机械设计基础凸轮
机械设计基础凸轮机构
机械设计基础凸轮机构凸轮机构是机械设计中常见的一种机构,用于实现转动运动和直线运动的转换。
它由凸轮和连杆机构组成,具有简单、可靠、紧凑的优点。
本文将介绍机械设计基础凸轮机构的工作原理、应用领域以及设计要点。
一、凸轮机构的工作原理凸轮机构是通过凹凸轮运动对连杆机构施加力,使其发生直线运动。
凸轮的外轮廓形状决定了连杆机构的运动规律。
凸轮可以分为四种基本形状:圆形、椭圆形、心形和指字形。
不同形状的凸轮在工作过程中会给连杆机构带来不同的速度和加速度。
凸轮机构的工作过程可以分为四个阶段:进给段、暂停段、退出段和暂停段。
在进给段,凸轮逐渐使连杆机构向前运动,实现直线运动。
在暂停段,凸轮暂停与连杆机构接触,使连杆机构停止运动。
在退出段,凸轮逐渐使连杆机构向后运动,实现回程。
最后,在暂停段凸轮继续暂停与连杆机构接触,使连杆机构再次停止。
二、凸轮机构的应用领域凸轮机构广泛应用于机械设计中的各个领域。
以下是几个常见的应用领域:1. 发动机:凸轮机构用于气门控制,通过凸轮来控制气门的开闭,实现燃烧室内的气体进出,从而实现发动机的工作。
2. 压力机:凸轮机构用于控制压力机的上下运动,实现工件的压制或切割。
3. 包装机械:凸轮机构用于控制包装机械的送料、密封和分切等工作,实现自动化包装的功能。
4. 自动化流水线:凸轮机构用于控制流水线上的传送带、工作台等部件的运动,实现产品的加工和组装。
5. 机床:凸轮机构用于控制机床上的工作台、进给机构等部件的运动,实现加工工件的精确定位和运动控制。
三、凸轮机构的设计要点在设计凸轮机构时,需要注意以下几个要点:1. 凸轮的轮廓形状:根据实际需求选择合适的凸轮轮廓形状,确保连杆机构的运动规律符合设计要求。
2. 凸轮与连杆机构的配合方式:凸轮与连杆机构之间应具有良好的配合性能,避免偏差和间隙过大导致机构失效或运动不稳定。
3. 连杆机构的设计:根据实际应用需求设计连杆机构,包括长度、角度和材料等参数的选择,确保机构的工作性能满足要求。
机械设计基础——凸轮机构
结论:
内凹凸轮廓线: 滚子半径无限制
外凸凸轮廓线: 理论轮廓的最小曲率半径大于滚子半径, 即rmin>rr
一般rr=0.8 rmin实际设计时,应保证rmin -rr [ra] =3~5 mm
故如果不满足要求,可以:增加整个理论轮廓的 曲率半径;缩小滚子半径。
3.6.2. 凸轮机构的压力角 1. 压力角a 与驱动力 F
-
实际廓线
3.6 凸轮机构设计中应注意的几个问题
(1)滚子半径的选择
设计滚子从动件时若从强度和耐用性考虑,滚子 的半径应取大些。滚子半径取大时,对凸轮的实际轮 廓曲线影响很大,有时甚至使从动件不能完成预期的 运动规律。
滚子半径的选择
①.凸轮理论轮廓为内凹时
由图(a)可得
ρ' =ρmin+rT
实际轮廓曲线曲率半径总大于理论轮廓曲线曲率 半径。因此,不论选择多大的滚子,都能作出实际轮 廓曲线。
ω和从动件的运动规律,设计该凸
轮轮廓曲线。
2. 凸轮轮廓设计——作图法 (1)选取适当的比例尺作出
尖顶移动从动件盘型凸轮机构 位移线图; S
B0 B1
c0 c1
B2
o
h 2p
1 234567 8
90º 120º 150º
δ
(2)按基本尺寸作出凸轮机构的
rb
90º c2
初始位置;
c8
B8
c7 c6
B7
移动凸轮
当盘形凸轮的回转中心趋于无穷远时,即成为移动 凸轮,一般作往复移动,多用于靠模仿形机械中 。
形锁合凸轮
为保证凸轮机构能正常工作,必须保持凸轮轮廓与从动件 相接触,该机构是靠凸轮与从动件的特殊几何结构来保持 两者的接触。
机械设计基础 第六章 凸轮机构
6.2.1 凸轮机构的运动循环及基本名词术语
凸轮机构的一个运动循环大 致包括:推程、远休程、回 程、近休程四个部分
术语: 基圆 偏距 近休程 近休止角 推程 推程运动角 远休程 远休止角 回程 回程运动角 行程 推杆运动规律
6.2.2 几种常用的推杆运动规律
等速运动规律:
s h / 0 h 1 / 0 a0
凸轮廓线设计步骤: (1)划分位移曲线;
(2)取长度比例尺,绘出凸轮基圆,偏心距圆;
(3)获取基圆上的等分点; (4)绘出反转过程中的导路位置线;
(5)计算推杆的预期位移;
(6)将从动件尖顶点连成光滑曲线,即为凸轮轮廓。
理论轮廓线 实际轮廓线
尖顶从动件
滚子从动件
滚子半径的选择
滚子从动件作用: 1、化滑动摩擦为滚动摩擦; 2、降低凸轮与从动件之间的局 部接触应力。
6.3.2 压力角与凸轮机构尺寸的关系
tan
OC e
PC OP OC BC BC
BC s r02 e 2
P为凸轮和从动件的速度瞬心,故:
v OP
即: OP
v
ds d
于是:
tan
ds e d s r02 e 2
增大基圆半径或设置偏置均可减小压力角,
存在速度突变,加速 度及惯性力理论上将无穷 大,称为刚性冲击。用于 低速轻载场合。
等加速等减速运动规律:
s 2h 2 / 02 4h1 / 02 2 a 4h1 / 02
s h 2h( 0 ) 2 / 02 4h1 ( 0 ) / 02 2 a 4h1 / 02
机械设计基础-第4章-1-凸轮机构
30
30
120
120
90
δ
360
七、解析法设计凸轮轮廓曲线
1、偏置直动滚子从动件盘形凸轮轮廓的设计
建立凸轮转轴中心的坐标系xOy
根据反转法原理,凸轮以w转过j角;
B点坐标为
x y
(s0 (s0
s) sin j s) cosj
e cosj esinj
上式即为凸轮理论廓线方程
实际廓线与理论廓线在法线上相距
凸轮机构由凸轮、从动件和机架三部分组成。
凸轮机构是高副机构,易于磨损,因此只适用于传 递动力不大的场合。
示例一 内燃机配气机构
示例二 靠模车削机构
示例 绕线机的凸轮绕线机构
示例 缝纫机的凸轮拉线机构
凸轮机构的主要优点: 使从动件实现预定的运动规律,结接触,容易磨损。 用于传递动力不大的控制机构或调节机构。
2、自D0起,沿-ω方向取δ1-4 角,等分各部分,从D1起以 从动件长度为半径作圆,与基 圆交于C点。
3、C1D1起,分别量取β角, 与2的圆交于B点,连接B0、 B1、B2…,即为凸轮曲线。
例题:设计盘形凸轮机构,已知凸轮角速度ω1逆时针转动, 基圆半径r0=30mm,从动件的行程h=40mm。从动件的 位移线图如下:
第四章 凸轮机构及间歇运动机构
§4-1 凸轮机构的应用和分类 §4-2 从动件常用的运动规律 §4-3 盘形凸轮轮廓曲线的设计 §4-4 凸轮机构设计中应注意的问题 §4-5 间歇运动机构
§4-1 凸轮机构的应用和分类
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从 动件的高副接触,在运动时可以使从动件获得连续或不 连续的任意预期运动。
当凸轮继续以角速度ω1逆时针 转过角度δ2时,从动件尖顶从 C到D,在最远位置停止不动, 对应的δ2是远休止角。
机械设计基础第五章凸轮机构
其他应用实例
01
纺织机械
02
包装机械
03
印刷机械
在纺织机械中,凸轮机构被用于控制织 物的引纬、打纬和卷取等运动。通过合 理设计凸轮的形状和尺寸,可以实现织 物的高速、高效织造。
在包装机械中,凸轮机构常用于控制包 装材料的输送、定位、折叠和封口等操 作。通过凸轮的精确控制,可以实现包 装过程的自动化和高效化。
传动比的计算 根据凸轮的轮廓形状和尺寸,以及从动件的运动 规律,可以通过几何关系或解析方法计算出凸轮 机构的传动比。
传动比的影响因素 凸轮机构的传动比受到凸轮轮廓形状、从动件运 动规律、机构中的摩擦和间隙等因素的影响。
凸轮机构的压力角与自锁
压力角的定义
压力角是指从动件受力方向与从动件运动方向之间的夹角。在凸轮机构中,压力角的大小反 映了从动件所受推力的方向与其运动方向之间的关系。
等速运动规律
从动件在推程和回程中均保持匀速运动。
等加速等减速运动规律
从动件在推程和回程中按等加速和等减速规律运动。
简谐运动规律
从动件按简谐运动规律振动。
组合运动规律
根据实际需要,将从动件的运动规律组合成复杂的运动形式。
凸轮机构的尺寸设计
凸轮基圆半径的确定
根据从动件的运动规律和机构的结构要求,确定 凸轮的基圆半径。
03
凸轮机构的类型与特性
盘形凸轮机构
凸轮形状
盘形凸轮是一个具有特定 轮廓的圆盘,其轮廓线决 定了从动件的运动规律。
工作原理
通过凸轮的旋转,驱动从 动件按照预定的运动规律 进行往复直线运动或摆动。
应用范围
广泛应用于内燃机、压缩 机、自动机械等领域。
移动凸轮机构
凸轮形状
移动凸轮是一个在平面上移动的具有特定轮廓的 构件。
机械设计基础 凸轮机构
凸轮机构
19
1)按前述方法求得尖顶从动件的 B0、B1、B2、
...... 各点; 2)过 B0、B1、B2、B3、...... 各点作平底的 各个位置; 3)作这些平底的包络线即为对心直动 平底从动件盘形凸轮的实际轮廓曲线。 注意:这种凸轮不能设计成 有内凹部分的;
平板移动凸轮: rb —→ ∞
圆柱回转凸轮: 可以看成是绕在圆柱体上的移动凸轮。
工业设计机械基础
2)按从动件端部的形状分: 尖顶从动件: 平底从动件: 滚子从动件:
凸轮机构
4
3)按从动件的运动方式分: 直动从动件:
摆动从动件:
4)按凸轮与从动件的封闭方式分: 力闭合(封闭): 形闭合(封闭):
工业设计机械基础
凸轮机构
16
5)确定从动件与凸轮在不同转角处接触点的位置;
过 B’1、B’2、B’3、......各点沿导路方向分别截取线段 B’1B1 = 11’、 B’2B2 = 22’、 B’3B3 = 33’、...... ,所以 B0、 B1、B2、B3、...... 各点就是反
转后尖顶从动件尖端与凸轮接触点的一系列位置。
t 2 t 1 s2 h sin t1 t1 2 h v2 t1 2 t 1 cos t1 2 h 2 t a 2 2 sin 加速度 —→ 正弦 t1 t1
由图知,在从动件行程的始、末位置加速
度均无突变,且为零。 —→ 凸轮机构将不产生任何冲击。 ∴ 摆线运动规律适用于高速凸轮传动。
应保证平底总与
凸轮相切而不相交。
工业设计机械基础
四、摆动从动件盘形凸轮廓线的设计
凸轮机构
机械设计基础-凸轮机构
盘形凸轮
移动凸轮
圆柱凸轮
小结
1、凸轮机构的基本组成 2、凸轮机构的应用特点 3、凸轮机构的基本类型
轮廓及从动件运动规律
基本术语 B'
h
1、基圆:凸轮轮廓上最小向径
e
r0为半径的圆
A
2、推程及推程运动角dt,
t
B
行程:h(最大位移) 3、远休止角ds
r0 O
B1 s
s'
h C1
C
4、回程及回程运动角dh D
一、棘轮机构的基本结构和工作原理
棘轮机构基本结构如图7—l所示, 由棘轮3、棘爪2、4与主动摆杆 1、机架5组成。 主动摆杆1空套在与棘轮3固联 的从动轴上,驱动棘爪2与主动 摆杆1用转动副O1相联,止动棘 爪4与机架5用转动副O2相联, 弹簧6可保证棘爪与棘轮啮合。
当主动摆杆作往复摆动时,从动棘 轮作单向间歇转动。
特点
优点:只要正确地设计和制造出凸轮的 轮廓曲线, 就能把凸轮的回转运动准确可靠地转变为从动件所 预期的复杂运动规律的运动,而且设计简单;凸轮 机构结构简单、紧凑、运动可靠。
缺点:凸轮与从动件之间为点或线接触,故难以保 持良好的润滑,容易磨损。
凸轮机构通常适用于传力不大的机械中。尤其广泛 应用于自动机械、仪表和自动控制系统中。
5、近休止角ds’
尖底偏置直动推杆
盘形凸轮机构
推杆的运动分析
0°
推杆位移 s=f (t)
t
特别,当凸轮匀速转动时:
B'
s = s (d);v =v (d); a =a (d)
推杆位移线图
A
s
t
B
s BC
B1 s
机械设计基础第三章凸轮机构
位移
速度
加速度
推程
回程
2
曲线:
3
改进的等加速等减速运动规律
1
位移
5
高次代数方程
4
正弦运动规律
三、其他运动规律
3-3凸轮压力角
4图解法设计凸轮机构 直动从动件盘形凸轮轮廓的绘制
1.对心尖顶直动从动件
已知基圆半径及从动件位移曲线
1.偏心尖顶直动从动件
已知基圆半径及从动件位移曲线
120°
°
e
按从动件分:
e
h
摆动从动件凸轮机构
凹槽凸轮
滚子
直动从动件凸轮机构
a.按从动件的运动分类
01
滚子从动件凸轮机构
e
尖顶从动件凸轮机构
e
平底从动件凸轮机构
e
02
03
b.按从动件的形状分类
按从动件的运动分类
摆动从动件凹槽凸轮机构
直动从动件凸轮机构
按从动件的形状分类
滚子从动件凸轮机构
尖顶从动件凸轮机构
平底从动件凸轮机构
小结
按凸轮的形状分类
移动(板状)凸轮机构
圆柱凸轮机构
盘形凸轮机构
1
e
摆动从动件凹槽凸轮机构
直动从动件凸轮机构
按从动件的运动分类
滚子从动件凸轮机构
尖顶从动件凸轮机构
平底从动件凸轮机构
按从动件的形状分类
按凸轮的形状分类
盘形凸轮机构
圆锥凸轮机构
圆柱凸轮机构
移动(板状)凸轮机构
按高副维持接触的方法分类
凸轮机构的特点
e
h
按从动件的运动分类
摆动从动件凹槽凸轮机构
直动从动件凸轮机构
03机械设计基础-凸轮机构
s2 = h
2h
(δ t δ 1 )
2
a2 =
4hω
2 1
δ t2
如图3-8所示。
等加速部分可按下述方法画出:在横坐标 轴上分成若干等份,得1、2、3各点,过这些点 作横轴的垂线。再过点O作任意的斜线OO`,在 其上以适当的单位长度自点O按1:4:9量取对 应长度,得1、4、9各点。连接直线9-3”,并分 别过4、1两点,作其平行线4-2”和1-1”,分别 与S2轴相交于2”、1”点。最后由1”、2”、3”点 分别向过1、2、3各点的垂线投影,得1`、2`、 3`点,将这些点连接成光滑的曲线,同样可得 等减速度段的抛物线。
§3-2 从动件的常用运动规律
从动件的运动规律即是从动件的位移s、 速度v和加速度a随时间t变化的规律。当凸 轮作匀速转动时,其转角δ与时间t成正比 (δ=ωt),所以从动件运动规律也可以用 从动件的运动参数随凸轮转角的变化规律来 表示,即s=s(δ),v=v(δ),a=a(δ)。 通常用从动件运动线图直观地表述这些关系。
图3-15偏置移动尖顶从动件盘形凸轮
5.摆动从动件盘形凸轮轮廓
已知从动件的角位移线图(图3-16b), 凸轮与摆动从动件的中心距lOA,摆动从动 件的长度lAB,凸轮的基圆半径rmin,以及凸 轮以等角速度ω1逆时针回转,要求绘出此凸 轮的轮廓。仍用“反转法”求凸轮轮廓 。
图3-16 尖顶摆动从动件盘形凸轮
2.对心移动滚子从动件盘形凸轮
其凸轮轮廓设计方法如图3-13所示。首 先,把滚子中心看作尖顶从动件的尖顶,按照 上面的方法画出一条轮廓曲线β0。再以β0上各 点为中心,以滚子半径为半径,画一系列圆, 最后作这些圆的内包络线β,它便是使用滚子 从动件时凸轮的实际轮廓,而β0称为此凸轮的 理论轮廓。由作图过程可知,滚子从动件凸轮 轮廓的基圆半径rmin应当在理论轮廓上度量。
机械设计基础三凸轮机构
0/2
h
(00/2)
(0/20)
加速段
减速段
位移方程
速度方程
加速度方程
机械设计基础——凸轮机构
2 等加速等减速运动—二次多项式运动规律
运动线图 冲击特性:起、中、末点柔性冲击 适用场合:低速轻载
三、从动件运动规律的选择
机械设计基础——凸轮机构
3-3 盘形凸轮轮廓曲线的设计
01
反转法原理
根据从动件的运动规律:作出位移线图S2-δ1,并等分角度 定基圆 作出推杆在反转运动中依次占据的位置 据运动规律,求出从动件在预期运动中依次占据的位置 将两种运动复合,就求出了从动件尖端在复合运动中依次占据的位置点 将各位置点联接成光滑的曲线 在理论轮廓上再作出凸轮的实际轮廓
二、作图法设计凸轮廓线
A
从动件的运动规律是指从动件的位移、速度、加速度等随时间t或凸轮转角j变化的规律 基圆(以凸轮轮廓最小向径所组成的圆),基圆半径rb 推程,推程运动角 0 远休止,远休止角 01
0
01
0’
02
rb
0
推程
01
远休止
0’
回程
02
近休止
t
s
0
B
C
D
h
A’
机械设计基础——凸轮机构
一、凸轮机构的运动过程
α
n
n
压力角与作用力的关系
不考虑摩擦时,作用力沿法线方向。
F
F’
F”
F’----有用分力, 沿导路方向
F”----有害分力,垂直于导路
F”=F’ tg α
F’ 一定时, α↑
Ff > F’
Ff
为了保证凸轮机构正常工作,要求: