卧式储罐液位高度计算方式
卧式储罐不同液位下的容积计算
卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图d参数:l :椭圆圭寸头曲面高度(m );l i :椭圆圭寸头直边长度(m);L :卧罐圆柱体部分长度(m);r :卧式储罐半径(d/2, m);d:卧式储罐内径,(m)h:储液液位高度(m);V:卧式储罐总体积(m3);P储液密度(kg/m3)V h:对应h高度卧罐内储液体积(m3);m h:对应h高度卧罐内储液重量(kg);椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
简化模型图如下卧式储罐内储液总体积计算公式:若密度为p,则卧式储罐内储液总重量为:m h V h表1卧式储罐不同液位下容积(重量)PrLhV hm h液体密度 (kg/m 3)储罐半径 (m )圆柱体部分长度(m )储液液位高度(m )储液体积 (m 3)储液重量 (kg )2r 3LLr 2arcsi4r*r 2rh-r 2以储罐底部为起点的液咼该计算公式推导过程如下卧式储罐不同液位下的容积简化计算公椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
(1)椭圆球体部分该椭圆球体符合椭圆球体公式:2 2 2 2 2 2务告务 1 其中a=b=r,则有x 2 务 1 a b c a c垂直于y 轴分成无限小微元,任一微元面积为:S yi —(a 2 y 2)a当液面高度为h 时,椭圆球体内液氨容积为h「3 o 3V1=aS yj dya^(a 2 y 2)dy許2h自(2 )直段筒体部分:筒体的纵断面方程为x 2 y 2 a 2任一微元的面积为S yj 2、.、a 2 y 2dy则筒体部分容积为:L 2 a 2 y 2dy La 2(arcsin 」aahV2aSyj.2 _____________a 2八 2)( arcsin -)2a 2(3)卧式储罐储液总体积总容积为V 二V1+V2 ,232c 2- 4h 2a 2(. h h r .2、V= (a h)+ La (arcsin 2 ; a h ) a 3 3 a a2此公式中液位高度h 是以储罐内径中心为原点,其中a=b=r 化简后卧式储罐储液总体积为:21 三 Lr 2arcsin^ 3L rr 2-h 2r 21 50 1.3 0.65 8.58 0 1.3 25.078 25.0780.31%1 50 1.3 0.65 8.58 0.975 2.275 46.537 46.5371501.30.658.581.32.650.15550.1550.31%若液位高度h 以卧罐底部为起点,如下图/\ A / __________\rf (1)f\ y丿 1 二;o h \ ............. .... J V7\…一j... J■厶■N K A *则卧式储罐内储液总体积计算公式:若密度为p,则卧式储罐内储液总重量为:m hV hprLhV hm h液体密度 储罐半径 圆柱体部分长度储液液位高度储液体积 储液重量(kg )(kg/m 3)(m )(m )(m )(m 3)11.3 8.580.3253.619 3.6192r3LLr 2 arcsi®rh-r r 2h-r 2其它方法如下:第一种方法| PDF.卧式储罐不同液位 下的容积简化计算公卧式储罐内储液总体积计算公式:(hr ) 2--------------- K r2l (h r )[1」 宀]L[( h r)「2hr h 2 r 2 arcsi n( ---------------------------- )]3 rr若密度为p,则卧式储罐内储液总重量为:Vh V此方式用到参数较多P、V、r、l、L、h。
卧式储罐不同液位下的容积计算
卧式储罐不同液位下的容积计算卧式储罐是一种用于存储液体的设备,它的横向布置使得其在不同液位下的容积计算略有复杂。
在这篇文章中,我们将介绍如何计算卧式储罐在不同液位下的容积。
首先,我们需要了解卧式储罐的基本结构。
卧式储罐通常由圆筒形的罐体和两个半圆形的罩盖组成。
储罐的圆筒体积可以通过圆筒的高度和直径计算得到,罩盖的体积可以通过半球的体积公式计算得到。
卧式储罐在不同液位下的容积计算涉及到两个部分:液体位于圆筒部分的容积和液体位于罩盖部分的容积。
下面我们将逐步介绍如何计算这两个部分的容积。
液体位于圆筒部分的容积计算:液体位于圆筒部分的容积可以通过圆筒切割方法得到。
切割后的圆筒可以被视为一个高度为液位高度的小圆柱,其底面积等于卧式储罐的底面积。
因此,液体位于圆筒部分的容积等于卧式储罐的底面积乘以液位高度。
液体位于罩盖部分的容积计算:液体位于罩盖部分的容积可以通过罩盖切割方法得到。
根据切割后的罩盖形状,液体位于罩盖部分的容积可以分为顶圆锥体积和底椭球体积两部分。
顶圆锥体积可以通过圆锥体积公式计算得到。
圆锥体积的公式为V=(1/3)πr²h,其中V表示体积,r表示圆锥底面半径,h表示圆锥高度。
在这里,圆锥底面半径等于卧式储罐的直径,圆锥高度等于圆柱的高度减去液位高度。
底椭球体积可以通过椭球体积公式计算得到。
椭球体积的公式为V = (4/3)πabc,其中V表示体积,a,b和c分别表示椭球的半长轴、半短轴和半焦距。
在这里,半长轴等于卧式储罐的直径,半短轴等于圆柱的直径,半焦距等于半短轴减去液位高度。
最后,将液体位于圆筒部分的容积和液体位于罩盖部分的容积相加,即可得到卧式储罐在其中一液位下的总容积。
需要注意的是,以上计算方法均基于假设卧式储罐的罩盖为半圆形和圆柱体形状,实际情况可能会略有差异。
因此,在进行具体容积计算时,需要根据卧式储罐实际的罩盖形状进行相应的修正。
总之,卧式储罐在不同液位下的容积计算涉及到液体位于圆筒部分的容积和液体位于罩盖部分的容积。
卧式椭园封头储罐内液体质量与液位高度的对应关系计算
卧式椭园封头储罐内液体质量与液位高度的换算方法
利用电子表格可以计算更复杂的问题,而使计算
变得十分容易,下面是就公司内一个卧式储罐内
储存甲醛成品数量的计算方法。
卧式罐如右图所示:筒体部分长:12.65m ,
内部直径3.0m ,标准椭园封头a/b=2 直边:0cm ;
首先,把整体罐的容积分成两部分计算:即封
头部分的容积V2和筒体部分所对应的容积V1,
再测出液体常温状态下的密度(ρ)然后再代
入液体质量公式:M =ρ×(V1+V2) (1)
(一)筒体部分(如右图所示):
令过圆心的铅直线为x 轴,过圆底边水平切线为y 轴,
罐内液位高度为h ,则圆的方程为:y
2+(x-1.5)2=1.52
图中阴影部分的面积为: ()()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-+---=∙=+⎪⎭
⎫ ⎝⎛-+---=--=⎰ππ125.15.15.125.25.15.15.1125.15.15.125.25.15.15.15.15.1222122022h arcSin x h L S
L V h arcSin x h dx
x S h
(二)封头部分:
椭圆水平截面积为:
再将V1与V2代入(1)式,然后用电子表Excel 计算出液位高度每升高1cm 所对应的液体质量,过程十分简便。
愚公2013-4-20 ()[]()π
πππ5625.0125.15.165.125.223202-+-=--=⎰h h dh h V h ()[]2
5.125.22h ab S --==ππ。
2卧式容器液位高度与体积的计算方法
以 D = 1 000 mm 、L = 3 000 mm 的标准椭圆封 头卧式容器为例进行计算 ,在软件程序中依次输入 100 mm ,200 mm , ……,1 000 mm 等高度 , 计算结
果见表 1 。
表 1 不同液位高度时的介质体积
液位高度
介质体积
液位高度
介质体积
/ mm 100 200 300 400 500
Public Functio n LBase (ByVal r A s Single ,By2 Val x A s Single) A s Single
LBase = PI/ 4 3 (r^2 3 x - x^3/ 3) End Functio n Public Functio n LBowArea (ByVal r A s Sin2 gle ,ByVal h A s Single) A s Single LBowArea = LBow (r , - r + h) - LBow (r , r) End Functio n Public Functio n LBow (ByVal r A s Single ,By2 Val x A s Single) A s Single LBow = 2 3 ( x/ 2 3 Sqr ( r^2 - x^2) + r^2/ 2 3 Arcsin ( x/ r) ) End Functio n Public Functio n Arcsin (ByVal x A s Single) If x = 1 ThenArcsin = PI/ 2 End If If x = - 1 ThenArcsin = - PI/ 2 End If If x < > 1 And x < > - 1 Then Arcsin = At n ( x/ Sqr ( - x 3 x + 1) ) End If End Functio n
卧式储罐不同液位下地容积(高质量)计算
卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图参数:l:椭圆封头曲面高度(m);l i:椭圆封头直边长度(m);L:卧罐圆柱体部分长度(m);r:卧式储罐半径(d/2,m);d:卧式储罐径,(m)h:储液液位高度(m);V:卧式储罐总体积(m3);ρ:储液密度(kg/m3)V h:对应h高度卧罐储液体积(m3);m h:对应h高度卧罐储液重量(kg);椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
简化模型图如下。
以储罐底部为起点的液高卧式储罐储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐储液总重量为:hh V m ρ=表1 卧式储罐不同液位下容积(重量)该计算公式推导过程如下卧式储罐不同液位下的容积简化计算公椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
以储罐中心为起点的液高(1)椭圆球体部分该椭圆球体符合椭圆球体公式:2222221x y z a b c ++= 其中a=b=r ,则有222221x y z a c++= 垂直于y 轴分成无限小微元,任一微元面积为:22()yi cS a y aπ=-当液面高度为h 时,椭圆球体液氨容积为 V1=hyi a S dy -⎰ 22()haca y dy aπ-=-⎰3322()33ch a a h a π=-+ (2)直段筒体部分:筒体的纵断面方程为222x y a +=任一微元的面积为yj S = 则筒体部分容积为:2hyj a V S -=⎰ha L -=⎰2(arcsin )2h La a π=+(arcsin)22h a ππ-≤≤ (3)卧式储罐储液总体积总容积为V=V1+V2,V=23242()33ch a a h a π-++2(arcsin )2h La a π+ 此公式中液位高度h 是以储罐径中心为原点,其中a=b=r 化简后卧式储罐储液总体积为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2-arcsin 3212222πh r r h r h Lr L r V h若液位高度h 以卧罐底部为起点,如下图则卧式储罐储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐储液总重量为:hh V m ρ=其它方法如下:第一种方法卧式储罐不同液位下的容积简化计算公卧式储罐储液总体积计算公式:)]arcsin(2)[(]3)(1)[(222232rr h r h hr r h L r r h r h l V V h -+--+---+=π若密度为ρ,则卧式储罐储液总重量为:hh V m ρ=此方式用到参数较多ρ、V 、r 、l 、L 、h 。
卧式储罐液位对应容积详细计算过程
卧式储罐液位对应容积详细计算过程计算卧式储罐液位对应的容积,需要知道储罐的尺寸和形状。
以下是一个基于圆柱形储罐的例子:1. 首先,确定储罐的直径(D)和长度(L)。
这些信息应该在储罐的技术规格中找到。
2. 然后,确定液位的高度(h)。
这通常通过液位计或者其他测量设备获取。
3. 使用以下公式来计算液体的体积(V):V = L * (D^2 * arcsin((D - 2h) / D) - (D - 2h) * sqrt(2 * Dh - h^2)) / 4其中,"arcsin" 是反正弦函数,"sqrt" 是平方根函数。
注意:这个公式假设储罐的两端是半圆形的,并且储罐是完全水平的。
如果储罐的形状或者位置与这些假设不符,那么可能需要使用不同的公式。
另外,这个公式给出的是液体的体积,单位通常是立方米。
如果需要得到液体的质量,那么还需要知道液体的密度,然后使用体积乘以密度的方式来计算。
最后,这个计算过程可能会有一些误差,因为它忽略了储罐壁的厚度以及液位计的误差等因素。
在需要高精度的应用中,可能需要使用更复杂的方法来计算液位对应的容积。
详细说明一下卧式圆柱形储罐的液位对应容积的计算过程:1. 假设储罐的几何参数为:直径D = 3米长度L = 10米2. 当液位高度为h时,储罐内液体的截面积为:-当h<=D/2时,截面积为:S = πh^2/4-当h>D/2时,截面积为:S = (πD^2/4) - [(D/2)^2 * arccos((D-2h)/D) - (D-2h) * (2hD-h^2)^(1/2)]3. 因此,当h<=D/2时,液体体积为:V = S * L = (πh^2/4) * L当h>D/2时,液体体积为:V = S * L = {πD^2/4 - [(D/2)^2 * arccos((D-2h)/D) - (D-2h) * (2hD-h^2)^(1/2)]} * L4. 带入数字,可以得到不同液位h对应的液体体积V。
卧式储罐不同液位下的容积计算
卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图d参数:l :椭圆封头曲面高度(m );l i :椭圆封头直边长度(m);L:卧罐圆柱体部分长度(m);r :卧式储罐半径(d/2,m);d:卧式储罐内径,(m)h:储液液位高度(m);V:卧式储罐总体积(m3);ρ:储液密度(kg/m3)V h:对应h 高度卧罐内储液体积(m3);m h:对应h 高度卧罐内储液重量(kg);椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
简化模型图如下卧式储罐内储液总体积计算公式:若密度为 ρ,则卧式储罐内储液总重量为:m h V h表 1 卧式储罐不同液位下容积(重量)ρrL h V hm h液体密度 (kg/m 3)储罐半径 (m )圆柱体部分长度 (m )储液液位高度(m )储液体积 (m 3)储液重量 (kg )2r 3LLr 2 arcsin h-rrh-2rr 2rh-r 2以储罐底部为起点的液高该计算公式推导过程如下卧式储罐不同液位下的容积简化计算公椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
1) 椭圆球体部分该椭圆球体符合椭圆球体公式:2 2 2 2 2 2x 2 y 2 z 2 1 其中 a=b=r ,则有 x 2 y z2 1 a b c a c垂直于 y 轴分成无限小微元,任一微元面积为:S yic (a 2y 2)a当液面高度为 h 时,椭圆球体内液氨容积为2) 直段筒体部分:筒体的纵断面方程为 x 2 y 2 a 2 任一微元的面积为 S yj 2 a 2 y 2 dy 则筒体部分容积为:haS yjL a2 a 2 y 2dyLa 2(arcsinhahV1= a S yi dyhc2 2a a c(a 2 y 2)dyc(a 2ha33 h3 2a 3 33)3)卧式储罐储液总体积总容积为 V=V1+V2 ,此公式中液位高度 h 是以储罐内径中心为原点,其中 a=b=r 化简后 卧式储罐储液总体积为:实例:某热电厂液氨罐尺寸为:储罐体积 50m 3,直段筒体长度 L 1=8480mm , 封头直段长度 L 2=40mm (圆柱体部分长度为 (L 1+L 2/2)=8580mm ),筒体半径R=a=b=1300mm ,封头高度 c=650mmρV r l L h h 尺 V h m h误差 液体密度( kg/m 3)储罐总体积 (m 3) 储罐半 径 (m )封头高 度 (m )圆柱体部分 长度( m ) 储液液位高 度(中点为 坐标原点) (m )实际标尺 刻度储液体积 (m 3) 储液重量 (kg )不同液高下计算得到的 体积与实际 储液体积间 误差1 50 1.3 0.65 8.58 -1.3 0 0.000 0.0000.00%1501.30.658.58-0.9750.3253.6193.619arcsinhV=c(a 2h4h 2a2a 3)+ La 2(arcsinh3a 2rLr2arcsin h3Lh2r 2 -h 2r 2a1 50 1.3 0.65 8.58 0 1.3 25.078 25.0780.31%1 50 1.3 0.65 8.58 0.975 2.275 46.537 46.5371501.30.658.581.32.650.15550.1550.31%若液位高度 h 以卧罐底部为起点,如下图rroh则卧式储罐内储液总体积计算公式:若密度为 ρ,则卧式储罐内储液总重量为:m hV hρrL h V hm h液体密度 储罐半径 圆柱体部分长度 储液液位高度储液体积 储液重量(kg )(kg/m 3)(m )(m )(m )(m 3)11.3 8.580.3253.619 3.6192r3LLr 2 arcsin h-rrh r -2r r 2 rh-r 211.3 8.58 1.3 25.078 25.0781 1.3 8.58 2.275 46.537 46.537其它方法如下:第一种方法卧式储罐不同液位下的容积简化计算公卧式储罐内储液总体积计算公式:(h r )2 h r2l (h r)[1 (h r3) ] L[(h r) 2hr h2 r2 arcsin( h r)]3r r若密度为ρ,则卧式储罐内储液总重量为:m h V hρV r l L h V h m h 误差V h V2此方式用到参数较多 ρ、V 、r 、l 、L 、h 。
卧式储罐不同液位下的容积(质量)计算
卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图参数:l:椭圆封头曲面高度(m);l i:椭圆封头直边长度(m);L:卧罐圆柱体部分长度(m);r:卧式储罐半径(d/2,m);d:卧式储罐内径,(m)h:储液液位高度(m);V:卧式储罐总体积(m3);ρ:储液密度(kg/m3)V h:对应h高度卧罐内储液体积(m3);m h:对应h高度卧罐内储液重量(kg);椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
简化模型图如下。
以储罐底部为起点的液高卧式储罐内储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=表1 卧式储罐不同液位下容积(重量)该计算公式推导过程如下卧式储罐不同液位下的容积简化计算公椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
以储罐中心为起点的液高(1)椭圆球体部分该椭圆球体符合椭圆球体公式:2222221x y z a b c ++= 其中a=b=r ,则有222221x y z a c++= 垂直于y 轴分成无限小微元,任一微元面积为:22()yi cS a y aπ=-当液面高度为h 时,椭圆球体内液氨容积为V1=h yi a S dy -⎰ 22()haca y dy aπ-=-⎰3322()33ch a a h a π=-+ (2)直段筒体部分:筒体的纵断面方程为222x y a +=任一微元的面积为yj S = 则筒体部分容积为:2hyj a V S -=⎰ha L -=⎰2(arcsin )2h La a π=+(arcsin)22h a ππ-≤≤ (3)卧式储罐储液总体积总容积为V=V1+V2,V=23242()33ch a a h a π-++2(arcsin )2h La a π+ 此公式中液位高度h 是以储罐内径中心为原点,其中a=b=r 化简后卧式储罐储液总体积为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2-arcsin 3212222πh r r h r h Lr L r V h若液位高度h 以卧罐底部为起点,如下图则卧式储罐内储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=其它方法如下:第一种方法卧式储罐不同液位下的容积简化计算公卧式储罐内储液总体积计算公式:)]arcsin(2)[(]3)(1)[(222232rr h r h hr r h L r r h r h l V V h -+--+---+=π若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=此方式用到参数较多ρ、V 、r 、l 、L 、h 。
椭圆封头卧式储罐相应液位体积计算
椭圆封头卧式储罐相应液位体积计算首先,让我们了解一下椭圆封头卧式储罐的结构特点。
椭圆封头卧式储罐由一个圆筒体和两个椭圆形封头组成。
储罐的长轴长度为2a,短轴长度为2b。
液位高度为h,液位高度H在长轴上的位置为x。
储罐的横截面积可以近似看作一个椭圆形。
首先,我们需要计算椭圆封头卧式储罐的横截面积,然后将其乘以液位高度h,即可得到液位对应的体积。
根据椭圆的性质,椭圆的横截面积可以表示为S=πab。
但是由于液位高度H可能在长轴上的任意位置,所以需要对横截面积进行修正。
储罐的长轴上一般会有一条水平导流槽,导流槽的宽度一般为b/8、当液位高度H小于等于b/8时,导流槽会被液体完全淹没,此时椭圆的横截面积可以近似看作是一个圆形,其半径为b/2、当液位高度H大于b/8时,导流槽会露出水面,此时需要计算椭圆截面的面积。
(1)当H>b/8时,椭圆的横截面面积可以通过使用割线法来进行计算。
割线法的基本原理是通过在椭圆上取两个相距一定角度的点来近似表示此两点之间的弧长。
具体的计算公式如下:
L=2a√[1-(x/a)²]
S=πbL/360
其中L表示椭圆截面上两点之间的弧长,S表示椭圆截面的面积。
(2)当H<=b/8时,椭圆的横截面面积近似为一个圆的面积,可以表示为S=π(b/2)²。
通过使用以上的公式,我们可以计算出椭圆封头卧式储罐中液位高度为H的液体体积。
在实际应用中,我们一般将椭圆封头卧式储罐的液位和体积计算与液位计进行配合使用。
液位计可以根据液体的压力、浮力或者声波等原理来实现对液位的准确测量。
卧式容器液位体积计算
卧式容器液位体积计算
液位的测量方式有很多种,常用的液位传感器包括浮子式液位计、压力式液位计、雷达液位计、超声波液位计等。
这些液位传感器可以精确地测量液位并将其转换为相应的电信号。
液位体积计算的原理是根据容器的几何形状和液位的高度来计算液体的体积。
在卧式容器中,通常采用水平切面积乘以液位高度的方法进行计算。
卧式圆柱形容器的液位体积计算可以使用以下公式:
V=π*R^2*H
如果容器的底部是平的,液体的高度可以通过测量液体表面到容器底部的垂直距离来确定。
对于容器的底部是圆锥形的情况,液位体积计算的公式略有不同。
在这种情况下,可以使用以下公式进行计算:
V=(1/3)*π*(R1^2+R2^2+R1*R2)*H
其中,V表示液体的体积,π表示圆周率,R1表示底部较小半径(圆锥顶部半径),R2表示底部较大半径(圆锥底部半径),H表示液位的高度。
卧式容器的液位体积计算涉及到容器的几何形状和液体的液位测量,因此在进行计算时需要准确地测量液位和容器的尺寸。
此外,还需要注意单位的一致性,在计算中使用相同的单位。
液位体积计算在工业生产中非常重要,可以帮助企业准确掌握液体的储存量、流量和消耗情况,从而进行生产计划和资源调配。
此外,液位体
积计算还可以用于监测液体储罐的安全性能,确保液位不超过容器的额定容积,避免溢出和泄露。
总之,卧式容器液位体积计算是一项重要的工程计算,涉及到液位测量和容器几何形状分析。
通过准确地测量液位和应用相应的公式,可以计算出容器中液体的体积,为工业生产提供准确的数据支持。
储罐高低液位计算公式
储罐高低液位计算公式储罐的高低液位计算在很多工业领域都是非常重要的一环,它关系到生产的安全、效率以及成本等诸多方面。
咱先来说说储罐高低液位计算的基本原理哈。
这就好比你装水的杯子,你总得知道它能装多少,还剩下多少空间,不然一不小心就溢出来或者不够用啦。
想象一下,有一个圆柱形的储罐,就像一个巨大的水桶。
要计算它的液位,首先得知道这个储罐的直径和高度。
比如说,有个储罐直径是 5 米,高度是 10 米。
那液位高度和储罐内液体体积之间的关系是啥呢?这就得用到数学公式啦。
假设液位高度是 h 米,那液位以下的体积 V 就可以通过公式V = π × (d/2)^2 × h 来计算,这里的 d 就是储罐的直径。
举个例子吧,有一次我去一家化工厂参观,正好看到他们在测量一个储罐的液位。
工人们拿着各种工具,一脸严肃认真。
我凑过去看了看,发现他们就是按照这些公式在算呢。
当时那个储罐直径是 4 米,测量得到的液位高度是3 米,然后他们就迅速算出了里面液体的体积。
再说说实际应用中要注意的点。
比如,温度对液体体积的影响可不能忽略。
热胀冷缩嘛,同样的液位高度,在不同温度下,液体的实际体积可能会有所不同。
还有,储罐的形状也不总是那么规则的圆柱形,可能会有一些特殊的形状,这时候计算就更复杂啦。
另外,测量液位的工具和方法也得准确可靠。
如果测量出了偏差,那算出来的结果可就差得远喽。
我还听说过一个事儿,有个小工厂因为液位测量不准确,结果在生产过程中出了事故,造成了不小的损失。
在计算储罐高低液位的时候,还得考虑液体的密度。
不同的液体,密度可不一样。
比如说油和水,密度差别就挺大。
如果把密度搞错了,算出来的质量啥的也就不准啦。
总之,储罐高低液位的计算虽然看起来是个简单的数学问题,但在实际操作中,需要考虑的因素可多着呢。
只有把这些都考虑周全,才能保证生产的安全和顺利进行。
所以啊,大家可别小看这储罐高低液位的计算公式,它可是在工业生产中起着大作用呢!。
卧式容器任意液位高度下液体体积的计算
卧式容器任意液位高度下液体体积的计算卧式容器是一种常见的储存和运输液体的设备,它具有较大的容量和较小的高度,广泛应用于石油、化学、食品、医药等工业领域。
在实际工程中,经常需要计算卧式容器在不同液位高度下的液体体积,以方便控制和管理。
液体体积的计算是通过确定液位高度来实现的。
在卧式容器中,一般将壁厚忽略,将容器看作一个圆柱体。
液体体积的计算与液位高度的测量方式有关,常见的液位测量方式包括玻璃水尺、压力变送器、超声波液位计等。
以玻璃水尺测量液位高度为例,液体体积的计算可以按照以下步骤进行:1.确定容器的内径和长度,分别记为D和L。
2.安装玻璃水尺,将液位高度读数记为h。
3.根据液位高度h计算液位高度所对应的弧长,记为S。
弧长S=πD×h÷360。
4.根据弧长S计算液体体积V。
若0 ≤ h ≤ D/2,液体体积V = L × (D² × arcsin(1 - 2h/D) - (D - 2h) × √(2hD - h²)) ÷ 4;若D/2 < h ≤ D,液体体积V = L × (D² × arcsin(1 - 2h/D) + (2h - D) × √(2hD - h²)) ÷ 4上述计算公式是基于假设液体的表面是平坦的,并且容器的形状是圆柱体。
除了基于几何结构的计算方法,还可以利用浸没法进行液体体积的计算。
浸没法是通过将卧式容器完全浸没在另一个容器中,并记录液位的变化来实现的。
根据液位的变化,可以计算出容器内的液体体积。
根据浸没法的原理,还可以使用更精确的方法进行液体体积的计算,例如基于三维模型的计算方法。
这种计算方法是利用计算机辅助设计软件,根据卧式容器的三维模型和液体表面的三维形状,通过积分计算等数值分析方法,实现更精确的液体体积计算。
总之,在工程应用中,液体体积的计算是卧式容器设计和运输过程中非常重要的一部分。
卧式储罐不同液位下的容积计算
卧式储罐不同液位下的容积计算卧式储罐是一种常见的用于储存液体的设备,其容积计算是用户在使用储罐过程中需要了解的重要参数之一、液位与容积之间存在着一定的关系,可以通过液位的变化来计算储罐在不同液位下的容积。
下面我将详细介绍卧式储罐不同液位下容积计算的方法。
卧式储罐通常由圆筒和两个半球形的端部组成,液位的高低会直接影响到储罐内液体的容积。
根据液位位置的不同,可以将储罐分为以下三种情况进行计算:液位位于下半球内、液位位于上半球内、液位位于圆筒部分内。
第一种情况:液位位于下半球内。
在这种情况下,液位与半球的接触面形成的是一个锥形体。
首先需要计算出液体在锥形体中的体积,然后再加上液体在半球形部分的体积。
液体在锥形体中的体积可以通过以下公式计算:V=πh^2(3R-h)/3其中,V为液体在锥形体中的体积,h为液位高度,R为半球的半径。
第二种情况:液位位于上半球内。
在这种情况下,液位位于圆筒和半球的交界处。
容积的计算可以分为两部分进行:液体在半球形部分的容积和液体在圆筒部分的容积。
首先计算液体在半球形部分的容积,可以使用以下公式:V1=(2/3)πh^2(3R-h)其中,V1为液体在上半球内的容积,h为液位高度,R为半球的半径。
然后计算液体在圆筒部分的容积,可以使用以下公式:V2=πR^2h其中,V2为液体在圆筒内的容积,h为液位高度,R为半球的半径。
最后将液体在半球形部分和圆筒部分的容积相加,即可得到液位位于上半球内时的总容积。
第三种情况:液位位于圆筒部分内。
在这种情况下,液体仅填充了圆筒的部分。
容积的计算可以直接使用以下公式:V=πR^2h其中,V为液体在圆筒内的容积,h为液位高度,R为半球的半径。
通过以上三种情况的容积计算方法,可以得出卧式储罐在不同液位下的容积。
用户可以根据储罐的实际情况和液位高度来进行相应的计算,从而获取准确的容积数值。
这些容积数值对于储罐的管理和使用都具有重要的参考价值,可以帮助用户更好地进行液体的储存和运输计划。
卧式储罐不同液位下的容积(质量)计算
卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图参数:l:椭圆封头曲面高度(m);l i:椭圆封头直边长度(m);L:卧罐圆柱体部分长度(m);r:卧式储罐半径(d/2,m);d:卧式储罐内径,(m)h:储液液位高度(m);V:卧式储罐总体积(m3);ρ:储液密度(kg/m3)V h:对应h高度卧罐内储液体积(m3);m h:对应h高度卧罐内储液重量(kg);椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
简化模型图如下。
以储罐底部为起点的液高卧式储罐内储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=表1 卧式储罐不同液位下容积(重量)该计算公式推导过程如下卧式储罐不同液位下的容积简化计算公椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
以储罐中心为起点的液高(1)椭圆球体部分该椭圆球体符合椭圆球体公式:2222221x y z a b c ++= 其中a=b=r ,则有222221x y z a c++= 垂直于y 轴分成无限小微元,任一微元面积为:22()yi cS a y aπ=-当液面高度为h 时,椭圆球体内液氨容积为V1=hyi a S dy -⎰ 22()haca y dy aπ-=-⎰3322()33ch a a h a π=-+ (2)直段筒体部分:筒体的纵断面方程为222x y a +=任一微元的面积为yj S = 则筒体部分容积为:2hyj a V S -=⎰ha L -=⎰2(arcsin )2h La a π=+(arcsin)22h a ππ-≤≤ (3)卧式储罐储液总体积总容积为V=V1+V2,V=23242()33ch a a h a π-++2(arcsin )2h La a π+ 此公式中液位高度h 是以储罐内径中心为原点,其中a=b=r 化简后卧式储罐储液总体积为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2-arcsin 3212222πh r r h r h Lr L r V h若液位高度h 以卧罐底部为起点,如下图则卧式储罐内储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=其它方法如下:第一种方法卧式储罐不同液位下的容积简化计算公卧式储罐内储液总体积计算公式:)]arcsin(2)[(]3)(1)[(222232rr h r h hr r h L r r h r h l V V h -+--+---+=π若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=此方式用到参数较多ρ、V 、r 、l 、L 、h 。
卧式储罐不同液位下的容积计算
卧式储罐不同液位下的容积计算卧式储罐是一种常见的储存液体的设备,通常用于存储液态化学品、石油产品、水等。
在工业和民用领域中广泛应用。
对于卧式储罐来说,液位的高低与储罐内的容积有着密切的关系。
在储罐内液位不同的情况下,其容积计算也会有所不同。
本文将详细介绍卧式储罐在不同液位下的容积计算方法。
首先,我们需要了解卧式储罐的结构和常见参数。
卧式储罐通常为圆柱形,由罐体、进出口、排放口、液位计、压力表等组成。
在容积计算中,我们通常会用到储罐内径、长度、液位高度、横截面积等参数。
其次,对于卧式储罐在不同液位下的容积计算,我们可以根据液位高度来进行分析。
一般来说,液位高度越高,储罐内的容积就越大。
容积计算的基本原理是利用几何体积公式,通过求解被液体填充后的几何体积来确定储罐内的液体容积。
接下来,我们以一个实际案例来说明卧式储罐在不同液位下的容积计算方法。
假设我们有一个直径为2米,长度为5米的卧式储罐,液位高度分别为1米、2米、3米、4米和5米。
我们将逐一计算不同液位下的储罐容积。
1.当液位高度为1米时,我们可以先计算液位1米以下的圆柱体积,然后再计算液位为1米处的部分体积。
首先求出液位1米以下的部分体积,即整个圆柱的体积减去1米高度的部分的体积。
计算公式为V1=π*r²*h1,其中r为半径,h1为液体高度,代入数据可得V1=π*1²*1=3.14立方米。
接着计算液位1米处的部分体积,即液位高为1米的沟槽体积。
计算公式为V2=π*r²*(h2-r),其中r为半径,h2为液体高度,代入数据可得V2=π*1²*(1-1/π)=0.283立方米。
因此,液位高度为1米时,储罐容积为V=V1+V2=3.423立方米。
2.当液位高度为2米时,沟槽部分可以按照液位高度为1米时的方式计算,然后再加上液位高度为2米的圆柱体积。
继续使用上述的计算方法,可得液位高度为2米时的储罐容积为V=V1+V2+V3=9.696立方米。
卧式储罐不同液位下的容积(质量)计算
卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图参数:l:椭圆封头曲面高度(m);l i:椭圆封头直边长度(m);L:卧罐圆柱体部分长度(m);r:卧式储罐半径(d/2,m);d:卧式储罐内径,(m)h:储液液位高度(m);V:卧式储罐总体积(m3);ρ:储液密度(kg/m3)V h:对应h高度卧罐内储液体积(m3);m h :对应h 高度卧罐内储液重量(kg );椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
简化模型图如下。
以储罐底部为起点的液高卧式储罐内储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=表1 卧式储罐不同液位下容积(重量)该计算公式推导过程如下卧式储罐不同液位下的容积简化计算公椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。
以储罐中心为起点的液高(1)椭圆球体部分该椭圆球体符合椭圆球体公式:2222221x y z a b c ++= 其中a=b=r ,则有222221x y z a c++= 垂直于y 轴分成无限小微元,任一微元面积为:22()yi cS a y aπ=-当液面高度为h 时,椭圆球体内液氨容积为 V1=hyi a S dy -⎰ 22()haca y dy aπ-=-⎰3322()33ch a a h a π=-+ (2)直段筒体部分:筒体的纵断面方程为222x y a +=任一微元的面积为yj S = 则筒体部分容积为:2hyj a V S -=⎰ha L -=⎰2(arcsin )2h La a π=+(arcsin)22h a ππ-≤≤ (3)卧式储罐储液总体积总容积为V=V1+V2,V=23242()33ch a a h a π-++2(arcsin )2h La a π+ 此公式中液位高度h 是以储罐内径中心为原点,其中a=b=r 化简后卧式储罐储液总体积为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2-arcsin 3212222πh r r h r h Lr L r V h若液位高度h 以卧罐底部为起点,如下图则卧式储罐内储液总体积计算公式:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=2----arcsin 3212222πr h r r r h r r h Lr L r V h若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=其它方法如下: 第一种方法卧式储罐不同液位下的容积简化计算公卧式储罐内储液总体积计算公式:)]arcsin(2)[(]3)(1)[(222232rr h r h hr r h L r r h r h l V V h -+--+---+=π若密度为ρ,则卧式储罐内储液总重量为:hh V m ρ=此方式用到参数较多ρ、V 、r 、l 、L 、h 。