊索 错误犯过一次,尽可能的不要再犯第二次。 诚实的面对你内心的矛盾和污点,不要欺骗你自己。

新人教版九上课件21.3 .1二次根式的加减(1)-

新人教版九上课件21.3 .1二次根式的加减(1)-
21.3二次根式的加减(1) 二次根式的加减( ) 二次根式的加减
问题: 问题:
现有一块长7.5dm、宽5dm的木板,能否采用 、 的木板, 现有一块长 的木板 如图的方式, 如图的方式,在这块木板上截出两个分别是 8dm2和18dm2的正方形木板? 的正方形木板?
8 + 18 化成最简二次根式) = 2 2 + 3 2 (化成最简二次根式)
先化简, 先化简,后合并
练习1: 练习 : (1) 18 − 8
= 2
(2) 75 + 27 = 8 3 1 (3) 48 + 6 =6 3 3
(4)下列计算正确的是( ) (4)下列计算正确的是(D A. 5 − 2 = 3 B.8 + 3 2 = 11 2 C.4 5 − 5 = 4
3 1 D. a − a =− a 2 2
3
解:
3 4
x
=3 3+ 5
练习2计算: (1) 80 − 20 + 5
= 5
(2) 18 + 98 − 27) = 10 2 − 3 3 ( 1 1 (3)( 24 + 0. − ( 5) − 6) = 3 6 + 2 4 8 1 1 (4) 32 − 3 + 10 0.08 − 48 = 4 2 − 3 3 2
π
d
练习4下列计算正确的是(B) A. 2x + 3 x = 5 x B.2a x − 3b x = (2a − 3b) x C.4 5 × 5 5 = 20 5 14a − 22b D. = 7 a − 11b 2
5计算: (1) 75 + 2 8 − 200 (2)2 20 − 3 45 + 80 (3)2 48 − ( 27 + 243) (4)(5 75 − 4 12) − (5 108 − 3 27)

二次根式的加减-PPT-课件资料

二次根式的加减-PPT-课件资料

运算原理
运算律同适用
运算顺序
与实数的运 算顺序一样
布Байду номын сангаас作业
教科书第13页练习第2,3题. 第15页习题16.3第1-3题 .
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
知识讲解
典型示例
例1
归纳:确定可以合并的二次根式中字母取值的方法: 利用被开方数相同,指数都为2,列关于待定字母的 方程求解即可.
知识讲解
练一练
知识讲解
加减法的运算步骤: (1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)合——把被开方数相同的二次根式合并.
第 十六章 二次根式
二次根式的加减
(第1课时)
精品模版-助您成长
学习目标
1 了解二次根式的加、减运算法则.(重点) 2 会用二次根式的加、减运算法则进行简单的运算.(难点)
新课导入
知识回顾
1.同类项的概念: 所含字母相同,并且相同字母的指数也相同的项 叫做同类项.
2.合并同类项的概念: 把多项式中的同类项合并成一项,叫做合并 同类项.
3.合并同类项法则: 合并同类项后,所得项的系数是合并前各同类项 的系数的和,且字母连同它的指数不变.
新课导入
问题引入
问题1 满足什么条件的根式是最简二次根式? (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式.

21.3 二次根式的加减 课件(人教版九年级上)

21.3 二次根式的加减 课件(人教版九年级上)

4. 已知a, b是正整数, 且 a+ b=
1998 ,求a+b的值.
则 m 222 + n 222 = 3 222 ,即 (m+n) 222 = 3 222 , ∴ m+n=3. ∵ m,n是正整数, ∴ m=1,n=2或m=2,n=1. ∴ a=222,b=888 或a=888,b =222. ∴ a+b=1110.
m 222 ,b= n 222 ,
3
5 xy = x x + 6 xy =

1 1 1 3 6x - 1 ∴ 当x≥ 且x≠1时, 在实数 +6 2 2 2 6 1- x
范围内有意义.
1 2 +3 6 . 4
3. 计算: (7+ 2 5 ) (7- 2 5 ) - 2.已知x= 3 - 2 ,y= 3 + 2 , ( 3 2 -1)2. 3 3 求x y+xy 的值. 如果直接将x, y的值代入计算, 显 (7+ 2 5 ) (7- 2 5 )可考虑使
2010 答案: 原式= ( 2 3 - 13 ) (2 3
得结果. 答案:因为a=- 3 <1,所以a-1<0.
(a - 1 ) (a - 1) 原式= - =a-1- a(a - 1) a -1
2
2
+ 13 )
2010
( 2 3 + 13 )
2010
=[( 2 3 - 13 ) ( 2 3 + 13 )]2010 ( 2 3 + 13 ) = (-1) ( 2 3 +
一样, 需要注意运算的先后顺序; ( 3) 运用完全平方公式进行运算.
例3.计算:( 2 3 - 13 ) + 13 )2011.
2010
(2 3
1 - 2a+a 例4.先化简,再求值: - a -1

《二次根式的加减法》优质课件

《二次根式的加减法》优质课件

通过化简根式,将复杂的二次根式加 减法转化为简单的加减运算。
练习题与答案解析
题目1
计算$\sqrt{18} + \sqrt{72}$
答案
$3\sqrt{2} + 6\sqrt{2} = 9\sqrt{2}$
解析
首先化简根式,$\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}$,$\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}$,然后进行加法运算,$3\sqrt{2} + 6\sqrt{2} = 9\sqrt{2}$。
二次根式具有非负性,其他根式则没有此性质。
易错点
在进行二次根式的加减运算时,容易忽略二次根式的非负性,导致结果错误。
03
典型例题解析与练习
简单例题解析
01
题目
计算$\sqrt{12} + \sqrt{27}$
02 03
解析
首先化简根式,$\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}$, $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$,然后进行加法运算, $2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$。
拓展阅读材料推荐
《数学简史》
一本介绍数学发展史的书 籍,其中涵盖了二次根式 的重要性和应用。
《数学之美》
一本介绍数学在各个领域 中的应用的书籍,包括二 次根式在物理学和经济学 中的应用。
《数学杂志》
一本学术期刊,上面有许 多关于二次根式的论文和 研究文章,可以深入了解 该领域的最新进展。
05
总结回顾与展望未来

《二次根式的加减》课件

《二次根式的加减》课件

VS
详细描述
在进行二次根式的加减运算时,有时需要 对二次根式进行合并或简化。学生在合并 或简化过程中,容易出错,导致计算结果 错误。例如,将$sqrt{5} + sqrt{2}$错误 地合并为$sqrt{7}$,或将$sqrt{4} sqrt{9}$错误地简化为$3 - 2$。
PART 05
练习与巩固
2023 WORK SUMMARY
《二次根式的加减》 ppt课件
REPORTING
目录
• 二次根式的加减概述 • 二次根式的加减运算方法 • 二次根式的加减运算实例 • 二次根式的加减易错点解析 • 练习与巩固
PART 01
二次根式的加减概述
二次根式的加减定义
定义
二次根式的加减运算是指将具有 相同被开方数的二次根式进行合 并或分离的过程。
计算
$(sqrt{5} + 2sqrt{2})(sqrt{5} 2sqrt{2})$
计算
$(sqrt{3} + sqrt{2})^{2}$
计算
$(sqrt{5} - sqrt{3})^{2}$
综合练习题
解方程
$3sqrt{2}x = 4sqrt{3}x$
解方程
$(sqrt{3} + sqrt{2})x = 5$
THANKS
感谢观看
REPORTING
解方程
$(sqrt{5} - sqrt{3})x^{2} - (sqrt{5} + sqrt{3})x = 0$
解方程组
${begin{array}{l}sqrt{2}x - sqrt{6}y = 4 sqrt{3}x + sqrt{5}y = 7 end{array}$

二次根式加减ppt课件

二次根式加减ppt课件

答案及解析
计算
化简
$sqrt{27} + sqrt{3} = 3sqrt{3} + sqrt{3} = 4sqrt{3}$
$2sqrt{3} - sqrt{2} = sqrt{3} - sqrt{2}$
比较大小
$sqrt{25} = 5$,因为 $5 > 3$,所以 $sqrt{25} > 3$
判断正误
01
02
03
识别同类二次根式
首先需要识别出表达式中 的同类二次根式,即具有 相同被开方数的二次根式 。
合并同类二次根式
将同类二次根式进行合并 ,即将它们的系数相加减 ,根号下的被开方数保持 不变。
举例说明
将表达式中的 $sqrt{2}$ 和 $sqrt{2}$ 合并为 $2sqrt{2}$。
$sqrt{8} + sqrt{18} = 2sqrt{2} + 3sqrt{2} = 5sqrt{2}$,不等于 $2sqrt{2}$,所以判 断为错。
THANKS
感谢观看
sqrt{2}}{sqrt{2} times sqrt{2}} = frac{sqrt{6}}{2}$。
二次根式的化简技巧
利用平方差公式
对于形如 $sqrt{a^2 - b^2}$ 的表达式,可以利 用平方差公式进行化简。
利用完全平方公式
对于形如 $sqrt{a + b}$ 或 $sqrt{a - b}$ 的表达 式,可以利用完全平方公式进行化简。
二次根式的加减法规则
总结词
掌握二次根式的加减法规则是进行运 算的关键。
详细描述
二次根式的加减法需先将各项化为最 简二次根式,然后合并同类二次根式 。

二次根式的加减法(优秀课件)

二次根式的加减法(优秀课件)
二次根式的加减法(优秀 课件)
本课件将深入介绍二次根式的加减法。掌握二次根式的概念、简化方法以及 相加与相减法则,将帮助您在数学领域取得更大的进步。
二次根式的概念
了解二次根式是数学中的一个重要概念,它包含一个根号及一个或多个数的 乘积,并具有特定的运算规则和性质。
二次根式的简化方法
因式分解法
利用因式分解的方法将二次 根式简化为更简单的形式, 使计算更加方便高效。
二次根式的综合运用
例题分析与解答
通过解决实际例题,深入理解和 应用二次根式的各种运算法则, 提高计算和解题能力。
实战演练
在不同的数学问题中,应用二次 根式的运算法则,展示数学的智 慧与魅力。
竞赛辅导
通过竞赛辅导,帮助同学们理解 和掌握二次根式的加减法,取得 优异的成绩。
总结与归纳
通过本课件的学习,您已经了解了二次根式的加减法。掌握二次根式的概念、 简化方法、相加与相减法则、乘法与除法规则以及综合运用方法将帮助您在 数学学习中取得更大的进步。
可以通过展开及合并同类项的方法来实
3
特殊情况处理
现。
考虑特殊情况,如系数为0、符号相反等,
以确保计算的用乘法公式,将二次根式的乘法运算转化为 基本的数学运算,如多项式相乘。
除法规则
通过将除法运算转化为乘法运算,将二次根式 的除法问题转变为相应的乘法问题,并求出最 终的结果。
提取公因数法
通过提取二次根式中的公因 数,将其化简为最简形式, 简化计算过程。
合并同类项法
对于二次根式中的同类项, 将其合并为一个项,简化运 算步骤,减少出错机会。
二次根式的相加与相减法则
1
同类项相加减的方法
将二次根式中的同类项进行加减运算,

《二次根式的加减》课件

《二次根式的加减》课件

二次根式的化简方法
学习如何化简复杂的二次根式,通过变形和简化步骤,简化二次根式的形式, 使其更加简洁和易于计算。
二次根式乘法原理
了解和应用二次根式的乘法原理,掌握乘法的规则和技巧,使用乘法原理计和应用二次根式的除法原理,掌握除法的规则和方法,使用除法原理计 算和简化二次根式的表达式。
二次根式的加法原理
探索和应用二次根式的加法原理,了解加法的规则和技巧,用加法原理合并 或简化二次根式的表达式。
二次根式的减法原理
研究和应用二次根式的减法原理,掌握减法的规则和方法,通过减法原理合并或简化二次根式的表达式。
二次根式加减法的综合运用
将之前学习的加法和减法原理综合应用于解决实际问题,通过综合运用掌握二次根式加减法在实际情境中的应 用。
《二次根式的加减》PPT 课件
在本课件中,我们将探索如何定义和求解二次根式,掌握化简、乘法、除法 以及加减法的原理和综合运用,并探讨二次根式在数学和实际生活中的应用。
二次根式的定义和求解
本节将介绍二次根式的概念和如何求解二次根式的具体步骤。掌握二次根式的定义和求解方法,为后续的学习 打下坚实基础。

《二次根式的加减》PPT课件

《二次根式的加减》PPT课件
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
基础巩固练 12.计算: (1)4 2-(3 2-2 2);
解:原式=4 2- 2=3 2; (2) 12+ 20+ 3- 5; 解:原式=2 3+2 5+ 3- 5=3 3+ 5; (3)| 2- 3|+| 3- 4|+| 4- 5|+| 5- 6|. 解:原式= 3- 2+ 4- 3+ 5- 4+ 6- 5= 6- 2.
基础巩固练
7.下列计算正确的是( A )
A.2 12= 2
B. 2+ 3= 5
C.4 3-3 3=1
D.3+2 2=5 2
基础巩固练
8.下列运算正确的是( D )
A. x+ 2x= 3x
B.3 3-2 3=1
C.2+ 5=2 5
D.m x-n x=(m-n) x
基础巩固练
9.计算 24-9 23的结果是( B )
基础巩固练
1.下列各式中,与 2是同类二次根式的是( C ) A. 3 B. 4 C. 8 D. 12
基础巩固练
2.下列二次根式中,与 a是同类二次根式的是( C ) A. a2 B. 2a C. 4a D. 4+a
基础巩固练
3.下列二次根式中,与 20是同类二次根式的是( B ) A. 15 B. 5 C. 3 D. 75
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习------始于知识梳理; 行于题型巩固; 终于方法提炼.
温馨提示:请做好课前准备!
华师大版九年级数学上册 21.3.1
县初中中学
刘晓颖
(X)
复习巩固
二次根式计算、化简的结果符合什
么要求?
1
2
(1)被开方数不含分母;分母不含根号;
1
(X)
2
(2)被开方数中不含能开得 方的因数或因式.
12 (X)
C. 4ab, ab2
D. a 1, a 1
2. 与 12 是同类二次根式的是( )
A. 32 B. 24 C. 125 D. 6 1
27
3.如果最简二次根式 mn2 2 与 m n 是同类二次根式,求m、n 的值.
练习1:
(4)下列计算正确的是( )
A. 5 2 3 B.8 3 2 11 2
互助活动:请互助组相互纠错,分析易错点,并展 示分享.
例3:计算
(1)x 1 4 y x y 1 (x 0, y 0);
x
2
y
(2)2 9x 6 x 2x 1
3
4
x
互助活动:请互助组相互纠错,分析易错点,并展 示分享.
小结分享
请谈一谈通过本节课的复习你有哪些收获?
1.知识:........................................................... 2.思想、方法:...............................................
新课引入
(1)2x 3x =5x (2)3x 3y;
以下问题你能用同样的方法计算吗?
(1)3 3 2 3
(2)3 a 2 a
实战演练
12 75 2 3 5 3 7 3
6 7 1 6 7 7
7
7
41 7 7
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就 叫做同类二次根式.
3.其他经验:...................................................
共学组活动:请共学组从这三个方面相互交流 总结,并由代表展示分享!
拓展延伸:
问题:现有一块长7.5dm、宽5dm的木板,能否采用如图的方 式,在这块木板上截出两个分别是8dm2和18dm2的正方形木板?
C.4
5
54
D. a 3 2
a 1 2
a
练习2
5.计算:(1)5 2 8 7 18
(2) 8 4 ( 1)2
2
(3)2 12 4 1 3 48,
27
(4) 2 9x 6 x 2x 1
3
4
x
(3) 9a 25a 3 a 5 a (3 5) a 8 a
比较二次根式的加减 与整式的加减,你能 得出什么结论?
整式的加减的实质是合 并同类项.
二次根式的加减实质是 合并同类二次根式.
计算: 8 18 4 2
2 23 24 2
(2 3 4) 2
9 2
与合并同类项类似,把同类二次根式的系数相 加减,做为结果的系数,根号及根号内部都不变.
7.5dm18dm来自5dm8dm( 8 )18 dm
学习不是简单的记录与收藏; 学习不是盲目的押题与刷题.
学习应在体验中巧归与妙记; 学习应在互助中查错与纠错; 学习应在共学中补短与扬长; 学习应在分享中深化与创新.
作业:
1.在下列各组根式中,是同类二次根式的是( )
A . 2 , 12
B.
2, 1 2
下列各式中,哪些是同类二次根式?
12
48
18
50
1 2
32
45
11 3
注意:判断一组式子是否为同类二次根式,只需看
化为最简二次根式后的被开方数是否相同,与最简二 次根式前面的因式和符号无关.
例1计算:
(1)12 75 2 3 5 3 (2 5) 3 7 3
(2) 80 45 4 5 3 5 (4 3) 5 5
一化 二找 三合并
不是同类二次根式的二次根式不能合并。
比如: 2 与 3
判断:下列计算是否正确?为什么?
(1) 2 3 5 ;(2)2 2 2 2 ;
(3)
8
18
4
9 235
2
例2:计算
先化简,再合并
(1)3 8 2 32 50; (2)3 48 9 1 3 12 3
(3() 48 20)( 12 - 5) (4)9 7 7 12 5 48
相关文档
最新文档