运用完全平方公式进行因式分解一ppt课件解析
合集下载
运用完全平方公式因式分解(课件)数学八年级上册同步备课系列(人教版)
=3a(x+y)2
=(a+b-6)2
分解因式:
(1) ax2+2a2x+a3
(2) -3x2+6xy-3y2
(3) (x+y)2-12x-12y+36
解:(1)原式= a(x2+2ax+a2)
(2)原式= -3(x2-2xy+y2)
=a(x+a)2
=-3(x-y)2
(3)原式=(x+y)2-12(x+y)+36
A. x2-y2= (x+y) (x-y)
B. x2+6x+9= (x+3)2
C. x2+xy=x (x+y)
D. x2+y2= (x+y)2
5.若x2- 2(k+1)x+4是完全平方式,则k的值为( A )
A.1或-3
B. -1或3
C.±1
D.±3
6.已知 = + 2,则代数式32 − 6 + 3 2 + 2022的值为( D )
±
10.若x2﹣8x+m2=(x﹣4)2,那么m=_____.
11.若 2 + (3 − ) + 9可以用完全平方式来分解因式,则m的值为
−或9
__________.
12.分解因式:
(1) − 22 + 3 ;
(2)3 − 102 + 25;
(3) 2 − 5
(4)(2 + 2 − 2 )2 −42 2 .
例3.分解因式:
(1) 3ax2+6axy+3ay2
因式分解(完全平方公式)精选教学PPT课件
ab2 a2 2ab b2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这个公式 来分解因式了,我们把它称为“完全 平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子叫做完全平方式
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
最后,我打他一巴掌。干脆痛快,出手的瞬间,像那位绝望的母亲,远远掷出她的高跟鞋。掷中没有?并不重要。 有多爱,就有多不舍;有多温柔,就有多暴烈,爱得唇边有血,眼中有泪,胸口有纠缠的爱与恨,爱到如连体婴般骨肉相连。割爱,就一定不可能如拈去一片花叶般轻松微笑。 明知留不住,收不下,却不能自控我颠倒狂乱的脚步。那一遭,我是夜深街上,追逐汽车的女子。而我无声的哭泣,他没有听见。快乐是人类社会众望所归的最高境界。所谓君子之交谈如水。一个把名缰利锁看得太重的人。注定是不快乐的。快乐就是看淡尘世的物欲、烦恼,不慕荣利。假如你喜欢武侠小说,你没有必要愧对红楼梦; 假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸芸众生,绿水青山,名胜古迹,
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这个公式 来分解因式了,我们把它称为“完全 平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子叫做完全平方式
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
最后,我打他一巴掌。干脆痛快,出手的瞬间,像那位绝望的母亲,远远掷出她的高跟鞋。掷中没有?并不重要。 有多爱,就有多不舍;有多温柔,就有多暴烈,爱得唇边有血,眼中有泪,胸口有纠缠的爱与恨,爱到如连体婴般骨肉相连。割爱,就一定不可能如拈去一片花叶般轻松微笑。 明知留不住,收不下,却不能自控我颠倒狂乱的脚步。那一遭,我是夜深街上,追逐汽车的女子。而我无声的哭泣,他没有听见。快乐是人类社会众望所归的最高境界。所谓君子之交谈如水。一个把名缰利锁看得太重的人。注定是不快乐的。快乐就是看淡尘世的物欲、烦恼,不慕荣利。假如你喜欢武侠小说,你没有必要愧对红楼梦; 假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸芸众生,绿水青山,名胜古迹,
教学课件:七下湘教公式法第2课时 利用完全平方公式进行因式分解
(a+b)2=a2+2ab+b2,(a-b)2= a2-2ab+b2 .
将完全平方公式从右到左地使用,就可以把形
如这样的多项式进行因式分解.
例如, x2+4x+4 = x2+2·x·2+22 = (x+2)2 .
a2+2·a·b+b2 = (a+b)2
知识讲授
因式分解的完全平方公式
a 2 2ab b 2 a b
2
a 2ab b a b
2
2
2
注意:公式中
的, 既可以
是单项式,也
可以是多项式.
语言叙述:两个数的平方和加上(或减去)这两个
数的积的2倍,等于这两个数的和(或差)的平方.
知识讲授
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫做完全平方式.
能用完全平方公式分解因式的多项式的特点
(x2-1)2
[(x+1)(x-1)]2
(x+1)2(x-1)2.
知识讲授
例5 因式分解:
(1)3ax2+6axy+3ay2 ;
(2)( + )-( + ) + .
解:(1)原式=3a(x2+2xy+y2)
有公因式,先
提公因式
=3a(x+y)2.
(2)原式 = ( + )- × ( + ) × +
法公式,我们得到了因式分解的两种方法:提取公因
式法、平方差公式法.现在,大家自然会想,还有哪些
乘法公式可以用来分解因式呢?
完全平方公式
将完全平方公式从右到左地使用,就可以把形
如这样的多项式进行因式分解.
例如, x2+4x+4 = x2+2·x·2+22 = (x+2)2 .
a2+2·a·b+b2 = (a+b)2
知识讲授
因式分解的完全平方公式
a 2 2ab b 2 a b
2
a 2ab b a b
2
2
2
注意:公式中
的, 既可以
是单项式,也
可以是多项式.
语言叙述:两个数的平方和加上(或减去)这两个
数的积的2倍,等于这两个数的和(或差)的平方.
知识讲授
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫做完全平方式.
能用完全平方公式分解因式的多项式的特点
(x2-1)2
[(x+1)(x-1)]2
(x+1)2(x-1)2.
知识讲授
例5 因式分解:
(1)3ax2+6axy+3ay2 ;
(2)( + )-( + ) + .
解:(1)原式=3a(x2+2xy+y2)
有公因式,先
提公因式
=3a(x+y)2.
(2)原式 = ( + )- × ( + ) × +
法公式,我们得到了因式分解的两种方法:提取公因
式法、平方差公式法.现在,大家自然会想,还有哪些
乘法公式可以用来分解因式呢?
完全平方公式
因式分解中的完全平方公式
思路点拨
对于简单题型,首先要识别出多项式是否符合完 全平方公式的形式,然后确定$a$和$b$的值, 最后按照公式进行因式分解。
复杂题型解析及思路点拨
例题
$4x^2 + 12xy + 9y^2 - 25$
解析
思路点拨
观察该多项式,可以发现前三项 符合完全平方公式$a^2 + 2ab + b^2$的形式,其中$a = 2x, b = 3y$,而最后一项是常数项。因此, 可以将前三项因式分解为$(2x + 3y)^2$,然后与常数项组合进行 进一步的因式分解。
提取公因式法应用
01
在多项式中识别公因式,并将其 提取出来。这有助于简化多项式 ,并使其更容易识别出完全平方 项。
02
对提取公因式后的多项式进行观 察,判断是否可以通过完全平方 公式进行因式分解。
分组分解法应用
将多项式中的项进行分组,使 得每组内部能应用完全平方公 式。分组的方式可以根据多项 式的特点灵活选择。
对每个分组应用完全平方公式 进行因式分解,得到分组内的 因式。
将各分组的因式相乘,得到整 个多项式的因式分解结果。
04 典型例题解析与技巧指导
简单题型解析及思路点拨
1 2 3
例题
$x^2 + 2x + 1$
解析
观察该多项式,可以发现它符合完全平方公式 $a^2 + 2ab + b^2$的形式,其中$a = x, b = 1$。
教师点评和总结归纳
针对学生完成情况,教师给予及时的点评和反馈,指出学生在解题过程中的优点和 不足。
教师总结完全平方公式在因式分解中的应用及注意事项,强调公式运用的灵活性和 多样性。
教师可结合学生实际情况,对部分难题进行详细讲解和示范,帮助学生更好地理解 和掌握完全平方公式。
对于简单题型,首先要识别出多项式是否符合完 全平方公式的形式,然后确定$a$和$b$的值, 最后按照公式进行因式分解。
复杂题型解析及思路点拨
例题
$4x^2 + 12xy + 9y^2 - 25$
解析
思路点拨
观察该多项式,可以发现前三项 符合完全平方公式$a^2 + 2ab + b^2$的形式,其中$a = 2x, b = 3y$,而最后一项是常数项。因此, 可以将前三项因式分解为$(2x + 3y)^2$,然后与常数项组合进行 进一步的因式分解。
提取公因式法应用
01
在多项式中识别公因式,并将其 提取出来。这有助于简化多项式 ,并使其更容易识别出完全平方 项。
02
对提取公因式后的多项式进行观 察,判断是否可以通过完全平方 公式进行因式分解。
分组分解法应用
将多项式中的项进行分组,使 得每组内部能应用完全平方公 式。分组的方式可以根据多项 式的特点灵活选择。
对每个分组应用完全平方公式 进行因式分解,得到分组内的 因式。
将各分组的因式相乘,得到整 个多项式的因式分解结果。
04 典型例题解析与技巧指导
简单题型解析及思路点拨
1 2 3
例题
$x^2 + 2x + 1$
解析
观察该多项式,可以发现它符合完全平方公式 $a^2 + 2ab + b^2$的形式,其中$a = x, b = 1$。
教师点评和总结归纳
针对学生完成情况,教师给予及时的点评和反馈,指出学生在解题过程中的优点和 不足。
教师总结完全平方公式在因式分解中的应用及注意事项,强调公式运用的灵活性和 多样性。
教师可结合学生实际情况,对部分难题进行详细讲解和示范,帮助学生更好地理解 和掌握完全平方公式。
沪教版(上海)初中数学七年级第一学期 9.14 完全平方公式-的因式分解 课件
完全平方式特征: 首先:这个多项式应是三项式
其次:其中的两项是两个整式的平方和
最后:还有一项是这两个整式乘积的2倍 我们知道:
在运用上述公式分解因式时,关键 在于判断这个多项式是否为完全平 方式 。
辨
一 快速判断下列多项式是否为完全平方式?为什么?
辨
(1) 1+4a2
( 否)
(2)x2+2x+1
练一练1
(1) 9x2-12x+4
(2) x2-16xy+64y2
(3) a 2b2 ab 1 4
例2:分解因式
(1) (a+b)2+8(a+b)+16
例2:分解因式
(2) ax2+8ax+16a
例2:分解因式
(3) -x2-8x-16
练一练2
(1) (x-y)2-10(x-y)+25
复习:分解因式
(1) a2 b2 a ba - b
(2) x2 9 x 3x - 3
思考: x2 6x 9 如何分解因式呢?
还能用平方差公式分解吗? 提取公因式法呢?
利用乘法公式计算
a b2 a 2 2ab b2 a b2 a 2 2ab b2
反之:
x 32 = x2 6x 9
因式分解的完全平方公式
a2 2ab b2 a b2 a2 2ab b2 a b2
完全平方式
完全平方式特征:
a2 2ab b2 a b2
a2 2ab b2 a b2
首先:这个多项式应是三项式 其次:其中的两项是两个整式的平方和 最后:还有一项是这两个整式乘积的2倍
2x 3y2 = 4x2 12xy 9y2
什么叫因式分解?
把一个多项式化为几个整式 乘积的形式,叫做把这个多 项式因式分解。
《公式法》因式分解PPT课件(第2课时)
B. + −
C. − +
D. − + +
D
)
课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考
(2020•眉山)已知 + = − − ,则 −
. 4
的值为
解析:由 +
得
+
= − − ,
− + + = ,
即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解
111111完全平方公式进行因式分解一ppt课件
2
2 2
2
(2) 49b a 14ab (3) a 10a 25
2 3 2 2 3
(4) 4 x y 4 x y xy
例2:因式分解
(1) x 18 x 81
4 2
(2)
(2 x y ) 6(2 x y ) 9
2
(3)
1 2 2 x 3xy 9 y 4
2 2
(x 7)
2
(2)
(m n) 6(m n) 9
2
原式 (m n) 2 2 (m n) 3 32 解:
(m n 3) 2
请运用完全平方公式把下 列各式分解因式: 2 2 1 x 4 x 4 原式 x 2 2 2 2 a 6a 9 原式 x 3 2 2 3 4a 4a 1 原式 2a 1 2 2 2 4 9m 6mn n 原式 3m n
2
a表示:2x+y b表示:3
(2 x y) 2 2 (2 x y) 3 32
( 2 x y 3) 2
填一填
多项式
x2 6x 9
是否是完全 平方式
是
是
4 y 4 y 1
2
a、b各表 表示(a+b)2 示什么 或(a-b)2 a表示x, ( x 3) 2 b表示3 a表示2y, ( 2 y 1) 2 b表示1
9a b 3ab 1
2 2
是否是完全 平方式
a、b各表 示什么
表示(a+b)2 或(a-b)2
是 否
a表示x, b表示1/2
1 2 (x ) 2
2 2
2
(2) 49b a 14ab (3) a 10a 25
2 3 2 2 3
(4) 4 x y 4 x y xy
例2:因式分解
(1) x 18 x 81
4 2
(2)
(2 x y ) 6(2 x y ) 9
2
(3)
1 2 2 x 3xy 9 y 4
2 2
(x 7)
2
(2)
(m n) 6(m n) 9
2
原式 (m n) 2 2 (m n) 3 32 解:
(m n 3) 2
请运用完全平方公式把下 列各式分解因式: 2 2 1 x 4 x 4 原式 x 2 2 2 2 a 6a 9 原式 x 3 2 2 3 4a 4a 1 原式 2a 1 2 2 2 4 9m 6mn n 原式 3m n
2
a表示:2x+y b表示:3
(2 x y) 2 2 (2 x y) 3 32
( 2 x y 3) 2
填一填
多项式
x2 6x 9
是否是完全 平方式
是
是
4 y 4 y 1
2
a、b各表 表示(a+b)2 示什么 或(a-b)2 a表示x, ( x 3) 2 b表示3 a表示2y, ( 2 y 1) 2 b表示1
9a b 3ab 1
2 2
是否是完全 平方式
a、b各表 示什么
表示(a+b)2 或(a-b)2
是 否
a表示x, b表示1/2
1 2 (x ) 2
14.2.2 完全平方公式课件
你发现了什么?
a
(a+b)2=a2+2ab+b2
a
b
问题1:计算下列多项式的积,你能发现什么规律? (1) (p+1)2=(p+1)(p+1)= p2+2p+1 . (2) (m+2)2=(m+2)(m+2)= m2+4m+4 . (3) (p–1)2=(p–1)(p–1)= p2–2p+1 . (4) (m–2)2=(m–2)(m–2)= m2–4m+4 .
简记为: “首平方,尾平方,积的2倍放中央”
你能根据下面图形的面积说明完全平方公式吗?
证明 设大正方形ABCD的面积为S.
S1
S2
S3
S4
S= (a+b)2 =S1+S2+S3+S4= a2+b2+2ab .
几何解释
b
a
=
+
+
+
a
b
a2
ab
ab
b2
和的完全平方公式:
(a+b)2= a2+2ab+b2 .
4.由完全平方公式可知:32+2×3×5+52=(3+5)2=64, 运用这一方法计算:4.3212+8.642×0.679+0.6792= ____2_5___.归纳新知源自法则完全平 注 意 方公式
常用 结论
(a±b)2= a2±2ab+b2
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添 括号变形成符合公式的要求才行 3.弄清完全平方公式和平方差公式不同(从公式结构 特点及结果两方面)
因式分解ppt课件
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
用完全平方公式因式分解
注意符号 哦!!!
解:原式= - (x2 – 4xy + 4y2 ) = - ( x – 2y )2
1、下列分解因式正确的是( B )
A、1+4x2 =(1+2x)2
B、a2+6a+9 = (a+3)2 C、1+4m- 4m2=(1-2m)2
小心变形哦
D、x2+xy+y2=(x+y) 2
2、把下列各式分解因式:
(1)有 三 项组成。
(2)有两项分别是某两个数(或式)的
平方,
且这两项 同 号.
(3)交叉项是上述两数(或式)的乘积的 2倍或-2 倍
我们把多项式a²+2ab+b² 和 a²-2ab+b² 叫做完全平方式。
16x2 -+24x+9
. . (4x)2 -+ 2 4x 3 +32
. . a2 -+ 2 a b + b2
(1)4x2-4x+1
(2) -2xy-x²-y²
我们已经学习了两种方法进行因式分解: 第一种是提公因式法, 第二种运用公式法:如果多项式是二项式,
考虑运用平方差公式,如果多项式是三项式, 考虑运用完全平方公式。
(1)3ax2 + 6axy+ 3ay2
注意啦!如果多项式中有公因式,应先提取公因式!
简单记成:一提二套三彻底
练一练:把下列各式分解因式: (1) ax2 + 2a2x + a3
(2)(m + n )2 + 4(m + n) + 4
求华
学习目标:
1、经历用完全平方公式法分解因式的探索过程, 理解公式的意义。
因式分解(完全平方公式)课件
3 因式分解(完全平方公式)
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤
完全平方公式分解因式课件
2023
完全平方公式分解因 式课件
https://
REPORTING
2023
目录
• 引言 • 完全平方公式分解因式的基本概念 • 完全平方公式分解因式的实例解析 • 完全平方公式分解因式的练习题 • 总结与回顾
2023
PART 01
引言
REPORTING
主题简介
01
2023
PART 02
完全平方公式分解因式的 基本概念
REPORTING
完全平方公式的定义
完全平方公式
一个二次多项式,可以表示为 $(a+b)^2$或$(a-b)^2$的形式,其 中$a$和$b$是常数。
完全平方公式分解因式
将一个完全平方公式分解为多个一次 多项式的乘积。
完全平方公式分解因式的步骤
完全平方公式分解因式的应用
化简二次多项式
通过完全平方公式分解因式,可 以将一个复杂的二次多项式化简 为一个更简单的形式,便于进一
步计算或分析。
解决二次方程
在解二次方程时,可以通过完全平 方公式分解因式来化简方程,从而 更容易找到解。
证明恒等式
通过完全平方公式分解因式,可以 证明一些恒等式,如$(a+b)^2 = a^2 + 2ab + b^2$等。
练习题二
总结词:中等难度
详细描述:此练习题在难度上有所提升,需要学生灵活运用完全平方公式进行因式分解,并解决一些 实际问题。
练习题三
总结词
高难度挑战
详细描述
此练习题难度较高,需要学生具备较强的数学思维和解题能力。题目涉及多个知识点,需要学生综合运用完全平 方公式和其他数学技巧进行解答。
2023
实例二
完全平方公式分解因 式课件
https://
REPORTING
2023
目录
• 引言 • 完全平方公式分解因式的基本概念 • 完全平方公式分解因式的实例解析 • 完全平方公式分解因式的练习题 • 总结与回顾
2023
PART 01
引言
REPORTING
主题简介
01
2023
PART 02
完全平方公式分解因式的 基本概念
REPORTING
完全平方公式的定义
完全平方公式
一个二次多项式,可以表示为 $(a+b)^2$或$(a-b)^2$的形式,其 中$a$和$b$是常数。
完全平方公式分解因式
将一个完全平方公式分解为多个一次 多项式的乘积。
完全平方公式分解因式的步骤
完全平方公式分解因式的应用
化简二次多项式
通过完全平方公式分解因式,可 以将一个复杂的二次多项式化简 为一个更简单的形式,便于进一
步计算或分析。
解决二次方程
在解二次方程时,可以通过完全平 方公式分解因式来化简方程,从而 更容易找到解。
证明恒等式
通过完全平方公式分解因式,可以 证明一些恒等式,如$(a+b)^2 = a^2 + 2ab + b^2$等。
练习题二
总结词:中等难度
详细描述:此练习题在难度上有所提升,需要学生灵活运用完全平方公式进行因式分解,并解决一些 实际问题。
练习题三
总结词
高难度挑战
详细描述
此练习题难度较高,需要学生具备较强的数学思维和解题能力。题目涉及多个知识点,需要学生综合运用完全平 方公式和其他数学技巧进行解答。
2023
实例二
因式分解(完全平方公式)课件
公式
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。
人教版八年级数学上册教学课件14.3 第三课时 用完全平方公式分解因式
18.(10分)若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n分解因
式.
解:由题意,有|m+4|+(n2-2n+1)=0,即|m+4|+(n-1)2=0, ∴m=-4,n=1.∴x2+4y2-mxy-n=x2+4y2+4xy-1=(x+2y)2-12= (x+2y+1)(x+2y-1)
完全平方式 1.(3分)下列式子中是完全平方式的是( D ) A.a2+ab+b2 B.a2+2a+2 C.a2-2b+b2 D.a2+2a+1 2.(3分)(安顺中考)若x2+2(m-3)x+16是关于x的完全平方式,则m=-__1_或_.7 3.(3分)已知9x2-12xy+m是一个完全平方式,则m=_4_y_2_.
14.在△ABC3中,已知三边a,b,c满足a4+2a2b2+b4-2a3b-2ab3=0,则△ABC的 形状是( A )
A.等腰三角形 B.等腰直角三角形
C.等边三角形 D.直角三角形
二、填空题(每小题4分,共8分) 3
15.若a+b=3,则2a2+4ab+2b2-6的值为__12__.
16.若A=(2 019-1 985)2,B=(2 019-1 985)(2 018-1 986),C=(2 018-1
(3)请你模仿以上方法尝试对多项式(a2-2a-1)·(a2-2a+3)+4进行因式分解
解:设a2-2a=b, 原式=(b-1)(b+3)+4 =b2+2b-3+4 =(b+1)2 =(a2-2a+1)2 =[(a-1)2]2 =(a-1)4
9.(8分)把下列各式因式分解: (1)4x2+y2-4xy;
解:原式=(2x-y)2 (2)9-12a+4a2; 解:原式=(3-2a)2 (3)x3-6x2+9x;
用完全平方公式分解因式课件
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
详细描述
完全平方项是因式分解中的重要部分,可以通过观察多项式的各项,寻找是否存在一个整数的平方, 并且这个整数的两倍的平方根是另一个整数。例如,在多项式$x^2 + 2x + 1$中,$x^2$和$1$分别 是整数1的平方和其两倍的平方根的平方,因此这是一个完全平方项。
识别平方差项
总结词
平方差项是指一个多项式中,有一项是两个整数的平方差,并且这两个整数之间 相差1。
详细描述
平方差项也是因式分解中的重要部分,可以通过观察多项式的各项,寻找是否存 在两个整数的平方差,并且这两个整数之间相差1。例如,在多项式$x^2 - 1$中 ,$x^2$和1分别是整数x和x+1的平方,因此这是一个平方差项。
识别常数项
总结词
常数项是指一个多项式中,没有变量的一项。
详细描述
常数项在因式分解中也非常重要,可以通过观察多项式的各项,寻找是否存在常数项。常数项可以作为因式分解 的一部分,帮助我们简化多项式。例如,在多项式$2x^2 + 4x + 2$中,常数项是2。
实例三:$x^2 + 8x + 16$
总结词
完全平方公式分解
详细描述
$x^2 + 8x + 16$ 可以使用完全 平方公式分解为 $(x + 4)^2$。
01
完全平方公式分解 因式的练习题
练习题一
详细描述:该练习题是一个完全 平方的因式分解,可以直接使用 完全平方公式$(a+b)^2 = a^2 + 2ab + b^2$进行分解,其中 $a=x$,$b=5$。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方式
示什么 或(a-b)2
是
a表示x, b表示1/2
(x 1)2 2
9a2b2 3ab 1
否
1 m2 3mn 9n2 4
是
a表示1
2
mБайду номын сангаас
,
(
1
m
3n)
2
b表示3n 2
x6 10x3 25
否
填空:
(1)a2+ 2ab +b2=(a+b)2 (2)a2-2ab+ b2 =(a-b) 2 (3)m2+2m+ 1 =( m+1 ) 2
现在我们把乘法公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子 叫做完全平方式
两个“项”的平方和加 上(或减去)这两“项” 的积的两倍
二、完全平方式
课前复习:1、分解因式学了哪些方法
提取公因式法:ma+mb+mc=m(a+b+c) 运用公式法: ① a2-b2=(a+b)(a-b)
练习 把下列各式分解因式
① ax4 ax2
② x4-16
解:原式=ax2(x2-1)
解:原式=(x2+4)(x2-4)
=ax2(x+1)(x-1)
=(x2 +4)(x+2)(x-2)
(4)n2-2n+ 1 =( n-1) 2
(5)x2-x+0.25=( x-0.5 ) 2 (6)4x2+4xy+( y ) 2=( 2x+y ) 2
(2)a2-2ab+ b2 = (a-b) 2
(2)a2-2·a·3+
=(a-3) 2
(2)m2-2·m·7+ (2)x2-2·x·2+
=( - ) 2 =( - ) 2
a2 2ab b2
完全平方式的特点:
1、必须是三项式(或可以看成三项的) 2、有两个同号的平方项 3、有一个乘积项(等于平方项底数的±2倍)
a2 2abb2 a2 2abb2
完全平方式的特点:
1、必须是三项式;
2、有两个“项”的平方;
3、有这两“项”积的2倍或-2倍。
首2 2首尾尾2
判别下列各式是不是 完全平方式
(2)x2-2·x·4+
=( ) 2
请补上一项,使下列多项
式成为完全平方式
1 x2 __2_x__y__ y2 2 4a2 9b2 ___1_2_a_b_ 3 x2 _4__x_y__ 4 y2
4 a2 __a_b____ 1 b2
4
5 x4 2x2 y2 ____y_4_
判断下列各式是不是完全平方式,并说说理
(2a 3b)2
(6) 16x4-8x2+1 解: 原式 (4x 2 )2 2 (4x 2 ) 112
(4x2 1)2
(2x)2 12 2
(2x 1)(2x 1)2
(2x 1)2 (2x 1)2
判断因式分解正误。
(1) -x2-2xy-y2= -(x-y)2
错。应为: -x2-2xy-y2
(m n 3)2
例题
(3) 3ax2+6axy+3ay2
解:原式 3a(x2 2xy y2 )
3a(x y)2
(4) -x2-4y2+4xy
解:原式 (x2 - 4xy 4y2 )
[x2 2 x (2y) (2y)2 ]
(x 2 y)2
请运用完全平方公式把下
列各式分解因式: 1 x2 4x 4 原式 x 22
12
例题:把下列式子分解因式
4x2+12xy+9y2
2x2 22x3y 3y2 2x 3y2
首2 2首尾 尾2 =(首±尾)2
例题
(1) x2+14x+49
解:原式 x2 2 x 7 72
(x 7) 2
(2) (m n)2 6(m n) 9 解:原式 (m n)2 2 (m n) 3 32
(x y)2
(a b)2
=-( x2+2xy+y2)
=-(x+y)2
(2)a +2ab-b 2 (x y)2
2 (a b)2
错。此多项式不是完全平方式
例题
(5) 4a2 12ab 9b2
解: 原式 (2a) 2 2 (2a ) (3b) (3b)2
(2a 3b)2
(6) 16x4-8x2+1 解: 原式 (4x 2 )2 2 (4x 2 ) 112
a表示x, b表示4
(x 4)2
a表示2y2, b表示1
(2 y2
1) 2
4 y2 12 xy 9x2
(a b)2 2(a b) 1
是
a表示2y, (2 y 3x)2
b表示3x
是
a表示(a+b), (a b 1) 2
b表示1
填一填
多项式
x2 x 1 4
是否是完全 a、b各表 表示(a+b)2
由。
(1)
4a2+2X2a+1
(2a 1)2
你会吗?
(2) x2+4x y+4y2 (x 2 y)2
(3) x2- 6x -+ 9 (x 3)2
(4) a2-2ab+ b2 (a b)2
(5) 4a2+2ab+ b2 (2a 1 b)2
! (6)
(a+b)2+2(a+b)
+1
a
2 b
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
填一填
多项式
x2 8x 16
4y4 4y2 1
1 9b2
x2 1 x 1 24
x2 4x 4y2
是否是完全 平方式
是 是
否2 否
否
a、b各表 表示(a+b)2
示什么 或(a-b)2
2 a2 6a 9 原式 x 32
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
例题
(5) 4a2 12ab 9b2
解: 原式 (2a) 2 2 (2a ) (3b) (3b)2
(有公因式,先提公因式。) (因式分解要彻底。)
课前复习:
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
计算下列各式
1.(m-4n)2
3.(a+b)2
2.(m-4n)2 4.(a - b)2
分解因式:
(1)m2-8mn+16n2 (2)m2+8mn+16n2 (3)a2+2ab+b2 (4)a2-2ab+b2