近似数精确度的两种形式讲解学习
近似数与精确数的比较
近似数与精确数的比较数学中,我们经常会遇到两种不同的数:近似数和精确数。
近似数是通过对一个数的估计或者约束得到的一个大致数值,而精确数则是经过精确计算得到的无限位小数。
在实际应用中,我们常常需要比较这两种数,以确定其适用性和精确度。
本文将探讨近似数和精确数的特点,并对它们进行比较,以帮助我们更好地理解这两种数字的概念和应用。
一、近似数的特点近似数是通过对一个数进行估计或者约束得到的一个大致数值。
它们通常用有限的数位表示,以方便计算和使用。
近似数只能提供一个大致的数值,不能完全准确地表示原数的所有特征。
尽管如此,近似数在日常生活中的应用非常广泛。
比如,在度量、统计、估计和近似计算中,我们常常需要使用近似数来简化问题和加速计算。
二、精确数的特点精确数是经过精确计算得到的无限位小数。
它们能够准确地表示一个数的所有特征,包括无限的小数位。
由于精确数的表示涉及无限位数,所以在实际应用中通常无法完全表示。
然而,在理论研究和精确计算中,精确数是非常重要的。
比如,在几何学、解析学和科学研究中,我们常常使用精确数来进行精确计算和理论推导。
三、比较近似数和精确数近似数和精确数在性质上有一些共同点,但也存在一些显著的不同之处。
首先,近似数是通过估计或约束得到的,因此它们通常比精确数更简洁和易于理解。
然而,这种简洁性的代价是失去了一些精确度,因此在涉及到高精度计算和准确度要求较高的问题时,近似数可能不适用。
其次,精确数是通过精确计算得到的,可以准确地表示一个数的所有特征。
由于精确数涉及无限位数的表示,因此它们在理论研究和精确计算中非常重要。
然而,在实际应用中,由于计算和存储资源的限制,我们常常需要使用近似数来简化问题和加速计算。
在这种情况下,我们需要根据实际需求来选择近似数的精度和准确度。
最后,近似数和精确数在计算和比较中需要注意一些问题。
由于近似数只提供了一个大致的数值,所以在进行计算和比较时需要注意误差的累积和传递。
近似数与精确数的区分
近似数与精确数的区分数学中的近似数与精确数的区分在数学中,我们常常需要对数字进行运算、比较和描述。
而在处理数字时,我们会遇到两种不同的数:近似数和精确数。
本文将就近似数与精确数的区别进行探讨,并给出一些常见的例子。
一、近似数的定义和特点近似数是一种对原有数字进行近似描述的数。
在实际应用中,很难精确得到某个数的值,因此我们需要使用近似数来逼近真实数的值。
近似数通常会忽略掉某些小数位或整数位的精确值,而取其近似值。
近似数有以下几个主要特点:1. 常常使用小数形式:近似数通常以小数形式表示,比如2.14、3.857等。
2. 精确度有限:近似数只能提供有限的精确度,无法达到绝对精确。
3. 舍入误差:在进行近似时,常常需要舍入操作,这可能会引入一定的误差。
二、精确数的定义和特点精确数是指一个数值的严格准确表达。
精确数可以是整数、分数或无限小数等形式。
精确数不会舍入或近似,其大小和值都是准确无误的。
精确数有以下几个主要特点:1. 完全准确:精确数可以提供精确的数值和精确的计算结果。
2. 无限精确位:精确数可以使用无限的精确位来表达,精确到任意小数位或整数位。
3. 精确运算:对精确数进行运算时,可以得到精确的结果。
三、近似数与精确数的比较近似数和精确数在表达方式和计算方式上存在明显的差异。
下面通过几个例子来进行比较:1. π的近似数和精确数:- 近似数:3.14- 精确数:π近似数3.14是对π的一个近似描述,而π本身是一个无限不循环小数,其精确值无法被有限小数准确表达。
2. 分数和小数的区别:- 近似数:0.3333- 精确数:1/3近似数0.3333是对1/3的一种近似,而1/3作为一个分数,其精确值是无限循环的小数0.333...。
3. 计算结果的近似和精确:- 近似数:0.6667- 精确数:2/3近似数0.6667是对2/3的近似结果,而2/3本身是一个精确的分数。
四、近似数和精确数的应用近似数和精确数在数学和实际应用中都有各自的用途。
数学近似数知识点总结
数学近似数知识点总结数学中,近似数指的是对一个数进行适当的修约或者舍入处理,以便得到一个相对精确的数值。
近似数在日常生活和工业生产中都有着广泛的应用,比如在计算中使用整数来代替小数、在工程设计和科学实验中进行数据处理等。
本文将介绍数学中的近似数知识点,包括近似数的表示、近似数的运算、近似数误差的估计等内容。
一、近似数的表示在数学中,近似数可以用不同的表示方法来进行描述,比较常用的表示方法有分数、小数和百分数。
其中,分数是指一个数可以表示为两个整数的比值,比如3/4;小数是指实数的小数形式表示,比如0.75;百分数是指每百分之一,比如75%。
这些表示方法都可以用来表示近似数,但在不同的场合中可能有不同的使用偏好。
1. 分数表示法对于某个数a来说,我们可以将其表示为不为0的整数b,c的比值:a = b/c其中,b称为分子,c称为分母。
分数也可以表示一个近似数,比如把10/3表示为3.33333...,我们可以认为10/3是3.33的近似数。
在很多情况下,分数表示法可以用来表达比例和部分,其具有较好的可视化效果。
比如1/2表示的是一个整体的一半,3/4表示的是一个整体的四分之三。
2. 小数表示法小数是用十进制数系统表示的实数,可以用有限的数字或者无限循环小数来表示。
小数也可以用来表示近似数,比如3.14可以表示π的近似值。
小数是计算机内部表示实数的方式,其精度通常受到计算机字长的限制。
另外,小数也便于进行十进制运算,对于一些实际问题,小数可以更适合进行计算。
在数学中,经常会涉及到小数的四舍五入、向上近似、向下取整等操作。
3. 百分数表示法百分数是一种特殊的小数表示法,表示为某个数占100的比例,通常用%来表示。
百分数也可以用来表示近似数,比如75%表示的是0.75。
在实际生活中,百分数常常用来表示比率、增减幅度等问题。
比如一种商品的销售量比去年增加了20%,表现为销售量的百分数增加为120%。
二、近似数的运算在数学中,近似数之间的运算与精确数之间的运算有一些不同之处,主要表现在运算结果的精度以及运算过程中的误差积累。
近似数及有效数字的讲解
教学目标:1、理解精确度和有效数字的意义2、要准确第说出精确位及按要求进行四舍五入取近似数教学重点、难点:重点:近似数、精确度和有效数字的意义,难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.教学过程:一、近似数的定义我们常会遇到这样的问题:(1)初一(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.我们把象960万、49这些与实际数很接近的数称为近似数(approximate number).在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.二、精确度我们都知道,···.我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits).象上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.三、例题例1 按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)30 435(保留3个有效数字);(3)1.804(保留2个有效数字);(4)1.804(保留3个有效数字)。
中考数学近似数知识点总结
中考数学近似数知识点总结一、近似数的概念1. 近似数的定义:近似数是指用比精确值略大或略小的数来表示一个实数的方法。
2. 近似数的作用:近似数在实际生活中有着广泛的应用,如物理实验、工程测量、金融计算等都需要用到近似数。
3. 近似数的表示:通常我们用小数形式表示近似数,比如3.14、0.618等。
二、近似数的存储方式1. 四舍五入法:四舍五入法是最常用的一种对近似数的存储方式。
当一个数的小数点后一位数字大于或等于5时,则将这一位数进位,否则舍去这一位数。
2. 截断法:截断法是指直接省略小数点后的所有数字,保留整数部分。
比如3.1415截断到小数点后两位得到3.14。
3. 近似数的舍入和截断方法的实际应用:在日常生活中,我们经常会遇到需要对数值进行近似存储的情况,比如计算购物金额、量化工程尺寸等,这时就需要运用四舍五入法或截断法来对数值进行近似存储。
三、近似数的计算1. 近似数的加减法:在进行近似数的加减法运算时,我们需要将所有数值都先计算到相同的位数,然后再进行加减运算。
2. 近似数的乘除法:在进行近似数的乘除法运算时,我们需要将所有数值都先计算到相同的有效位数,然后再进行乘除运算。
3. 近似数计算的精度控制:在进行近似数计算时,我们需要控制计算结果的精度,通常是根据计算结果的用途来确定保留的有效位数。
四、近似数的误差估计和控制1. 近似数的误差:在使用近似数进行计算时,由于近似数与精确数之间存在着误差,因此我们需要对近似数的误差进行估计和控制。
2. 近似数的误差估计:一般来说,我们可以通过比较两个近似数的差值来估计其误差大小,差值越小则误差越小。
3. 近似数误差的控制:在实际计算过程中,我们需要通过合理选择近似数的存储方式、精度以及计算方法来有效控制近似数的误差。
五、近似数的应用1. 物理实验中的近似数:在进行物理实验时,往往需要用近似数来表示测量结果,比如重力加速度、电阻值等。
2. 工程设计中的近似数:在工程设计中,我们经常需要使用近似数来表示尺寸、重量、容积等数值,以便于进行计算和评估。
确定近似数精确度的有效方法
确定近似数精确度的有效方法湖北省孝感市孝南区车站中学(432011)殷菊桥纵观历年的中考题,近似数的精确度的考查出现的频率相当高,而考生在这方面的失误也不低,应引起关注。
课本上说,在实际计算时,往往对运算结果的精确度提出要求,这个要求可以是精确到哪一位,也可以是保留几个有效数字。
那么如何从这两个方面有效确定近似数的精确度呢?一确定近似数精确到哪一位一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
⒈用常规方法确定精确到哪一位当近似数是一般数的形式时,它最后一位在什么位上,就说这个近似数精确到哪一位。
例近似数2004最后一位在个位上,就说2004精确到个位;2004.00最后一位在百分位上,就说它精确到百分位或精确到0.01(因为最后一个0所在数位的计数单位是0.01)。
⒉用还原法确定精确到哪一位当近似数是科学记数法形式或带有计数单位形式时,先把它还原成一般数,再看原数的最后一位在哪一位上就说这个近似数精确到了哪一位。
例如近似数8.67×105=867000,还原后7在千位上,所以它精确到千位;近似数8.03万=80300,还原后3在百位上,所以它精确到百位。
对于8.67×105和8.03万这两个数,不能因为8.67和8.03中的7和3在百分位上而说它们精确到百分位。
对于带有计数单位的数8.03万也可不还原,因为8、0、3所在数位依次是万位、千位、百位,故8.03万精确到百位。
⒊根据精确到哪一位取近似值用四舍五入法按精确到哪一位取近似值时,先找到相应的数位,再将其后紧跟的一位数字四舍五入取近似值。
例如,把0.12345精确到0.001只考虑万分位上的数,得0.123。
当把一个数精确到整数位时,可以先四舍五入,再用科学记数法表示成a×10n(1≤a<10,且n为整数),例如30350(精确到百位)≈30400=3.0400×104,然后将百位4后面的0去掉,得30350≈3.04×104。
确定近似数精确度的有效方法
确定近似数精确度的有效方法湖北省孝感市孝南区车站中学(432011)殷菊桥纵观历年的中考题,近似数的精确度的考查出现的频率相当高,而考生在这方面的失误也不低,应引起关注。
课本上说,在实际计算时,往往对运算结果的精确度提出要求,这个要求可以是精确到哪一位,也可以是保留几个有效数字。
那么如何从这两个方面有效确定近似数的精确度呢?一确定近似数精确到哪一位一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
⒈用常规方法确定精确到哪一位当近似数是一般数的形式时,它最后一位在什么位上,就说这个近似数精确到哪一位。
例近似数2004最后一位在个位上,就说2004精确到个位;2004.00最后一位在百分位上,就说它精确到百分位或精确到0.01(因为最后一个0所在数位的计数单位是0.01)。
⒉用还原法确定精确到哪一位当近似数是科学记数法形式或带有计数单位形式时,先把它还原成一般数,再看原数的最后一位在哪一位上就说这个近似数精确到了哪一位。
例如近似数8.67×105=867000,还原后7在千位上,所以它精确到千位;近似数8.03万=80300,还原后3在百位上,所以它精确到百位。
对于8.67×105和8.03万这两个数,不能因为8.67和8.03中的7和3在百分位上而说它们精确到百分位。
对于带有计数单位的数8.03万也可不还原,因为8、0、3所在数位依次是万位、千位、百位,故8.03万精确到百位。
⒊根据精确到哪一位取近似值用四舍五入法按精确到哪一位取近似值时,先找到相应的数位,再将其后紧跟的一位数字四舍五入取近似值。
例如,把0.12345精确到0.001只考虑万分位上的数,得0.123。
当把一个数精确到整数位时,可以先四舍五入,再用科学记数法表示成a×10n(1≤a<10,且n为整数),例如30350(精确到百位)≈30400=3.0400×104,然后将百位4后面的0去掉,得30350≈3.04×104。
近似数知识点
近似数知识点在我们的日常生活和学习中,经常会遇到近似数。
近似数是指与准确数相近的一个数。
它是通过四舍五入、进一法或者去尾法等方法得到的一个大概的数值。
先来说说四舍五入法。
当我们要把一个数取近似值时,如果尾数的最高位数字是 4 或者比 4 小,就把尾数去掉;如果尾数的最高位数字是 5 或者比 5 大,就把尾数舍去并且在它的前一位进 1。
比如说,我们要把 314159 保留到两位小数,就看第三位小数,是 1,比 4 小,所以把它和后面的数都舍去,得到 314。
再比如,要把 3876 保留到一位小数,看第二位小数是 7,比 5 大,就把尾数舍去并且在第一位小数上进1,得到 39。
进一法是不管尾数是多少,都要向前一位进一。
比如,有 31 米的布料,做一件衣服需要 15 米,那 31 米的布料能做几件衣服?答案是 2 件。
因为 31÷15=20666,虽然余数是 01 米,但剩下的布料不够再做一件衣服,所以要用进一法,得到 2 件。
去尾法则是不管尾数是多少,都直接把尾数舍去。
例如,有 20 个苹果,要装在每个能装 6 个苹果的盒子里,能装满几个盒子?20÷6=3333,能装满 3 个盒子,剩下的苹果装不满一个盒子,所以要用去尾法,得到 3 个。
近似数在实际生活中的应用非常广泛。
比如我们去买东西,商品的价格经常会被标为一个近似值。
像一件衣服标价 999 元,其实就是用了近似数,让我们感觉价格没有超过 100 元,更愿意去购买。
在测量中,由于测量工具和测量方法的限制,我们也常常得到近似数。
比如用尺子测量一个物体的长度,尺子的最小刻度是 1 厘米,测量结果是 56 厘米,实际上这个 56 厘米就是一个近似数,因为物体的真实长度可能在 555 厘米到 564 厘米之间。
在科学研究中,近似数更是不可或缺。
科学家在进行实验和观测时,得到的数据往往非常复杂,为了便于分析和处理,常常会对数据进行近似处理。
七年级数学准确数和近似数
1.57
近似数1. 57m所表示的范围 是:表示实际身高大于或等 于1. 565m, 而小于1. 575m 的数.
1.565
近似数38万所表示的范围:大于或等于37.5万, 而小于38.5万的数.
单位:万 km
37
37.5
38
38.5
39
:由四舍五入得到的近似数,从左边第 一个不是零的数字起,到末位数字为止的所有数 字,都叫这个数的有效数字。
比一比:看谁反应快
思考,并回答问题: 用四舍五入法,按要求对各数取近似数
130.06 460215 7.9122 47155 0.6328 (( 保留 保留 (( 精确到百位 精确到 精确到个位 4 3 个有效数字 个有效数字 0.01) )) ))
近似数
130.1 0.63 8 4.72万 4.60 或 ×4.72 105 ×104
1、小明和小芳都约为1.6米,但小明 说:“我比小芳高5厘米”,请你想 一想,有这种可能吗?
(有这种可能性,如小明身高1.62米,小芳 身高1.57米,这时小明比小芳高5厘米。) 2、每条船能载六人,有31人需几条船? (6条)
课堂小结:
一、精确度的两种形式(重点):
1、四舍五入法表述 2、有效数字的个数
Hale Waihona Puke 为止,4、近似数0.9060精确到百分位, 有4个有效数字. (
×)
四:按括号里的要求,用四舍五入法对下列各数 取近似值。
(1)46.79(精确到十分位) (3)0.010010(保留四个有效数字) (4)8465300(保留三个有效数字) 五:圆周率π=3.14159265…取近似值3.14,是精确到 哪一位? 有 几个有效数字?取近似值3.1416呢?
确定近似数精确度的有效方法
确定近似数精确度的有效方法湖北省孝感市孝南区车站中学(432011)殷菊桥纵观历年的中考题,近似数的精确度的考查出现的频率相当高,而考生在这方面的失误也不低,应引起关注。
课本上说,在实际计算时,往往对运算结果的精确度提出要求,这个要求可以是精确到哪一位,也可以是保留几个有效数字。
那么如何从这两个方面有效确定近似数的精确度呢?一确定近似数精确到哪一位一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
⒈用常规方法确定精确到哪一位当近似数是一般数的形式时,它最后一位在什么位上,就说这个近似数精确到哪一位。
例近似数2004最后一位在个位上,就说2004精确到个位;2004.00最后一位在百分位上,就说它精确到百分位或精确到0.01(因为最后一个0所在数位的计数单位是0.01)。
⒉用还原法确定精确到哪一位当近似数是科学记数法形式或带有计数单位形式时,先把它还原成一般数,再看原数的最后一位在哪一位上就说这个近似数精确到了哪一位。
例如近似数8.67×105=867000,还原后7在千位上,所以它精确到千位;近似数8.03万=80300,还原后3在百位上,所以它精确到百位。
对于8.67×105和8.03万这两个数,不能因为8.67和8.03中的7和3在百分位上而说它们精确到百分位。
对于带有计数单位的数8.03万也可不还原,因为8、0、3所在数位依次是万位、千位、百位,故8.03万精确到百位。
⒊根据精确到哪一位取近似值用四舍五入法按精确到哪一位取近似值时,先找到相应的数位,再将其后紧跟的一位数字四舍五入取近似值。
例如,把0.12345精确到0.001只考虑万分位上的数,得0.123。
当把一个数精确到整数位时,可以先四舍五入,再用科学记数法表示成a×10n(1≤a<10,且n为整数),例如30350(精确到百位)≈30400=3.0400×104,然后将百位4后面的0去掉,得30350≈3.04×104。
简单的近似数总结
简单的近似数总结1. 引言在实际生活和工作中,我们常常需要对数据进行近似处理,以方便计算、理解和应用。
近似数是指在某种程度上接近于原始数据的数值。
本文将介绍一些常见的近似数方法,并通过示例和实际应用案例进行说明。
2. 常见的近似数方法2.1 四舍五入法四舍五入法是最常见的近似数方法之一。
当需要将一个数值近似到某个位数时,我们可以根据该位数后一位的数值来判断是否进位。
如果该位数后一位小于5,则舍去后面的所有位;如果该位数后一位大于等于5,则进位保留。
例如,将3.14159近似到小数点后两位,我们可以进行四舍五入操作:3.14159 ≈ 3.14。
2.2 截断法截断法是指将一个数值截断到某个位数。
与四舍五入法不同的是,截断法直接丢弃该位数后面的所有位,而不考虑进位。
例如,将3.14159截断到小数点后两位,我们可以直接丢弃后面的位数:3.14159 ≈ 3.14。
2.3 近似到整数有时候,我们并不需要保留小数部分,而是希望将一个数值近似到整数。
在这种情况下,可以使用四舍五入法或截断法将小数部分直接舍去。
例如,将3.14159近似到整数,我们可以使用四舍五入法得到:3.14159 ≈ 3,或者使用截断法得到:3.14159 ≈ 3。
3. 实际应用案例3.1 面积计算假设我们需要计算一个矩形的面积,但是只知道两条边的长度为3.5米和4.7米。
由于需要近似计算,我们可以使用截断法将两个数值近似到小数点后一位,然后进行计算。
矩形的面积计算公式为:面积 = 长 × 宽。
近似计算的结果为:面积≈ 3.5 × 4.7 ≈ 16.4 平方米。
3.2 金融计算在金融领域,我们经常需要进行货币的计算和处理。
由于货币计算往往涉及到小数点后多位的计算精度,因此需要对结果进行近似处理。
例如,计算两笔货币金额的总和时,我们可以使用四舍五入法将每笔金额近似到小数点后两位,然后进行求和。
假设有两笔金额分别为578.234元和734.871元,近似计算的结果为:总和≈ 578.23 + 734.87 ≈ 1313.10元。
近似数与精确数的应用题解题技巧
近似数与精确数的应用题解题技巧近似数和精确数是我们在数学学习中经常会遇到的概念。
近似数是指对一个数进行估算,保留有效数字,在实际应用中用于简化计算或者测量。
而精确数则是指一个数的确切值,不涉及估算或者取舍。
在解题过程中,我们需要灵活运用近似数和精确数的概念,以及相应的解题技巧。
下面将为大家介绍一些常见的应用题解题技巧。
1. 近似数的运算:当我们进行近似数的运算时,需要先估算每个数的范围,然后按照一定的精确度进行计算。
常见的近似数运算包括加法、减法、乘法和除法。
例如,计算近似数的和时,我们可以先进行估算,然后将每个数保留相应的有效数字进行计算,最后按照有效数字位数取舍结果。
2. 近似数的估算:在实际问题中,我们经常会遇到需要快速估算的情况。
这时,我们可以利用近似数的思想,快速进行估算。
例如,求两个近似数的和时,我们可以先估算每个数到最近的整十或整百,然后相加得到近似的和。
这样可以快速得到一个大致的答案,可以用于判断问题的大致范围。
3. 精确数的运算:相比于近似数的运算,精确数的运算更加复杂。
在进行精确数的运算时,我们需要考虑小数点的位置、进位和借位等问题。
例如,进行精确数的加法运算时,需要将小数点对齐,然后从低位开始逐位相加,注意进位问题。
而进行减法运算时,则需要考虑借位问题。
4. 近似数的误差估计:在实际应用中,我们常常需要估计近似数的误差。
误差是指近似数与精确数之间的差距,我们可以通过一些方法来进行估计。
例如,对于一个近似数进行四舍五入时,我们可以将四舍五入的位数的下一位数作为判断的依据。
如果下一位数大于5,则进位;如果下一位数小于5,则舍去。
5. 精确数的精确度要求:在某些实际问题中,我们需要对结果的精确度进行要求。
这时,我们需要根据问题的要求,确定精确度的位数。
例如,在进行科学实验时,我们常常需要对结果的精确度进行要求。
这时,我们需要根据实验的目的和要求,确定所需的有效数字的位数。
综上所述,近似数与精确数在数学应用题中有着重要的作用。
近似数精确度的两种形式讲解学习
近似数精确度的两种形式“近似数精确度的两种形式”例题解析任何一个近似数,都可以用精确度来表示它与准确数的接近程度。
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是0的数字起,到末位数字止,所有数字都是这个数的有效数字。
不难发现,描述一个近似数的精确度有两种形式:一是精确到哪一位;二是保留几个有效数字。
那么,怎样确定一个近似数的精确度?一、近似数是小数或整数例1 下列由四舍五入得到的近似数,各精确到哪一位,各有哪几个有效数字?(1)10.45 (2)78 (3)0.01020分析:这些近似数是小数或整数,其精确度的确定,应从精确到哪一位和有效数字的基本概念入手。
在确定有效数字时,0不能多算也不能少算。
以从左至右第一个不是0的数字为界,左边的0不算,右边的0都要算。
解:(1)10.45,精确到百分位或精确到0.01,有4个有效数字:1,0,4,5。
(2)78,精确到个位或1,有两个有效数字:7,8。
(3)0.01020,精确到十万分位或精确到0.00001,有4个有效数字:1,0,2,0。
二、带有计数单位的近似数例2 下列由四舍五入得到的近似数,各精确到哪一位,各有哪几个有效数字?(1)5.8万(2)10亿(3)87.01千分析:这些近似数都带有计数单位,其有效数字的确定与计数单位无关。
在确定精确到哪一位时,若计数单位前面是整数,它就精确到计数单位;若计数单位前面是小数,则先将近似数还原成用1作计数单位的数,再根据近似数的位数,从最高位数起,数到哪个数位,就精确到哪一位。
解:(1)5.8万(即58000),精确到千位,有两个有效数字:5,8。
(2)10亿,精确到亿位,有两个有效数字:1,0。
(3)87.01千(即87010),精确到十位,有4个有效数字:8,7,0,1。
三、用科学记数法表示的近似数例3 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?分析:用科学记数法表示的近似数,确定它们的有效数字时,只看不是10的幂的数的有效数字,确定该数精确到哪一位时,可把10的幂看成计数单位或把近似数还原成不用科学记数法表示的数,再根据近似数的位数,从最高位数起,数到哪个数位就精确到哪一位。
近似数的精确度 分数指数幂及运算
近似数的精确度分数指数幂及运算
在数学中,我们经常会遇到需要进行近似数的计算,这时候我们需要考虑到近似数的精确度。
近似数的精确度是指我们所得到的近似数与真实值之间的误差大小。
在实际应用中,我们需要根据具体情况来确定近似数的精确度,以保证计算结果的准确性。
在分数的运算中,我们需要注意分母的大小,因为分母越大,分数的精确度就越高。
例如,1/2和1/1000相比,1/2的精确度要高得多。
在进行分数的加减乘除运算时,我们需要先将分数化为相同的分母,然后再进行运算。
这样可以避免分母不同导致的误差。
指数幂是数学中常见的运算方式,它可以用来表示一个数的幂次方。
例如,2的3次方等于8,即2³=8。
在进行指数幂的计算时,我们需要注意底数和指数的大小关系。
如果底数比较大,指数比较小,那么我们可以直接计算出结果。
但如果底数比较小,指数比较大,那么我们需要使用科学计数法来表示结果,以保证精确度。
在运算中,我们还需要注意数值的精确度。
例如,当我们进行小数的加减乘除运算时,我们需要注意小数点后的位数,以保证计算结果的精确度。
如果小数点后的位数太多,我们可以使用四舍五入的方法来保留合适的位数。
在数学中,我们需要根据具体情况来确定近似数的精确度,以保证计算结果的准确性。
在分数、指数幂和运算中,我们需要注意数值
的大小关系和精确度,以避免误差的产生。
解读近似数的精确度
解读近似数的精确度解读近似数的精确度湖北省黄石市下陆中学宋毓彬近似数的精确度表示近似数与准确数的接近程度。
精确度有两种表示形式:一是用精确到哪一位(精确位)表示,一是用保留几个有效数字(有效数字)表示。
精确度的两种表示形式的实际意义及取值要求是不一样的,在学习时要加以区别。
一、解读“精确到哪一位”⑴对一个数取近似数,要求精确到某一个数位,我们就将所要求精确到的数位后一位数字“四舍五入”得到近似数。
该近似数最后一位数是由“四舍五入”得到的数,最后一位数所在的数位即是精确到的数位。
如:近似数3.52,最后一位数字2是由“四舍五入”得到的数,2所在的数位为百分位,即近似数3.52精确到百分位。
又如:9989.653(精确到个位)的近似数,将个位后的十分位上的6“四舍五入”,近似数为9990。
1.35835(精确到0.001)的近似数,将千分位后的万分位上的3“四舍五入”,近似数为1.358。
⑵精确到哪一位表示的实际意义:主要用于表示近似数与准确数之间误差绝对值的大小。
例如,在测量长度时,精确到0.1米,说明结果与实际相差不大于0.05米。
⑶确定用科学记数法表示的近似数、带数量级单位的近似数精确到哪一位时,要先将该数还原成原来的数,再看它最后一个数字所在的数位即精确到哪一位。
如近似数1.230×106,还原成原数为1230000,最后一位数字0所在的数位为千位,因此近似数1.230×106精确到千位(而不是千分位!)。
近似数5.04万,还原成原数为50400,最后一个数字4所在的数位为百位,因此近似数5.04万精确到百位(而不是百分位!)。
⑷近似数的最后一位数字是由“四舍五入”得到的数,根据近似数可以确定准确数的取值范围。
一般地,近似数m所表示的准确数a 的范围是:m-精确位后一位的5个单位≤a<m+精确位后一位的5个单位。
如近似数8.40所表示的准确数a的范围是8.40-0.005≤a<8.40+0.005,即8.395≤a<8.405。
近似数和精确度
精确的程度. 【知识拓展】 取某数近似数常见的方法:
(1)精确到某位或精确到小数点后某位,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.如:近似 数0.25 精确到百分位或精确到0.01 . (2)对较大的数取近似数时,结果一般要用科学记数法表示.如:8903000(精确到万位)的近似数为8.90 × 10 .
5
18
/0Leabharlann 三、精确度.6/
12
6
1
3.14159
(精确到0.001 )
爱
智
康
近似数与准确数的接近程度可以用精确度表示,一个近似数四舍五入到哪一位就称这个数精确到哪一位,精确度是
20
2
下列说法正确的是( ). A. 2.46 万精确到万位,有三个有效数字 B. 近似数6百和600精确度是相同的 C. 317500精确到千位可以表示为31.8 万,也可表示为3.18 × 10 D. 0.0502 共有5个有效数字,它精确到万分位
近似数和精确度
一、准确数
在日常生活和实际生产中,能准确地表示一些量的数,成为准确数.例如:三班共50人,小樱养了3条金鱼,数字50 和3就是准确数.
二、近似数
与实际接近但存在一定偏差的数称为近似数.例如:π 取3.14 ,体重约54kg ,这里3.14 、54都是近似数. 【注意】求一个数的近似数,应按题目要求取近似数. 【易错点津】 (1)近似数与准确数不相等,有误差. (2)近似数小数点后的末位数是0的,不能去掉0. 用四舍五入法,求1.549 的近似值(保留两个有效数字)是 .
初中数学:近似数和平均数知识点总结及练习
初中数学:近似数和平均数知识点总结及练习近似数一个数与准确数相近,且比准确数略多或略少些,这一个数称之为近似数。
一个对数数四舍五入至哪一位,那么就说道这个对数数准确至哪一位,从左边第一个不是0的数字起著准确的数位终了的所有数止。
如:我国的人口无法计算准确数目,但是可以说出一个近似数.比如说我国人口有13亿,13亿就是一个近似数。
有效数字与实际数字比较接近,但不完全符合的数称之为近似数。
对对数数,人们常须要晓得他的精确度。
一个对数数的精确度通常存有以下两种定义方式:(1)用四舍五入法表述。
一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
(2)另外除了进一和回去尾两种方法。
用有效数字的个数定义。
由四舍五入获得的对数数,从左边第一个不是零的数字起至,至末位数字年才的数所有数字,都叫作这个数的有效数字。
精确度对数数与精确数的吻合程度,可以用精确度则表示。
(1)一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;(2)规定有效数字的个数,也就是对对数数准确程度的一种建议。
有效数字规则有效数字特别注意:①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;②对于绝对值很大的数挑近似值时,结果通常用科学计数法去则表示,例如:890000(留存三个有效数字)的近似值,得8903000≈8.90×106。
③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。
有效数字的小数规则:1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
2、当留存n十一位有效数字,若后面的数字大于第n十一位单位数字的0.5,则第位数字入1。
3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
例如将下组与数据留存三位45.77=45.843.03=43.038.25=38.247.15=47.2近似数规则对数数的混合运算,可以按运算顺序和对数数的排序法则分步排序,但中间运算的结果必须比最后结果多挑一位数字。
求近似数的方法
求近似数的方法近似数是指将一个数值简化到一个较为接近的数值。
这种简化可以帮助我们更方便地进行计算和理解数值的大小。
在日常生活和数学领域,我们经常需要用到近似数。
接下来,我将介绍一些常见的求近似数的方法。
一、四舍五入法四舍五入法是最常见的就近取整方法。
当我们需要将一个数值简化为整数或小数时,可以使用四舍五入法。
具体操作如下:如果小数点后的数字小于5,则将小数部分直接舍去;如果小数点后的数字大于等于5,则将小数部分加1。
举例来说,我们需要将3.56近似到个位数。
根据四舍五入法,3.56近似为4。
二、截断法截断法是指直接去掉一个数值的小数部分,只保留整数部分。
这种方法适用于不需要考虑小数点后的精确值,而只关注整数部分的情况。
例如,将4.78近似为整数,根据截断法,我们可以得到4。
三、舍入法舍入法是一种更加精确的求近似数的方法。
它适用于需要保留指定位数的小数部分的情况。
具体操作如下:将待近似数的小数部分保留指定位数,并根据小数位数的下一位数字来进行近似。
若小数位数大于指定位数的下一位数字大于等于5,则将保留的小数部分加1;若小数位数大于指定位数的下一位数字小于5,则保留的小数部分不变。
举例来说,我们需要将3.1415926近似到小数点后两位。
根据舍入法,我们可以得到3.14。
四、估算法估算法是用于对一个复杂的数学问题或计算进行近似的方法。
它通常使用一些简化的数学方法和近似数来求解。
估算法可以在没有精确计算的情况下,快速得到一个接近真实结果的估计值。
例如,我们需要估算1.98加上2.23的结果。
根据估算法,我们可以近似将1.98近似为2,将2.23近似为2.2。
然后,我们可以以2加上2.2得到一个大致的结果4.2。
五、线性近似法线性近似法主要用于求解曲线上某一点的近似坐标。
它基于曲线的局部特征,使用直线来近似曲线。
线性近似法在微积分和工程学领域经常被使用。
例如,我们需要求解曲线y=x^2在x=2.5处的近似值。
浙教版数学七年级上册_准确数和近似数的学习要点
准确数和近似数的学习要点准确数和近似数是数的发展过程中的产物,是我们实际生活中经常遇到的现实问题,搞清楚准确数和近似数对于合理解决我们身边的数学问题大有裨益,那么如何才能学好这两个知识点呢?笔者以为应注意掌握以下几个问题:一、知道近似数和准确数概念的产生过程在日常生活中我们会经常遇到一些问题,如3个人走水果店买了一只10千克的大西瓜平分了吃,每人应分得313千克的西瓜,而实际上,能分得平均吗,由于313≈3.33(千克),这里的3、10、313都是准确数,3.33是一个近似数,而事实上,三人分一只10千克的大西瓜也没有必要分得那么精确,这样只能按3.33千克这个数来分就可以了.就是说,我们在实际解决问题的时候,往往需要取它们的近似值,这是由于一方面,完全准确的值是难以办到的,另一方面,往往也没有必要搞得那么完全准确.由此我们知道,准确数就是与实际完全符合的数;近似数就是与实际接近的数.二、能正确说出由四舍五入得到的有理数的精确位数在大量的实际数学问题中,都会用到近似数的问题,但使用近似数得有个度,也就是精确度的问题.如,313结果取3,就叫做精确到个位;取3.3,就叫做精确到十分位(或精确到0.1);取3.33,就叫做精确到百分位(或精确到0.01);…一般地,一个近似数,四舍五入到哪一位,就说这个近似精确到哪一位.三、会根据预定精确度取近似值有效数字可以表示近似数的精确度.例1下列由四舍五入得到的近似数各精确到哪一位?(1)11亿;(2)36.8;(3)1.2万;(4)0.03 068.解(1)11亿,精确到亿位;(2)36.8,精确到十分位,(即精确到0.1);(3)1.2万,精确到千位;(4)0.03 068,精确到十万分位(即精确到0.00 001).例2用四舍五入法,按括号内的要求对各数取近似值:(1)0.33448(精确到千分位);(2)64.8(精确到个位);解(1)0.33448≈0.334;(2)64.8≈65;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近似数精确度的两种
形式
“近似数精确度的两种形式”例题解析
任何一个近似数,都可以用精确度来表示它与准确数的接近程度。
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是0的数字起,到末位数字止,所有数字都是这个数的有效数字。
不难发现,描述一个近似数的精确度有两种形式:一是精确到哪一位;二是保留几个有效数字。
那么,怎样确定一个近似数的精确度?
一、近似数是小数或整数
例1 下列由四舍五入得到的近似数,各精确到哪一位,各有哪几个有效数字?
(1)10.45 (2)78 (3)0.01020
分析:这些近似数是小数或整数,其精确度的确定,应从精确到哪一位和有效数字的基本概念入手。
在确定有效数字时,0不能多算也不能少算。
以从左至右第一个不是0的数字为界,左边的0不算,右边的0都要算。
解:(1)10.45,精确到百分位或精确到0.01,有4个有效数字:1,0,4,5。
(2)78,精确到个位或1,有两个有效数字:7,8。
(3)0.01020,精确到十万分位或精确到0.00001,有4个有效数字:1,0,2,0。
二、带有计数单位的近似数
例2 下列由四舍五入得到的近似数,各精确到哪一位,各有哪几个有效数字?
(1)5.8万(2)10亿(3)87.01千
分析:这些近似数都带有计数单位,其有效数字的确定与计数单位无关。
在确定精确到哪一位时,若计数单位前面是整数,它就精确到计数单位;若计数单位前面是小数,则先将近似数还原成用1作计数单位的数,再根据近似数的位数,从最高位数起,数到哪个数位,就精确到哪一位。
解:(1)5.8万(即58000),精确到千位,有两个有效数字:5,8。
(2)10亿,精确到亿位,有两个有效数字:1,0。
(3)87.01千(即87010),精确到十位,有4个有效数字:8,7,0,1。
三、用科学记数法表示的近似数
例3 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?
分析:用科学记数法表示的近似数,确定它们的有效数字时,只看不是10的幂的数的有效数字,确定该数精确到哪一位时,可把10的幂看成计数单位或把近似数还原成不用科学记数法表示的数,再根据近似数的位数,从最高位数起,数到哪个数位就精确到哪一位。
解:(即12),精确到个位,有2个有效数字:1,2。
(2)(即5070000),精确到万位,有3个有效数字:5,0,7。
(3)(即3213.4),精确到十分位,有5个有效数字:3,2,1,3,4。