正方形探究线段数量关系与位置关系
【教学设计】正方形的性质和判定
人教版初中数学八年级下册 第十八章 平行四边形第二节 特殊的平行四边形教学设计正方形山东省东营市胜利第一中学 初中数学 张振安一、 教学方法自学探究、小组合作、数学实验(几何画板)这节课本着《数学课程标准》中“动手实践、自主探索与合作交流 是学生学习数学的重要方式”这一理念进行设计,采用引导发现、自学 探究、小组合作、数学实验相结合的方法,同时利用借助现代教育技术 (几何画板、希沃授课助手),让学生看到思维的过程。
二、 教学过程(一)问题引入(5分钟)1、 观看几何画板设计的两个动画,思考平行四边形经历了怎样的图形变化过程?(2分钟)(1)平行四边形—>矩形—>正方形; (2)平行四边形—>菱形—>正方形。
活动目的:利用课件形象演示变化出正方形的过程,激发学习兴趣,引 导学生分析如何由矩形变化出正方形以及如何由菱形变化出正II, 一一 J 变形按钮1 |二 Lj IL-J 变形按钮3L 变形川顺序2个动作 AB = 15.35厘米DC = 15.35厘米 m CAB =53.39°方形,引出本节课题,并为进一步启发学生发现正方形既是特殊的菱形,又是特殊的矩形埋下伏笔。
2、引出课题,板书标题:正方形3、展示生活中的正方形应用,展示本节课学习目标。
(1分钟)(1).理解正方形与平行四边形、矩形、菱形概念之间的联系和区别;(2).能用正方形的定义、性质和判定进行推理与计算。
活动目的:让学生明确学习任务和达成的目标。
(二)概念分析(2分钟)1、回顾小学阶段对正方形的定义:四条边都相等,四个角都是直角的四边形叫做正方形。
2、请你用所学知识重新下定义:既是矩形又是菱形的四边形叫做正方形。
活动目的:让学生从小学定义及本节课开始的动画演示出发重新思考正方形的定义,提高对正方形的认识。
(三)性质探究(5分钟)1、请你们独立思考正方形具有哪些性质,并小组内交流。
(1分钟)2、班内交流展示,总结性质:(4分钟)(1)正方形的四条边都相等;(2)正方形的四个角都是直角;(3)正方形的对角线相等、垂直、互相平分,且平分对角。
最新九年级数学中考复习:几何探究题--线段问题含答案
(1)猜想线段AE和BG的关系,请直接写出你的结论;
(2)将正方形DEFG绕点D顺时针方向旋转一定角度后(旋转角大于0°,小于或等于360°),如图2,判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
问题探究:
(1)如图1,若 、 都是直角,把 绕点A逆时针旋转90°至 ,使AB与AD重合,则 ______度,线段BE、DF和EF之间的数量关系为______;
问题再探:
(2)如图2,若 、 都不是直角,但满足 ,线段BE、DF和EF之间的数量关系是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.
(1)如图1,求∠BDC的度数(用含α的式子表示).
(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;
(3)如图3,当α=90°时,记直线l与CD的交点为F,连接 .将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值..
17.(1)发现问题:如图1,在等腰直角三角形ABC中,∠ACB=90°,点F为BC上一点,以BF为边作正方形BFED,点E在AB上,若AC=BC=2,BF= ,则 =;
②当点D到直线BC的距离等于2时,DG的长为;
③当以点A、C、D、B为顶点的四边形时矩形时,点P在线段DG上,且∠CPG与∠A互余,连接CP,则直线CP与AB所夹锐角的正切值为.
11.有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,DE,M是BF的中点
【观察猜想】
(2)如图2,点D在AC左侧且在点A上方,连接BE交CD于点M,F为BE上一点,连接DF,过点F作FG∥AC交BC延长线于点G,连接GM,EG,AD.若∠EDF+∠EBG=∠DEB,GM=BM.求证:AD=EF.
探究与正方形有关的线段之间的数量关系
探究与正方形有关的线段之间的数量关系作者:***来源:《中学数学杂志(初中版)》2020年第06期正方形作为最特殊的四边形之一,具有平行四边形、矩形、菱形的所有性质,因而,以正方形为背景的几何综合题层出不穷.在题目中可以求线段之间的数量关系、位置关系、线段的长度、角的度数等等,解题时需要特别明确正方形的性质,善于动手操作、大胆猜想,联想学过的几何基本图形,恰当的添加辅助线,运用几何推理方可得出结论.1 与正方形有关的两条线段的相等关系例1 如图1,在正方形ABCD中,BD是一条对角线.点P在线段CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.1.依题意补全图1;2.判断AH与PH的数量关系与位置关系并加以证明;分析 1.依题意补全图1,如图2,主要关注:(1)平移△ADP:平移的方向是沿着DC的方向,平移的距离是DC的长度;(2)过点Q作QH⊥BD于点H:明确过点Q,作QH⊥BD于点H,垂足是H;(3)连接AH,PH.2.判断AH与PH的数量关系与位置关系,这里包含两层意思(1)AH和PH的数量关系,是相等还是不相等,还是几倍的关系.(2)AH和PH的位置关系是平行还是垂直.本题解题时首先应该利用刻度尺和量角器度量后进行猜想,发现AH=PH,AH⊥PH.然后联想学过证明线段相等的方法:三角形全等、等角对等边、平行四边形对边相等.联想证明垂直的方法:直角三角形两锐角互余,矩形四个角为直角.结合本题条件,发现AH和PH所在的三角形,△HAD和△HPQ可以全等.因平移△ADP,使点D移动到点C得到△BCQ,知DC=PQ.由正方形ABCD可得DA=DC=PQ,∠BDA=∠BDC=45°.QH⊥BD于点H,∠HDQ=∠HQD=∠BDA=45°,HQ=HD,所以△HAD≌△HPQ,HA=HP、∠AHD=∠PHQ.由∠DHP+∠PHQ=90°,所以,∠DHP+∠AHD=90°,∠AHP=90°,HA⊥HP.反思本题中正方形ABCD提供了以下重要条件:边相等DA=DC、∠BDA=∠BDC=45°,然后再充分利用其他条件进行证明即可.2 与正方形有关的两条线段的倍数关系例2 如图3,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,将线段ED绕点E顺时针旋转90°得到线段EF,连接BF.1.依题意补全图;2.用等式表示线段BF与AE的数量关系并证明.分析 1.依题意补全图形,如图4,主要关注:(1)将线段ED绕点E顺时针旋转90°:旋转中心是点E,旋转方向顺时针,旋转角度是90°;(2)连接BF.2.用等式表示线段BF与AE的数量关系.解题时首先应该利用刻度尺度量,发现BF和AE 不是相等关系.然后通过计算,猜想BF和AE具有 2倍的关系,因此,可以构造等腰直角三角形,让BF作为斜边,AE的长度作为直角边,可以过F做AB的延长线的垂线,通过证明△DAE≌△EHF从而达到目的.因四边形ABCD是正方形,则AB=AD,∠A=90°.由线段ED绕点E顺时针旋转90°得到线段EF,则DE=EF,∠DEF=90°.因∠1+∠2=90°,∠1+∠3=90°,所以∠2=∠3,△DAE≌△EHF,得出AE=FH,AD=EH,AB=EH,AE=BH,FH=BH,△BFH是等腰直角三角形,BF=2FH=2AE.反思本题中正方形ABCD提供了以下重要条件:AB=AD,∠A=90°,通过做辅助线,然后再充分利用其他条件进行证明即可.3 与正方形有关的三条线段的关系3.1 与正方形有关的三条线段的一次关系例3 如图5,在正方形ABCD中,点E是BC边上一动点(不与点B、C重合),过点B 作BF⊥DE,交射線DE于点F,连接CF.1.依题意补全图形;2.判断线段BF,CF,DF之间的数量关系,并证明.分析 1.依题意补全图,如图6,主要关注:(1)过点B作BF⊥DE,交射线DE于点F;(2)连接CF.2.判断线段BF,CF,DF之间的数量关系.解题时首先应该利用刻度尺度量,发现BF,CF,DF之间没有明确的两条线段之和等于第三条线段关系.然后通过计算,猜想DF大约等于BF加上CF的 2倍的关系,DF=DM+MF=BF+2CF.因此,可以在DF上截取DM=BF,连接CM,构造等腰直角三角形CMF,让CF作为直角边,再证明MF=2CF,从而达到目的.由正方形ABCD知BC=CD,∠BDC=∠DBC=45°,∠BCD=90°,∠CDM=∠CBF,△CDM≌△CBF(SAS).则DM=BF,CM=CF,∠DCM=∠BCF.∠MCF=∠BCF+∠MCE=∠DCM+∠MCE=∠BCD=90°所以MF= 2CF,DF=DM+MF=BF+2CF.反思本题中正方形ABCD提供了以下重要条件:BC=CD,∠BDC=∠DBC=45°,∠BCD=90°,通过添加辅助线,然后再充分利用其他条件进行证明即可.3.2 与正方形有关的三条线段的二次关系例4 如图7,正方形ABCD中,点P是线段AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.1.依题意补全图形;2.求证:PA2+PC2=2PB2.分析 1.依题意补全图形如图8,主要关注:(1)将线段BP绕点B顺时针旋转90°得到线段BE,旋转中心是点B,旋转方向顺时针,旋转角度是90°;(2)连接CE.2.求证PA2+PC2=2PB2,发现是线段的平方关系,而且有2PB2,因此,猜想构造等腰直角三角形是关键.由四边形ABCD是正方形,得CB=AB,∠1=∠2=45°,∠3+∠4=90°.因将线段BP绕点B顺时针旋转90°得到线段BE,所以BE=BP,∠5+∠4=90°.PE=2PB,∠5=∠3.△CBE≌△ABP(SAS),因此EC=PA,∠6=∠1=45°.∠PCE=∠2+∠6=90°.得EC2+PC2=PE2,由EC=PA,PE=2PB,PA2+PC2=2PB2.反思本题中正方形ABCD提供了以下重要条件:BC=AB,∠1=∠2=45°,∠BCD=90°,通过添加辅助线,然后再充分利用其他条件进行证明即可.与正方形有关的线段之间的数量关系不止以上几种情况,在求解过程中,主要是动手操作,大胆猜想,积极验证.结合学习过的相关模型,巧妙运用正方形的相关性质,一定会顺利解题.作者简介王献春(1967—),男,北京延庆人,大学本科,正高级教师,主要从事初中教学研究.。
2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)
2021年九年级数学中考复习分类压轴大题专题:四边形综合题(一)1.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC,BD的交点,连接CE,DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,且∠OMD=75°,求CE的长;(3)在(2)的条件下,把正方形OEFG绕点O旋转,直接写出点B到点F的最短距离.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).3.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).4.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.5.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为.6.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.7.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.8.如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC 上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G 处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的面积为S,求S的取值范围.9.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.10.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(二)11.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.12.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.13.如图1所示,边长为4的正方形ABCD与边长为a(1<a<4)的正方形CFEG的顶点C 重合,点E在对角线AC上.【问题发现】如图1所示,AE与BF的数量关系为;【类比探究】如图2所示,将正方形CFEG绕点C旋转,旋转角为α(0<α<30°),请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;【拓展延伸】若点F为BC的中点,且在正方形CFEG的旋转过程中,有点A、F、G在一条直线上,直接写出此时线段AG的长度为.14.如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.15.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.16.【探索规律】如图①,在△ABC中,点D,E,F分别在AB,BC,AC上,且DF∥BC,EF∥AB.设△ADF的边DF上的高为h1,△EFC的边CE上的高为h2.(1)若△ADF、△EFC的面积分别为3,1,则=;(2)设△ADF、△EFC、四边形BDFE的面积分别为S1,S2,S,求证:S=2;【解决问题】(3)如图②,在△ABC中,点D,E分别在AB,AC上,点F,G在BC上,且DE∥BC,DF∥EG.若△ADE、△DBF、△EGC的面积分别为3,7,5,求△ABC的面积.17.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.18.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题:如图①,若E是线段AC的中点,连接EF,其他条件不变,猜想线段BE与EF的数量关系;(2)探究问题.如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题:如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=3,请直接写出AF的长度19.定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.(1)判断:①在平行四边形、矩形、菱形中,一定是神奇四边形的是;②命题:如图1,在四边形ABCD中,AB=AD,CB=CD,则四边形ABCD是神奇四边形.此命题是(填“真”或“假”)命题;③神奇四边形的中点四边形是;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是神奇四边形;②若AC=2,AB=,求GE的长;(3)如图3,四边形ABCD是神奇四边形,若AB=6,CD=,AD、BC分别是方程x2﹣(k+4)x+4k=0的两根,求k的值.20.在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(三)21.如图,菱形ABCD中,AB=10,连接BD,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.(1)求证:AE=CE;(2)若sin∠ABD=,当点P在线段BC上时,若BP=4,求△PEC的面积;(3)若∠ABC=45°,当点P在线段BC的延长线上时,请直接写出△PEC是等腰三角形时BP的长.22.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM.若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,当AD=25,且AE<DE时,求的值;(3)如图3,当BE•EF=108时,求BP的值.24.如图①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直线上,点E在AD 上,连接DG,BE.(1)证明:BE=DG;(2)发现:当正方形AEFG绕点A旋转,如图②所示,判断BE与DG的数量关系和位置关系,并说明理由;(3)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,判断BE与DG的数量关系和位置关系是否与(2)的结论相同,并说明理由.25.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.26.已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE交BD于点F.(1)如图1,若点E与点C重合,且AF=2,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=4,请直接写出MN的最小值.27.如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.28.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.29.如图1,在正方形ABCD中,AD=9,点P是对角线BD上任意一点(不与B、D重合),点O是BD的中点,连接PC,过点P作PE⊥PC交直线AB于点E.初步感知:当点P与点O重合时,比较:PC PE(选填“>”、“<”或“=”).再次感知:如图1,当点P在线段OD上时,如何判断PC和PE数量关系呢?甲同学通过过点P分别向AB和BC作垂线,构造全等三角形,证明出PC=PE;乙同学通过连接PA,证明出PA=PC,∠PAE=∠PEA,从而证明出PC=PE.理想感悟:如图2,当点P落在线段OB上时,判断PC和PE的数量关系,并说明理由.拓展应用:连接AP,并延长AP交直线CD于点F.(1)当=时,如图3,直接写出△APE的面积为;(2)直接写出△APE面积S的取值范围.30.问题提出(1)如图①,点A在直线m上,点P在直线m外,请用尺规在直线m上找一点B,使得∠APB=60°(只作出满足条件一个图形即可);(2)如图②,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,对角线BD=10,求四边形ABCD的面积.问题解决(3)如图③,园林规划局想在正六边形草坪一角∠BOC内改建一个小型的儿童游乐场OMAN,其中OA平分∠BOC,OA=100米,∠BOC=120°,点M、N分别在射线OB和OC上,且∠MAN=90°,为了尽可能的少破坏草坪,要使游乐场OMAN面积最小.你认为园林规划局的想法能实现吗?若能,请求出游乐场OMAN面积的最小值;若不能,请说明理由.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(四)31.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.32.平面直角坐标系中一点(m,n)是二元一次方程Ax+By=C的解是指:将代入可得Am+Bn=C成立,如(2,3)是二元一次方程2x+y=7的解是指:代入可得2×2+3=7成立:(1)已知D(0,1),P(2,3),H(3,1),则点(填“D,P,H”)是方程x﹣2y=1的解;(2)已知关于x,y的方程组的解为坐标的点也是方程x+2y=4的解,求m的值;(3)若E、F为坐标系中两点,其中E点坐标是二元一次方程5x﹣y=4的解,F点坐标是二元一次方程x﹣y=4的解,且线段EF由线段AB平移得到,其中A(﹣4,0),B (0,﹣2)(A、B分别对应E、F),求四边形ABFE的面积.33.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2+PB2=PC2,则称点P为△ABC关于点C的勾股点.(1)如图2,在4×3的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点上,请找出所有的格点P,使点P为△ABC关于点A的勾股点.(2)如图3,△ABC为等腰直角三角形,P是斜边BC延长线上一点,连接AP,以AP 为直角边作等腰直角三角形APD(点A、P、D顺时针排列)∠PAD=90°,连接DC,DB,求证:点P为△BDC关于点D的勾股点.(3)如图4,点E是矩形ABCD外一点,且点C是△ABE关于点A的勾股点,若AD=8,CE=5,AD=DE,求AE的长.34.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=6,GH=2,求BC的长.35.如图,在边长为2的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),PE的延长线与BC的延长线交于点Q.(1)求证:E是PQ的中点;(2)连结PB,F是BP的中点,连结EF,当PB=PQ时.①求证:四边形AFEP是平行四边形;②求AP的长.36.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.37.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.38.四边形ABCD是矩形,点E是射线BC上一点,连接AC,DE.(1)如图1,点E在边BC的延长线上,BE=AC,若∠ACB=40°,求∠E的度数;(2)如图2,点E在边BC的延长线上,BE=AC,若M是DE的中点,连接AM,CM,求证:AM⊥MC;(3)如图3,点E在边BC上,射线AE交射线DC于点F,∠AED=2∠AEB,AF=4,AB=4,则CE=.(直接写出结果)39.如图1,在矩形ABCD中,AB=6,BC=8,点E是对角线BD的中点,直角∠GEF的两直角边EF、EG分别交CD、BC于点F、G.(1)若点F是边CD的中点,求EG的长.(2)当直角∠GEF绕直角顶点E旋转,旋转过程中与边CD、BC交于点F、G.∠EFG 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠EFG的值.(3)当直角∠GEF绕顶点E旋转,旋转过程中与边CD、BC所在的直线交于点F、G.在图2中画出图形,并判断∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请直接写出tan∠EFG的值.(4)如图3,连接CE交FG于点H,若=,请求出CF的长.40.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)41.【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD 是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.42.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.43.【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.44.如图1,在平面直角坐标系中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC.已知,OA=8,tan∠OAC=,点D在BC上,且CD=3BD,点P 为线段AB上一动点(可与A、B重合),连接DP.(1)求OC的长及点D的坐标;(2)当DP∥AC时,求AP的长;(3)如图2,将△DBP沿直线DP翻折,得△DEP,连接AE、CE,问四边形AOCE的面积是否存在最小值,若存在,求出这个最小值;(4)以线段DP为边,在DP所在直线的右上方作等边△DPF,当点P从点B运动到点A时,点F也随之运动,请直接写出点F的运动路径长.45.如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.如图1,在正方形ABCD中,点E为边AB上的点,BE:AE=n,连结DE、BD,过点A作AG⊥DE,垂足为点F,与BC、BD分别交于点G、H,连结EH.(1)①求证:AE=BG;②求证:DH:BH=n+1;(2)如图2,当EH∥AD时,求n的值.47.[阅读理解]构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.[经验运用]请运用上述阅读材料中所积累的经验和方法解决下列问题.(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.求证:①G是EF的中点;②CG=BE;[拓展延伸](2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,(2)中的其它条件不变,请直接写出GH的长.48.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.49.(1)问题探究:如图1,在正方形ABCD中,点E,Q分别在边BC、AB上,DQ⊥AE 于点O,点G,F分别在边CD、AB上,GF⊥AE.①判断DQ与AE的数量关系:DQ AE;②推断:的值为;(无需证明)(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.50.如图,在矩形ABCD中,AD=2AB=8,点E是边AD的中点.连结EC,P、Q分别是射线AD、EC上的动点,且EQ=AP.连结BP,PQ.过点B,Q分别作PQ,BP的平行线交于点F.(1)当点P在线段AE上(不包含端点)时,①求证:四边形BFQP是正方形.②若BC将四边形BFQP的面积分为1:3两部分,求AP的长.(2)如图2,连结PF,若点C在对角线PF上,求△BFC的面积(直接写出答案).参考答案1.解:(1)∵正方形ABCD与正方形OEFG,对角线为AC、BD,∴DO=OC,∵DB⊥AC,∴∠DOA=∠DOC=90°,∵∠GOE=90°,∴∠GOD+∠DOE=∠DOE+∠COE=90°,∴∠GOD=∠COE,∵GO=OE,∴在△DOG和△COE中,DO=CO,∠GOD=∠COE,GD=OE,∴△DOG≌△COE(SAS);(2)∵四边形ABCD为正方形,故∠ODM=45°,故OD=,∵∠OMD=75°,∴∠DOG=60°,∵DG⊥BD,故∠ODG=90°,∴∠OGD=30°,∴OG=2OD=2,∴DG===,∵△DOG≌△COE(SAS),∴CE=DG=;(3)正方形OEFG绕点O旋转,当点O、B、F共线且点B在OF之间时,点B到点F 的距离最短,由(2)知,在正方形OEFG中,OG=2,则OF=OG=4,而OB=OD=,故OF﹣OB=4﹣.故B到点F的最短距离为4﹣.2.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠AOC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).3.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.4.解:(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,∠AHB=90°,AB=15,∴sin B==,∴AH=AB=×15=12.(2)如图2,在Rt△BDP中,∠BPD=90°,BP=3t,∴sin B==,∴cos B==,∴BD=5t,PD=4t,∴DE=DG=2t,CD=15﹣5t.∴15﹣5t=2t,∴t=.(3)①当0<t≤时,重叠部分为正方形DEFG,∴S=(2t)2=4t2;②当<t≤时,如图3,重叠部分为五边形DEFMN,∴S=S正方形DEFG﹣S△MGN=4t2﹣[2t﹣(15﹣5t)]2=﹣45t2+210t﹣225;③当<t≤3时,如图4,重叠部分为梯形DEMN,∴S=×2t(15﹣4t+15﹣5t)=﹣9t2+30t.(4)①当DG的中点O在线段AC上时,如图5,∵AB=BC,∴∠A=∠C,∵DG∥AB,∴∠COD=∠A∴∠C=∠COD,∴DC=DO,∴15﹣5t=t,解得t=;②当EG的中点O在线段AC上时,如图6,此时NC=NO,∴15﹣×5t=t+t,解得t=;③当DE的中点O在线段AC上时,如图7,此时NC=NO,∴15﹣×5t=t,解得t=.5.(1)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴∠PBM=∠PBC=∠ABC=30°,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°由旋转的性质得:PC=QC,∠PCQ=120°,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①证明:由(1)得:△BCP≌△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,,∴△PBM≌△QDE(AAS),∴PM=QE=QN.②解:由①知PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,∴菱形ABCD的面积=2S△ABC=2××42=8;故答案为:8.6.(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.7.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM===.8.(1)证明:如图1中,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC===4,∴CQ=AC=2,∴QN===,∴MN=2QN=2.(3)解:当MN过点D时,如图3所示,此时,CN最短,四边形CMPN的面积最小,则S最小为S=S菱形CMPN=×4×4=4,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=×5×4=5,∴4≤S≤5,9.(1)【发现证明】证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠FAE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE=EF+DF.故答案为:BE=EF+DF.(3)【联想拓展】解:由(1)可知AE=AG=3,∵正方形ABCD的边长为6,∴DC=BC=AD=6,∴==3.∴BE=DG=3,∴CE=BC﹣BE=6﹣3=3,设DF=x,则EF=FG=x+3,CF=6﹣x,在Rt△EFC中,∵CF2+CE2=EF2,∴(6﹣x)2+32=(x+3)2,解得:x=2.∴DF=2,∴AF===2.10.解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.如图3,若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,。
正方形与全等模型(含答案)
正方形与全等模型1.(垂直相等)如图,在正方形ABCD中.(1)若点E、F分别在AB、AD上,且AE=DF.试判断DE与CF的数量及位置关系,并说明理由;(2)若P、Q、M、N是正方形ABCD各边上的点,PQ与MN相交,且PQ=MN,问PQ⊥MN成立吗?为什么?2.(三垂)如图,直线MN不与正方形的边相交且经过正方形ABCD的顶点D,AM⊥MN于M,CN⊥MN于N,BR⊥MN于R.(1)求证:△ADM≌△DCN:(2)求证:MN=AM+CN;(3)试猜想BR与MN的数量关系,并证明你的猜想.3.(三垂)如图,在平的直角坐标系中,直线y=﹣2x+2与x轴、y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.求双曲线表示的函数解析式.4.(三垂)如图,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1∥l2∥l3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积等于()A.70 B.74 C.144 D.1485.(三垂)如图在平面直角坐标系中正方形OABC的边OC,OA分别在x轴正半轴上和y轴的负半轴上,点B在双曲线y=﹣上,直线y=kx﹣k(k>0)交y轴与F.(1)求点B、E的坐标;(2)连接BE,CF交于M点,是否存在实数k,使得BE⊥CF?若存在,求出k的值;若不存在,请说明理由;(3)F在线段OA上,连BF,作OM⊥BF于M,AN⊥BF于N,当F在线段OA上运动时(不与O、A重合),的值是否变化.若变化,求出变化的范围;若不变,求其值.6.(对角互补)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AB、BC上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_________cm.7.(对角互补)在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB 于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为_________;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为_________;位置关系为_________.8.(对角互补)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.9.(对角互补)如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,连接BQ交AC于G,若AP=,Q为CD中点,则下列结论:①∠PBC=∠PQD;②BP=PQ;③∠BPC=∠BQC;④正方形ABCD的面积是16;其中正确结论的个数是()A.4B.3C.2D.110.(对角互补)如图1,直角∠EPF的顶点和正方形ABCD的顶点C重合,两直角边PE,PF分别和AB,AD所在的直线交于点E和F.易得△PBE≌△PDF,故结论“PE=PF”成立;(1)如图2,若点P在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?说明理由;(2)如图(3)将(2)中正方形ABCD改为矩形ABCD其他条件不变,若AB=m,BC=n,直接写出的值.11.(对角互补)如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是()A.①②③B.①②④C.②③④D.①②③④12.(等角共顶点)(1)如图①,△ABC中,AB=AC,∠BAC=90°,点D为BC边上一点(与点B、C不重合),连接AD,以AD为一边且在AD的右侧作正方形ADEF.可猜想线段CF,BD之间的数量关系是_________,位置关系是_________;(2)当点D在线段BC的延长线时,如图②,(1)中的结论是否仍然成立?如果成立,给出证明,如果不成立,说明理由.13.(等角共顶点)已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM 为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.14.(等角共顶点)以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?15.(等角共顶点)在直角三角形ABC中,∠C=90°,BC=2,以AB为边作正方形ABDE,连接AD、BE交O,CO=,则AC的长为()A.2B.3C.4D.16.(等角共顶点)如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,求证:∠FCN=45°;(3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由.17.(等角共顶点)如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点,N为AD边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是_________;②请证明你的上述猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的结论.18.(对角互补分半)已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?19.(对角互补分半)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.20.(对角互补分半)如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,那么四边形BCFE的面积等于_________;若GH与CD交点为I,那么 GBI=____________。
类比探究(讲义)
图1AB CDGEF M图2A BCDG EFM图3AB CDG EFM类比探究(讲义)➢ 课前预习1.小明同学碰到如下问题:如图1,在正方形ABCD 和正方形CGEF (CG > BC )中,点B ,C ,G 在同一直线上,点M 是AE 的中点.(1)探究线段MD ,MF 的位置关系及数量关系,并证明. (2)若将图1中的正方形CGEF 绕点C 顺时针旋转,使D , C ,G 三点在同一直线上,如图2,其他条件不变,则(1)中得到的两个结论是否发生变化?请写出你的猜想并加以证明.(3)若将图1中的正方形CGEF 绕点C 顺时针旋转,使正方形CGEF 的对角线CE 恰好与正方形ABCD 的边BC 在同一直线上,如图3,其他条件不变,则(1)中得到的两个结论是否发生变化?请写出你的猜想并加以证明. 小明同学分析第一问发现,问题关键在于中点的应用. 经过尝试,小明成功解决了第(1)问,并将思路记录如下:MD ⊥MF MD =MF等腰Rt △M 为DH 中点FD =FH DFH =90°DM =AD =EH △ADM ≌△EHM 延长DM ,交EF H (平行夹中点)仿照小明的证明方法,你能解决(2)(3)问吗?2. ①如图,在△ABC 中,AF :FB =2:3,延长BC 至点D ,使得BC =2CD ,则AEEC=_________.提示:求比例,找相似.利用平行线构造“A 型”或“X 型”相似是我们常用的一种做法.A BEF②如图,AB =4,射线BM 和AB 相互垂直,点D 是AB 上的一个动点,点E 在射线BM 上,2BE =DB ,作EF ⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C .设BE =x ,BC =y ,则y 关于x 的函数解析式是( )A .124xy x =--B .21xy x =--C .31xy x =-- D .84x y x =-- 提示:结合直角特征考虑分析,可构造一线三等角,利用相似整合信息.➢ 知识点睛类比探究问题的处理思路1. 若属于类比探究常见的结构类型,调用结构类比解决.类比探究结构举例:中点结构、直角结构、旋转结构、平行 结构.2. 若不属于常见结构类型:①根据题干条件,结合_______________先解决第一问.M FE DC B A②类比解决下一问.如果不能,分析条件变化,寻找______________.③结合所求目标,依据__________,大胆猜测、尝试、验证.➢ 精讲精练1. 已知梯形ABCD ,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,BC =3.(1)如图1,P 为AB 边上的一点,以PD ,PC 为边作□PCQD ,则当点P 与点A 重合时,PQ 的长为__________.(2)如图2,若P 为AB 边上任意一点,以PD ,PC 为边作□PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.(3)若P 为AB 边上任意一点,延长PD 到E ,使DE =PD ,再以PE ,PC 为边作□PCQE ,请探究对角线PQ 的长是否也存在最小值.如果存在,请求出最小值;如果不存在,请说明理由.(4)如图3,若P 为直线DC 上任意一点,延长PA 到E ,使AE =nPA (n 为常数),以PE ,PB 为边作□PBQE ,请探究对角线PQ 的长是否也存在最小值.如果存在,请求出最小值;如果不存在,请说明理由.DQCBA (P )图1AP BCQD图2AC D EPQ图3A B CDA B CD2. 已知△ABC 为直角三角形,∠ACB =90°,点P 是射线CB 上一点(点P 不与点B ,C 重合),线段AP 绕点A 顺时针旋转90°得到线段AQ ,连接QB 交射线AC 于点M .(1)如图1,当AC =BC ,点P 在线段CB 上时,线段PB ,CM 的数量关系是__________.(2)如图2,当AC =BC ,点P 在线段CB 的延长线上时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)如图3,若52AC BC ,点P 在线段CB 的延长线上时,CM =2,AP =13,求△ABP 的面积.图1M QPABC图2M QPAB CMC BAPQ图33. (1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE .填空:①∠AEB 的度数为___________;②线段AD ,BE 之间的数量关系为___________.图1CDABE(2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE .请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图2MEDCBA(3)解决问题如图3,在正方形ABCD 中,CD.若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.A BCD图34. 如图1,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC的中点,连接DE .将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当α=0°时,=BD AE ______;②当α=180°时,=BDAE______. (2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.图3图2图1ABCAEBDCDECB A【参考答案】 ➢ 课前预习1. 能,证明略2. ①2②A➢ 知识点睛2. ①分支条件 ②不变特征 ③不变特征➢ 精讲精练1. (1)(2)存在,最小值为4. (3)存在,最小值为5.(44)n +. 2. (1)PB =2CM .(2)成立,证明略. (3)△ABP 的面积为25. 3. (1)①60°;②AD =BE .(2)AE =2CM +BE .(3)点A 到BP .4. (1 (2)0360α︒<︒≤时,AEBD的大小没有变化,证明略.(3)线段BD 的长为5. 类比探究(随堂测试)1. 如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F ,另一边交CB 的延长线于点G .(1)求证:EF =EG .(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB =a ,BC =b ,求EFEG的值.E (A )BC D FGG FDC BAEEACDFG (B )图1图2图3【参考答案】1. (1)证明略.(2)成立,证明略. (3)EF bEG a.。
正方形几何综合专题---40道题目(含答案)
01如图,在正方形ABCD中,点G在对角线BD上(不与点B,D 重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.解:(1)AG2=GE2+GF2;理由:如解图,连接CG,∵四边形ABCD是正方形,∴∠ADG=∠CDG=45°,AD=CD,DG=DG,∴△ADG≌△CDG,∴AG=CG,又∵GE⊥DC,GF⊥BC,∠BCD=90°,∴四边形CEGF是矩形,∴CF=GE,在Rt△GFC中,由勾股定理得,CG2=GF2+CF2,∴AG2=GE2+GF2;(2)如解图,过点A作AM⊥BD于点M,∵GF⊥BC,∠ABG=∠GBC=45°,∴∠BAM=∠BGF=45°,∴△ABM,△BGF都是等腰直角三角形,∵AB=1,∴AM=BM=2 2,∵∠AGF=105°,∴∠AGM=60°,∴tan60°=AM GM,∴GM =66,∴BG =BM +GM =22+66=32+66.02如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4A BCDFEG10题图考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=13CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴FHGC=EFEG,EF=DE=2,GF=3,∴EG=5,AB CDFEG10题∴FHGC=EFEG=25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=185≠3.故选C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.03如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE 的度数.考点:正方形的性质;对顶角、邻补角;三角形内角和定理;全等三角形的判定与性质。
2022年中考数学挑战压轴题《解答题三》
中考数学冲刺挑战压轴题专题汇编(解答题三)1.(2019•江西)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE 为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=°;(2)如图2,连接AF.①填空:∠F AD∠EAB(填“>”,“<“,“=”);②求证:点F在∠ABC的平分线上;(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.2.(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.3.(2017•江西)我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.1.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.2.(发现证明)如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.(类比引申)(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;(联想拓展)(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF 的长.3.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB直接写出当点C与点M重合时AC的长.1.(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E 恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.2.综合与实践﹣四边形旋转中的数学“智慧”数学小组在课外数学活动中研究了一个问题,请帮他们解答.任务一:如图1,在矩形ABCD中,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为矩形,连接CG.(1)请直接写出CG的长是______.(2)如图2,当矩形AEGF绕点A旋转(比如顺时针旋转)至点G落在边AB上时,请计算DF与CG的长,通过计算,试猜想DF与CG之间的数量关系.(3)当矩形AEGF绕点A旋转至如图3的位置时,(2)中DF与CG之间的数量关系是否还成立?请说明理由.任务二:“智慧”数学小组对图形的旋转进行了拓展研究,如图4,在▱ABCD中,∠B=60°,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为平行四边形,连接CG.“智慧”数学小组发现DF与CG 仍然存在着特定的数量关系.(4)如图5,当▱AEGF绕点A旋转(比如顺时针旋转),其他条件不变时,“智慧”数学小组发现DF与CG 仍然存在着这一特定的数量关系.请你直接写出这个特定的数量关系.3.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD 右侧作正方形ADEF,连接CF,(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知AB CD=14 BC,请求出GE的长.4.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH BC=.。
北师大版-数学-九年级上册-利用正方形的性质探索线段的数量关系
利用正方形的性质探索线段的数量关系正方形是一种特殊的四边形,它里面隐含着许多的线段之间的关系,历年中考题总会出现有关利用正方形的性质探索线段的数量关系问题,求解时只要我们能充分利用正方形的特性,结合图形大胆的探索、归纳、验证即可使问题获解.例1如图1,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1)求证:DE-BF = EF.(2)当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3)若点G为CB延长线上一点,其余条件不变.请你在图2中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).分析:(1)考查正方形的性质及全等三角形的判定及性质,找出图中全等的直角三角形,得两线段的差等于某条线段,(2)利用相似找三角形的性质,然后根据对应边成比例来到处两线段的倍数关系,从而使问题获解.证明:(1)∵四边形ABCD是正方形, BF⊥AG , DE⊥AG∴DA=AB,∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴∠BAF = ∠ADE∴△ABF≌△DAE∴BF = AE , AF = DE∴DE-BF = AF-AE = EF(2)EF = 2FG理由如下:∵AB⊥BC , BF⊥AG , AB =2 BG∴△AFB∽△BFG∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知, AE = BF ,∴ EF = BF = 2 FG(3) 如图3DE + BF = EF评注:正方形是有一个角是直角的菱形;正方形又是对角线相互垂直的矩形;正方形是中心对称对称图形,也是轴对称图形.正方形的对角线分其四个全等的等腰直角三角形.例2已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图4中△BEF 绕B 点逆时针旋转45º,如图5所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图4中△BEF 绕B 点旋转任意角度,如图6所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)分析:要猜想EG 与CG 之间的大小关系,由正方形的图形特征,可以先证CG= FD ,进而可以利用G 为DF 中点的知识或全等三角形的知识即可验证.解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG= FD.同理,在Rt △DEF 中,EG= FD.∴ CG=EG.(2)(1)中结论仍然成立,即EG=CG .证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点.A D CE G图4D F AD C EG图5 F A C E 图6在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN,MG=NG,∴△AMG≌△ENG.∴ AG=EG.∴ EG=CG.(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.评注:求解本题中的问题一定要根据图形的特征,从中找到求解的最佳突破口.要说明两条线段的关系应分别从数量和位置两个方面去考虑,否则就有可能出现错误.。
【全国通用】初中几何正方形解答题专题突破练习(3)
【全国通用】初中几何正方形解答题专题突破练习(3)1.如图,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接,AE CE .()1求证:AE CE =;()2如图,点P 是边CD 上的一点,且PE BD ⊥于,E 连接,BP O 为BP 的中点,连接EO .若30PBC ∠=︒,求POE ∠的度数;()3在()2的条件下,若OE =CE 的长.2.如图,已知正方形ABCD 的边长为2,点F 是CD 的中点,E 是边BC 上的一点,连接AE ,EF ,若AEF EAD ∠=∠,求AB 与BE 的比值.3.如图,正方形ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向点D 运动,以BE 为边,在BE 的上方作正方形BEFG ,连接CG . (1)求证:AEB CGB △≌△;(2)若设AE=x ,DH=y ,当x 取何值时,y 有最大值?并求出这个最大值; (3)连接BH ,当点E 运动到AD 的何位置时有BEH BAE ∽?4.如图,在正方形ABCD中,E是BC的中点,连接AE,过点B作射线BM交CD于点F,交AE于点O,且BF AE⊥.(1)求证:BF AE=;(2)连接OD,猜想OD与AB的数量关系,并证明.5.如图1,已知点A(-1,0),B(0,-2),C为双曲线kyx=上一点,连结AC与y轴交于点E,且E为AC的中点,其坐标为(0,2).(1)求k的值;(2)以线段AB为对角线作正方形AFBH(如图2),点T是AF边上一动点,M是HT的中点,MN丄HT 交AB于N,当T在AF上运动时,∠TNH的大小是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.6.同学们:八年级下册第9章我们学习了一种新的图形变换旋转,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决各类几何问题的常用方法.(1)(问题提出)如图∠,在正方形ABCD中,∠MAN=45°,点M、N分别在边BC、CD上.求证:MN=BM+DN.证明思路如下:△绕点A按顺时针方向旋转90°得到∠ABE,再证明E、B、M三点在一条直线上.第一步:如图∠,将ADN△≌△.第二步:证明AEM ANM请你按照证明思路写出完整..的证明过程.(2)(初步思考)△和BCE.如图∠,四边形ABCD和CEFG为正方形,连接DG、BE,得到DCG下列关于这两个三角形的结论:∠周长相等;∠面积相等;∠∠CBE=∠CDG.其中所有正确结论的序号是.(3)(深入研究)如图∠,分别以□ABCD的四条边为边向外作正方形,连接EF,GH,IJ,KL.若□ABCD的面积为8,则图中阴影部分(四个三角形)的面积之和为.7.已知:如图,在正方形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE ∠BF(2)若四边形DEBF 的面积为8,AE,则正方形边长为 .8.如图,在正方形ABCD 中,点G 在边BC 上(不与点B 、C 重合).连结AG ,作DE∠AG 于点E ,BF∠AG 于点F ,BGAD=K . ∠求证:Rt∠BFG∠Rt∠DEA ;∠连结BE 、DF ,设∠EDF =α,∠EBF =β,求证:tan α=Ktan β.∠设正方形ABCD 的边长为1,线段AG 与对角线BD 交于点H ,∠AHD 和四边形CDHG 的面积为S 1和S 2,求21S S 的最大值.9.如图 ,在边长为1的正方形ABCD 中,点E 是边AD 上的一动点(与点,A D 不重合),CE 交BD 于点F ,连结AF .(1)求证:DAF DCF ≅;(2)当AE 的长度是多少时,AEF 是等腰三角形?(3)当点E 运动到AD 的中点时,连BE 结交AF 于点M ,连结CM , 求证:∠BE AF ⊥;∠CB CM =.10.如图,在正方形ABCD 中,E 为CD 边上一点,以DE 为边向外作正方形DEFG ,将正方形DEFG 绕点D 顺时针旋转,连接AG .(1)如图1,若AD =DE =2,当150ADG ∠︒=时,求AG 的长;(2)如图2,正方形DEFG 绕点D 旋转的过程中,取AG 的中点M ,连接DM 、CE ,猜想:DM 和CE 之间有何等量关系?并利用图2加以证明.11.如图,P 是正方形ABCD 对角线BD 上一点,,PE DC PF BC ⊥⊥,点,E F 分别是垂足. (1)求证:AP PC =;(2)若60,BAP PD ∠=︒=,求PC 的长.12.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM 与BD 的关系是:________.(2)如果将正方形BCMN 绕点C 顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB 、DM ,若AC=4,BC=2,求AB 2+DM 2的值. 13.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.14.点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE和BCFG,连接AF、BD.(1)如图∠,AF与BD的数量关系和位置关系分别为;(2)将正方形BCFG绕着点C顺时针旋转α角(0°<α<360°),∠如图∠,第(1)问的结论是否仍然成立?请说明理由.∠若AC=4,BC,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,求DB的长度.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF∠DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG(1)如图,求证:矩形DEFG是正方形;(2)若AB=,CE=2,求CG的长;16.以Rt ABC ∆的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG ,连接EG ,过点A 作AM BC ⊥于M ,延长MA 交EG 于点N .(1)如图1,若90BAC ∠=︒,AB AC =,易证:EN GN =;(2)如图2,90BAC ∠=︒;如图3,90BAC ∠≠︒,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由. 17.已知正方形ABCD ,点E 在射线BD 上.(1)如图1,若点E 在线段BD 上,F 在线段AD 上,且AE BF ⊥,垂足为H ,连接CE . ∠求证:HF AFAH AB=; ∠求证:tan DEECD BE∠=; (2)如图2,点E 在BD 的延长线上,以AE 为斜边,作Rt AFE ,90AFE ∠=︒,AF EF =,若4=AD ,直接写出DF 的最小值.18.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且CE=CF . (1)求证:BE=DF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?19.如图,正方形ABCD 中,点E 是边BC 上一点,EF ∠AC 于点F ,点P 是AE 的中点.(1)求证:BP∠FP;(2)连接DF,求证:AE=DF.20.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.(1)如图1,求证:AF∠DE;(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为,求正方形ABCD的面积.AC BD相交于点O,E是OC的中点,连接BE,过点21.如图,正方形ABCD的边长为,A作AM BE⊥于点M,交BD于点F.=;(1)求证:AF BE(2)求点E到BC边的距离.22.在正方形ABCD中,连接AC,点E在线段AD上,连接BE交AC于M,过点M作FM∠BE交CD于F.(1)如图∠,求证:∠ABE+∠CMF=∠ACD;(2)如图∠,求证:BM=MF;(3)如图∠,连接BF,若点E为AD的中点,AB=6,求BF的长.23.如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC CF⊥,M为EF的中点.P为线段AD上一点,1AP=,连结PM.=;(1)求证:CE CF△为直角三角形时,求AE的长;(2)当PMF△的面积为________.(在横线上直接写(3)记BC边的中点为N,连结MN,若MN=PMF出答案)=,24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE CF 连接AE、DF,AE的延长线交DF于点M.(1)求证:AE DF=;⊥.(2)求证:AM DF25.定义:有一组邻边垂直且对角线相等的四边形为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是 .(2)如图1,在3×3方格纸中,A ,B ,C 在格点上,请画出两个符合条件的不全等的垂等四边形,使AC ,BD 是对角线,点D 在格点上.(3)如图2,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,AE =AF =CG 且∠DGC =∠DEG ,求证:四边形DEFG 是垂等四边形.(4)如图3,已知Rt∠ABC ,∠B =90°,∠C =30°,AB =2,以AC 为边在AC 的右上方作等腰三角形,使四边形ABCD 是垂等四边形,请直接写出四边形ABCD 的面积.26.如图1所示,边长为4的正方形ABCD 与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.(问题发现)如图1所示,AE 与BF 的数量关系为________;(类比探究)如图2所示,将正方形CFEG 绕点C 旋转,旋转角为()030αα<<︒,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为________27.如图,P 为正方形ABCD 的边BC 上的一动点(P 不与B ,C 重合),连接AP ,过点B 作BQ AP ⊥交CD 于点Q ,将BCQ ∆沿着BQ 所在直线翻折得到∆BQE ,延长QE 交AB 的延长线于点M .(1)探求AP 与BQ 的数量关系(2)若3AB =,2BP PC =,求QM 的长28.如图,正方形 ABCD 的边长为 4,E 是 BC 的中点,点 P 在射线 AD 上,过点 P 作 PF∠AE ,垂足为 F .(1)求证:PFA ABE ∽△△;(2)当点 P 在射线 AD 上运动时,设 PA=x ,是否存在实数 x ,使以 P ,F ,E 为顶点的三角形也与ABE △相似?若存在,求出 x 的值;若不存在,说明理由.29.如图,在正方形ABCD 中,E 是边DC 上的一点(与,C 不重合)连接AE ,将ADE 沿AE 所在的直线折叠得到AFE △,延长EF 交BC 于G ,作GH AG ⊥,与AE 的延长线交于点H ,连接CH . (1)求证:AG GH =(2)求证:CH 平分DCM ∠.30.如图,在边长为a 的正方形ABCD 中,作∠ACD 的平分线交AD 于F ,过F 作直线AC 的垂线交AC 于P ,交CD 的延长线于Q ,又过P 作AD 的平行线与直线CF 交于点E ,连接DE ,AE ,PD ,PB .(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.。
运用变式教学促进深度学习——以一类“正方形问题”为例
教学导航2024年4月下半月㊀㊀㊀运用变式教学促进深度学习以一类 正方形问题 为例◉江苏省江阴市敔山湾实验学校㊀刘㊀军1问题呈现图1例1㊀如图1所示,在正方形A B C D中,G是B C边上的任意一点,D EʅA G,垂足为E,B FʊD E,且交A G于点F.求证:A F-B F=E F.例1是 正方形 一课的课后习题,该题是一道典型习题,涉及的知识点较多,可以很好地考查学生知识的迁移㊁重组能力,促使学生直观想象和逻辑推理等素养的提升.八年级的学生已经拥有一定的知识储备,具有一定的分析和解决问题的能力,也具有一定的逻辑推理能力,这些知识㊁经验㊁能力等为进一步的思考与探究创造了条件.在本题教学中,教师要充分发挥典型习题的作用,通过变式引领学生体会 赵爽弦图 的运用,充分挖掘蕴含其中的规律㊁方法,提升学生数学抽象㊁数学建模㊁逻辑推理等素养,培养学生勤于思考㊁乐于探索的良好学习习惯.2问题探究根据已知条件不难发现,将不在同一直线上的线段转化到同一直线上是解决本题的关键.教学过程中,教师不要急于呈现解题过程,应预留充足的时间让学生思考与交流,引导学生从 看 想 得 三方面进行深层次的探究(如图2).通过对已知条件和结论的深度剖析后,教师要启发学生关注在同一直线上的线段A F和E F的关系.结合图1不难发现,E F=A F-A E,而结论为A F-B F=E F,这样只要证明A E=B F,问题即可迎刃而解.这样通过证明әA B FɸәD A E,找到线段之间的数量关系,问题顺利获证.㊀正方形A B C Dң正方形的性质ңA B=A DøD A B=90ʎ{㊀D EʅA Gң垂直的定义ңø1=90ʎ㊀B FʊD Eң平行线的性质ңø1=ø2=90ʎ㊀㊀看㊀㊀㊀㊀㊀㊀㊀想㊀㊀㊀㊀㊀㊀得图2这样通过深入分析,学生形成解题思路后,教师还应预留时间让学生将问题解决到底,以此规范解答,加强学生逻辑关系描述的准确性.在讲解例1后,教师可以引导学生将图1中的弦图补充完整,由此发现小正方形的边长为R tәD A E的两条直角边的差,为接下来的变式探究作铺垫.3问题变式为了进一步探究蕴含其中的数量关系,教师基于基本学情对题目进行改编,从而将一道题推广至一类题,让学生通过由特殊到一般的深入探究掌握问题的本质,提高分析和解决问题的能力.变式1㊀如图1,在正方形A B C D中,G是B C边上的任意一点,D EʅA G,垂足为E,B FʊD E,且交A G于点F.请直接写出D E,B F,E F存在的数量关系.问题给出后,预留时间让学生思考㊁交流,教师巡视,并在合适的时机进行适度的启发和引导.学生通过深入探究,得到如下结论:(1)如图1,当点G在线段B C上时,D E-B F=E F.(2)如图3,当点G与点C重合时,DE=B F,E F=0;如图4,当点G在B C延长线时,B F-D E=E F.图3㊀㊀图4(3)如图5,当点G与B重合时,D E=E F,B F=0;如图6,当点G在C B延长线上时,D E+B F=E F.图5㊀㊀图6222024年4月下半月㊀教学导航㊀㊀㊀㊀这样通过深度学习,有效发散了学生的数学思维,培养了学生分类讨论素养,激发了学生的探究欲.变式2㊀例1中的已知条件不变,结论改为 求线段E F 的取值范围 .结合变式1可知,当点G 与点C 重合时,E F =0,此时E F 最小;当点G 点B 重合时,此时E F 的长度等于正方形的边长.接下来教师展示图7,让学生直观感知随着点G 位置的变化,E F 的长度随之变化,渗透函数思想,从而为接下来研究 一次函数 作铺垫.图7这样通过对教材问题的拓展研究,既有效沟通了全等三角形的相关知识,又让学生在由内弦图到外弦图的变化过程中形成新想法㊁新思路,充分感知 赵爽弦图 的变化之美.同时,在拓展延伸中让学生初步感受函数思想,充分感知知识间的内在联系,促进学生知识体系的建构和数学素养的提升.4问题推广图8思考㊀如图8所示,当四边形A B C D 是正方形时,则E F =A F -B F .如图9,әA BC 是正三角形,其中ø1=ø2,那么A F ,B F ,E F 存在怎样的数量关系?如图10,若将正三角形变为正五边形,ø1=ø2,此时A F ,B F ,E F 存在怎样的数量关系呢?图9㊀㊀图10教学过程中,教师在原有基础上进一步推广,将正方形背景下线段的数量关系推广至正三角形和正五边形中,让学生充分体会探究方法的一致性,引导学生归纳总结解决此类问题的方法,逐步帮助学生建构 一线三等角 模型,提高学生数学抽象和数学建模素养.5迁移应用谈起中考试题,很多学生会用 新 难 来概括,然深入探究不难发现,有些题实则是教材原题,学生之所以感觉 新 难 ,是因为在平时教学中对教材内容的理解不够深刻㊁全面,因此略有变化就感觉无从入手.其实,中考试题中时常会出现基本图形的变化一类问题,而这类问题往往与 赵爽弦图 密切相关.因此,在课堂教学中,教师应重视引导学生归类,让学生在变化中体会不变的本质,提高综合解题能力.图11例2㊀如图11所示,四边形A B C D 是边长为6c m 的正方形,点E ,F ,G ,H 分别从点A ,B ,C ,D 同时出发,以1c m /s 的速度向B ,C ,D ,A 匀速运动,当点E 达到点B 时,四点同时停止运动.问点E 运动几秒时,四边形EFGH 面积取最小值?其最小值为何值?分析:由题意可知,әA E H ɸәB F E ɸәC G F ɸәDH G ,根据已知条件可用含t 的代数式表示A E 与AH 的长,由此得到关于t 的二次函数,然后根据二次函数的性质可以求得当点E 运动3s 时,四边形E F G H 的面积最小,且最小值为18c m 2.图12例3㊀如图12所示,在正方形A B C D 中,点E 在边C D 上,A Q ʅB E ,垂足为Q ,D P ʅA Q ,垂足为P .(1)求证:A P =B Q ;(2)在不添加辅助线的情况下,图中各线段蕴含怎样的数量关系?分析:学生结合已有经验易证әA B Q ɸәD A P ,问题(1)获证.对于问题(2),根据研究弦图的经验易得A Q -A P =P Q ,A Q -B Q =P Q ,D P -A P =P Q ,D P -B Q =P Q .例2㊁例3均为中考试题,均以正方形为背景,由基本图形变换而来,若学生能够认清问题的本质,自然可以轻松获解.在日常教学中,若不关注知识间的内在联系,不重视揭示问题的本质,那么学生在面对 陈题 时也会感觉陌生,这样在解题时出现 懂而不会 一错再错 等情况也就不足为奇了.因此,在实际教学中,教师要充分挖掘教材资源,通过有效变式让学生学懂㊁学透,切实提高学生解题能力.Z32。
专题1-4 正方形的性质与判定-重难点题型(举一反三)(北师大版)(原卷版)
专题1.4 正方形的性质与判定-重难点题型【北师大版】【题型1 正方形的性质(求角的度数)】【例1】(2021春•海珠区校级期中)如图,以正方形ABCD的一边AD为边向外作等边△ADE,则∠ABE 的度数是.【变式1-1】(2021春•黄浦区期末)如图,E为正方形ABCD外一点,AE=AD,BE交AD于点F,∠ADE =75°,则∠AFB=°.【变式1-2】(2021春•海淀区校级月考)如图,在正方形ABCD内,以AB为边作等边△ABE,则∠BEG =°.【变式1-3】(2021春•大兴区期中)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E连接BE,DE,其中DE交直线AP于点F.连接AE,若∠P AB=20°,求∠ADF的度数.【题型2 正方形的性质(求线段的长度)】【例2】(2021春•崇川区校级月考)如图,正方形ABCD的边长为1,点E在对角线BD上,且∠BAE=22.5°,则BE的长为.【变式2-1】(2021春•余杭区月考)边长为4的正方形ABCD中,点E、F分别是AB、BC的中点,连结EC、FD,点G,H分别是EC、DF的中点,连结GH,则GH的长为.【变式2-2】(2021春•南开区期中)如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.【变式2-3】(2021春•綦江区校级月考)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.(1)求证:EF=AE+CF;(2)当AE=1时,求EF的长.【题型3 正方形的性质(求面积、周长)】【例3】(2020春•仪征市期末)正方形ABCD中,AB=4,点E、F分别在BC、CD上,且BE=CF,线段BF、AE相交于点O,若图中阴影部分的面积为14,则△ABO的周长为.【变式3-1】(2021春•仓山区期中)如图,在正方形ABCD中,AB=4,点E,F分别在CD,AD上,CE =DF,BE,CF相交于点H.若图中阴影部分的面积与正方形ABCD的面积之比为3:4,则△BCH的周长为()A.2√5−4B.2√5C.2√5+4D.2√6+4【变式3-2】(2021春•海淀区校级期中)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为()A.14B.16C.18D.12【变式3-3】(2021春•河西区期中)将5个边长为2cm的正方形按如图所示摆放,点A1,A2,A3,A4是正方形的中心,则这个正方形重叠部分的面积和为()A.2cm2B.1cm2C.4cm2D.6cm2【题型4 正方形的性质(探究数量关系)】【例4】(2020秋•和平区期末)如图,若在正方形ABCD中,点E为CD边上一点,点F为AD延长线上一点,且DE=DF,则AE与CF之间有怎样的数量关系和位置关系?请说明理由.【变式4-1】(2020春•西山区期末)如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接DE,过点A作AM⊥DE,垂足为M,AM与BD相交于点F.(1)直接写出OE与OF的数量关系:;(2)如图(2)若点E在AC的延长线上,AM⊥DE于点M,AM交BD的延长线于点F,其他条件不变.试探究OE与OF的数量关系,并说明理由.【变式4-2】(2020春•安阳县期末)四边形ABCD是正方形,G是直线BC上任意一点,BE⊥AG于点E,DF⊥AG于点F,当点G在BC边上时(如图1),易证DF﹣BE=EF.(1)当点G在BC延长线上时,在图2中补全图形,写出DF、BE、EF的数量关系,并证明.(2)当点G在CB延长线上时,在图3中补全图形,写出DF、BE、EF的数量关系,不用证明.【变式4-3】(2021春•天河区校级期中)如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.【题型5 正方形的性质综合应用】【例5】(2020秋•周村区期末)(1)如图1的正方形ABCD中,点E,F分别在边BC,CD上,∠EAF =45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG;(2)如图2,等腰Rt△ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,求MN的长.【变式5-1】(2021春•余杭区月考)已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF 交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:BF=DP;(2)若正方形ABCD的边长为4,求△ACP的面积;(3)求证:CP=BM+2FN.【变式5-2】(2021春•莆田期末)如图1,在正方形ABCD中,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)若点E是BC边上的中点,求证:AE=EF;(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,若点E是BC边上的任意点一,在AB边上是否存在点M,使得四边形DMEF是平行四边形?若存在,请给予证明;若不存在,请说明理由.【变式5-3】(2021春•江津区期中)在正方形ABCD中,对角线AC、BD相交于点O,点E在线段OC上,点F在线段AB上,连接BE,连接EF交BD于点M,已知∠AEB=∠OME.(1)如图1,求证:EB=EF;(2)如图2,点N在线段EF上,AN=EN,AN延长线交DB于H,连接DF,求证:DF=√2AH.【题型6 判定正方形成立的条件】【例6】(2020春•上蔡县期末)下列说法正确的个数是()①对角线互相垂直或有一组邻边相等的矩形是正方形;②对角线相等或有一个角是直角的菱形是正方形;③对角线互相垂直且相等的平行四边形是正方形;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个【变式6-1】(2020春•建湖县期中)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.BD=DF C.AC=BF D.CF⊥BF【变式6-2】(2020春•开原市校级月考)已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④【变式6-3】(2020秋•陕西期中)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH 是正方形,BD、AC应满足的条件是.【题型7 正方形判定的证明】【例7】(2020秋•富平县期末)如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.求证:四边形ABCD是正方形.【变式7-1】(2021春•娄星区校级期中)已知,如图,在Rt△ABC中,∠ACB=90°,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.【变式7-2】(2020春•新乡期末)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=°时,四边形MPND是正方形,并说明理由.【变式7-3】(2020秋•渠县期末)如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是△ABC的外角∠MAC的平分线,延长DF交AN于点E,连接CE.(1)求证:四边形ADCE是矩形;(2)若AB=BC=4,则四边形ADCE的面积为多少?(3)直接回答:当△ABC满足时,四边形ADCE是正方形.【题型8 正方形的判定与性质综合】【例8】(2021春•天心区期中)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF ⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=4,CE=2√2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.【变式8-1】(2020秋•青山区期末)如图,已知四边形ABCD为正方形,AB=4√2,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【变式8-2】(2020春•南充期末)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,EF⊥AD于点F,DG⊥AE于点G,DG与EF交于点O.(1)求证:四边形ABEF是正方形;(2)若AD=AE,求证:AB=AG;(3)在(2)的条件下,已知AB=1,求OD的长.【变式8-3】(2020春•邹城市期末)如图,▱ABCD中,∠A=45°,过点D作ED⊥AD交AB的延长线于点E,且BE=AB,连接BD,CE.(1)求证:四边形BDCE是正方形;(2)P为线段BC上一点,点M,N在直线AE上,且PM=PB,∠DPN=∠BPM.求证:AN=√2PB.。
中考数学专题:《动态动点几何问题》带答案
《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。
专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(福建专用)(原卷版)
专题04 几何压轴题1.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证://DE A F';(2)求GA B∠'的大小;(3)求证:2'='.AC A B2.(2020•福建)如图,ADE∆由ABC∆绕点A按逆时针方向旋转90︒得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求BDE∠的度数;(2)F是EC延长线上的点,且CDF DAC∠=∠.①判断DF和PF的数量关系,并证明;②求证:EP PC PF CF=.3.(2021•泉州模拟)如图,四边形ABCD中,4AB AD==,3CB CD==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q . (1)求sin MCN ∠的值;(2)当DN DC =时,求CNM ∠的度数; (3)试问:在点M 、N 的运动过程中,线段比PQMN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相应的位置.4.(2021•宁德模拟)如图,点E ,F 在正方形ABCD 的对角线AC 上,45EBF ∠=︒. (1)当BE BF =时,求证:AE CF =;(2)若4AB=,求AF CE⋅的值;(3)延长BF交CD于点G,连接EG.判断线段BE与EG的数量关系,并说明理由.5.(2021•龙岩模拟)如图,Rt ABCBC=,3∆AC=,点D在Rt ABC∠=︒,2ACB∆中,90的边AC上,DC m==,过E =,以BD为直角边在AC同侧作等腰Rt BDE∆,使BD DE n作EF AC⊥于点F,连接AE.(1)求证:EDF DBC∆≅∆;(2)求AE的最小值;(3)若52AEBCSn=四边形,求AEBCS四边形的值.6.(2021•莆田模拟)如图1,矩形ABCD中,4AB=,8BC=,点E为BC边上的动点,连接DE.过点E作于点,点为的中点,连接,,.(1)求证:;(2)设,的面积为,EF BD⊥F G DE CF CG GF2FGC BDC∠=∠BE x=GFC∆S①求与的函数关系式;②如图2,点,分别在,上,且,,连接,,当取最小值时,求的值.7.(2021•三明模拟)在和中,,,,点在上,点在上,.(1)如图①,若是中点,延长线交于点,求证:; (2)如图②,若不是中点,S x M N AD CD 92DM =1DN =GM GN GM GN +S ABC ∆ADE ∆AC BC =AD AE =90ACB DAE ∠=∠=︒E AB F EB BCF BDE ∠=∠E AB CE BD G CEF BEG ∆≅∆E AB①求证:; ②求证:.8.(2021•泗水县一模)(1)如图1,正方形和正方形(其中,连接,交于点,请直接写出线段与的数量关系 ,位置关系 ;(2)如图2,矩形和矩形,,,,将矩形绕点逆时针旋转,连接,交于点,(1)中线段关系还成立吗?12CF BD =EF BF =ABCD DEFG )AB DE >CE AG H AG CE ABCD DEFG 2AD DG =2AB DE =AD DE =DEFG D (0360)αα︒<<︒AG CE H若成立,请写出理由;若不成立,请写出线段,的数量关系和位置关系,并说明理由;(3)矩形和矩形,,,将矩形绕点逆时针旋转,直线,交于点,当点与点重合时,请直接写出线段的长.9.(2021•漳州模拟)如图,在矩形中,,点、分别在、上,将矩形沿折叠,使点落在边上的点处,点落在点处,交于点,连接交于点. (1)求证:; (2)求证:;AG CE ABCD DEFG 26AD DG ==28AB DE ==DEFG D (0360)αα︒<<︒AG CE H E HAE ABCD 2AB BC =P Q AB CD ABCD PQ B AD E C F EF CD G BE PQ H APE GQF ∠=∠PQ BH =(3)若,的长.10.(2021•南平模拟)如图,在矩形中,,,点在的延长线上,点在上,且. (1)已知. ①求的度数; ②当时,求的值; 3sin 5GQF ∠=PQ =FG ABCD AB a =BC b =E CB F DE EAB FAB ∠=∠EB FB =AFD ∠AED DEC ∠=∠ab(2)求证:直线一定平分边.11.(2021•福建模拟)在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.(1)观察猜想 如图1,当时,的值是 ,直线与直线相交所成的较小角的度数是 .BF AD ABC ∆CA CB =ACB α∠=P A C AP AP P αDP AD BD CP 60α=︒BDCPBD CP(2)类比探究如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值.12.(2021•启东市模拟)定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形与四边形都是正方形,,求证:四边形是“等垂四边形”;(2)如图②,四边形是“等垂四边形”,,连接,点,,分别是,,的中点,连接,,.试判定的形状,并证明;(3)如图③,四边形是“等垂四边形”,,,试求边长的最小值.90α=︒BDCPBD CP90α=︒E F CA CB P EF CP DADCPABCD AEEG135180AEB︒<∠<︒BEGDABCD AD BC≠BD E F G AD BC BD EG FG EF EFG∆ABCD4AD=6BC=AB13.(2021•福州模拟)在中,,,.将绕点顺时针旋转得到,直线,交于点. (1)如图1,当时,连接. ①求的面积; ②求的值;(2)如图2,连接,若为中点,求证:,,三点共线.Rt ABC ∆90ACB ∠=︒3AC =4BC =Rt ABC ∆B (060)αα︒<<︒Rt DEB ∆DE AC P BD BC ⊥BP BDP ∆tan CBP ∠AD F AD C E F14.(2021•启东市模拟)如图,在矩形中,,、分别为、边上的动点,连接,沿将四边形翻折至四边形,点落在上,交于点,连接交于点.(1)写出与之间的位置关系是: ; (2)求证:; (3)连接,若,的长. ABCD 2AB BC =F G AB DC GF GF AFGD EFGP E BC EP CD H AE GF O GF AE 2AE GF =CP 3sin 5CGP ∠=10GF CE15.(2018•益阳)如图1,在矩形中,是的中点,以点为直角顶点的直角三角形的两边,分别过点,,. (1)求证:;(2)将绕点按顺时针方向旋转,当旋转到与重合时停止转动,若,分别与,相交于点,(如图. ①求证:;②若,求面积的最大值;ABCD E AD E EFG EF EG B C 30F ∠=︒BE CE =EFG ∆E EF AD EF EG AB BC M N 2)BEM CEN ∆≅∆2AB =BMN ∆③当旋转停止时,点恰好在上(如图,求的值.16.(2020•厦门模拟)在平行四边形中,是锐角,过、两点以为半径作.(1)如图,对角线、交于点,若,且过点,求的值; (2)与边的延长线交于点,的延长线交于于点,连接、、,若,的长为,当时,求的度数.(提示:可再备用图上补全示意图)B FG 3)sin EBG∠ABCD ABC ∠A B r O AC BD M 2AB BC ==M r O BC E DO O F DE EF AC 45CAD ∠=︒AE 2r π2CE AB DEF ∠17.(2020•福建模拟)在正方形中,,为对角线、的交点. (1)如图1,延长,使,作正方形,使点落在的延长线上,连接、.求证:;(2)如图2,将问题(1)中的正方形绕点逆时针旋转,得到正方形,连接、. ①当时,求点到的距离;②在旋转过程中,求△面积的最小值,并求此时的旋转角.ABCD 4AB =O AC BD OC CE OC =OEFG G OD DE AG DE AG =OEFG O (0180)αα<<︒OE F G '''AE 'E G ''30α=︒A E G ''AE G ''α18.(2020•仓山区模拟)问题提出:(1)如图1,点为线段外一动点,且,,填空:当时,线段的长取得最大值,且最大值为 (用含,的式子表示). 问题探究:(2)点为线段外一动点,且,,如图2所示,分别以,为边,作等边三角形和等边三角形,连接,,找出图中与相等的线段,请说明理由,并直接写出线段长的最大值. 问题解决:A BC BC a =AB b =ABC ∠=AC a b A BC 6BC =3AB =AB AC ABD ACE CD BE BE BE(3)如图3,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,,求线段长的最大值及此时点的坐标.19.(2020•福州模拟)已知,,,是边上一点,连接,是上一点,且.(1)如图1,若, ①求证:平分;②求的值; (2)如图2,连接,若,求的值.A (2,0)B (5,0)P AB 2PA =PM PB =90BPM ∠=︒AM P ABC ∆AB AC =90BAC ∠=︒D AB CDE CD 45AED ∠=︒AE DE =CD ACB ∠ADDBBE AE BE ⊥tan ABE ∠20.(2020•龙岩一模)如图,已知中,,平分,与交于点,,过作于,交于,与的延长线相交于点. (1)求证:点是的外心; (2)若,,求的长.Rt ABC ∆90ACB ∠=︒BD ABC ∠BD AC E AD BD ⊥D DF AB ⊥F AC G FD BC H G ADE ∆2FG =5DH =EG21.(2020•泰兴市模拟)我们把有一组邻边相等,一组对边平行但不相等的四边形称作“准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明)已知:求证:证明:(2)已知,在中,,,.若点,分别在边,上,且四边形为“准菱形”.请在下列给出的中,作出满足条件的所有“准菱形”,并写出相应的长.(所给不一定都用,不够可添)22.(2020•泉港区一模)如图,矩形中,,,点在边上,与点、不重合,过点作的垂线与的延长线相交于点,连接,交于点. (Ⅰ)当为的中点时,求的长;(Ⅱ)当是以为腰的等腰三角形时,求.ABC ∆90A ∠=︒3AB =4AC =D E BC AC ABDE ABC ∆ABDE DE ABC∆DE =34DE =DE =DE=ABCD 8AD =16AB =E AB A B D DE BC F EF CD G G EF AE DEG ∆DE tan ADE ∠23.(2020•三明二模)如图,在中,,,,点是斜边上一点,且.(Ⅰ)求的值;(Ⅱ)过点的与边相切,切点为的中点,与直线的另一个交点为.ABC ∆90ACB ∠=︒3AC =1BC =D 4AD BD =tan BCD ∠B O AC AC E O BC F(ⅰ)求的半径;(ⅱ)连接,试探究与的位置关系,并说明理由.24.(2020•鼓楼区校级模拟)如图,在矩形中,,、分别为、边上的动点,连接,沿将四边形翻折至四边形,点落在上,交于点,连接交于点.(1)与之间的位置关系是: ,的值是: ,请证明你的结论; O AF AF CD ABCD 12BC AB F G AB DC GF GF AFGD EFGP E BC EP CD H AE GF O GF AE GF AE(2)连接,若,,求的长.25.(2021•福建模拟)如图,在矩形中,,,是边上的一个动点,点在射线上,点在边上,四边形是正方形,过作射线于点,连接,.(1)求证:;(2)设,的面积为,求与的函数关系式,并写出的取值范围. CP 3tan 4CGP ∠=GF =CP ABCD 10AB =6AD =E AB F EC H AD EFGH G GM ⊥AD M CG DG AH GM =AE x =CDG ∆S S x x26.(2020•思明区校级二模)如图,已知,点在正方形的边上(不与点,重合),是对角线,过点作的垂线,垂足为,连接,.把线段绕着点顺时针旋转,使点的对应点点刚好落在延长线上,根据题意补全图形.(1)证明;(2)连接,用等式表示线段与的数量关系,并证明.E ABCD BC B C AC E AC G BG DG DG G DF BC GC GE DF BG DF27.(2020•鼓楼区校级三模)在中,,,为中点,点为延长线上一点,,连接,,.(1)如图:将射线绕逆时针旋转60”交延长线于点,且. ①求证:.②求的值; Rt ABC ∆90ACB ∠=︒30B ∠=︒M AB P BC CP BC <PM AC n =CP m =MP M CA D BC AD CP =+MDC PMA ∠=∠m n(2)如图2若将射线绕点顺时针旋转交延长线于点,求的长(用含有,的式子表示).28.(2020•莆田二模)如图,在四边形中,,.在延长线上取点,使得.(1)如图1,当时,求证:①;②;(2)如图2,若,,设,,求与的函数表达式. MP M 60︒AC H CH m n ABCD AC AD ⊥ABC ADC ∠=∠BC E DC DE =//AD BC ABC DEC ∠=∠2CE BC =4tan 3ABC ∠=10BE =AB x =BC y =y x29.(2021•开福区模拟)勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以的三边为边长,向外作正方形、、.(1)连接、,求证:;(2)过点作的垂线,交于点,交于点.①试说明四边形与正方形的面积相等;Rt ABC ∆ABDE BCFG ACHI BI CE ABI AEC ∆≅∆B AC AC M IH N AMNI ABDE②请直接写出图中与正方形的面积相等的四边形.(3)由第(2)题可得:正方形的面积正方形的面积的面积,即在中,.30.(2021春•连云港期末)中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.(1)探究猜想如图1,当点在线段上时,①与的位置关系为:;②、、之间的数量关系为:;(2)深入思考如图2,当点在线段的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;BCFGABDE+BCFG=Rt ABC∆22AB BC+=ABC∆90BAC∠=︒AB AC=D BCD B C AD AD ADEF CFD BCBC CFBC CD CFD CB若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点在线段的延长线上时,正方形对角线交于点.若已知,,请求出的长.D BC ADEF O 22AB =14CD BC =OC。
(2021年整理)图形与证明(三条线段之间的数量关系)
(完整)图形与证明(三条线段之间的数量关系)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)图形与证明(三条线段之间的数量关系))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)图形与证明(三条线段之间的数量关系)的全部内容。
图形与证明(2)1(09河北)在图14-1至图14—3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14—1,点E 在AC 的延长线上,点N 与点G重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(2)将图14—1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14—3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)2. (10沈阳)如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B 、P 在直线a 的异侧,BM 直线a 于点M ,CN 直线a 于点N ,连接PM 、PN ; (1) 延长MP 交CN 于点E (如图2)。
求证:△BPM △CPE ; 求证:PM = PN ; (2) 若直线a 绕点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变。
此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3) 若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变。
请直接判断四边形MBCN的形状及此时PM =PN 还成立吗?不必说明理由。
3.(08北京)请阅读下列材料:图14-1 A HC (M )DE BFG (N )G 图14-2AHC DEB F NMAHCDE 图14-3BFG MN aA BCPMNA BCM N aPA BCPNMa图1 图2 图3问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).4。
初中几何线段数量关系
初中几何线段数量关系
1. 线段的定义
线段是几何学中最基本的图形之一,是由端点和两个端点之间的
所有点组成的一段线。
2. 线段的数量
在几何学中,线段的数量是许多重要概念和关系的基础。
线段的
数量可以通过以下几种方式来表示。
2.1 点和线段的关系
一个点可以与另一个点连接成一条线段,所以当有n个点时,就
可以连接成n(n-1)/2条线段。
例如,当有3个点时,可以连接成3条
线段;当有4个点时,可以连接成6条线段;当有5个点时,可以连
接成10条线段。
2.2 图形中线段的数量
许多几何图形中包含的线段数量与其形状有关。
例如,一个正方
形有4条边,每条边可以看作是一条线段,所以一个正方形中有4条
线段。
同样地,一个三角形中有3条线段,一个四边形中有4条线段。
2.3 直线上线段的数量
在同一条直线上,若有n个点,则有n-1个线段。
例如,直线上
有3个点时,有2条线段;直线上有4个点时,有3条线段。
2.4 平面内线段的数量
在平面内,若有n条线段,则交点的数量为n(n-1)/2。
例如,当平面内有3条线段时,它们最多有3个交点;平面内有4条线段时,最多有6个交点。
3. 总结
线段数量在几何学中是一个非常重要的概念。
掌握线段数量的各种表示方法,可以帮助我们更好地理解几何图形和解决几何问题。
2020年中考数学专题——“一线三直角”模型在正方形中的应用
“一线三直角”模型在正方形中的应用随着新课标的实施,以及考试命题的不断创新,试题对常见模型的考查愈加深入,越来越重视对学生知识迁移和创新能力的考核.本文,利用“一线三直角”模型探究与正方形有关的几何问题,一、“一线三直角”全等模型1.模型简介如图1所示,已知CD CE =,90DAC DCE EBC ∠=∠=∠=︒,则DAC CBE ∆≅∆.2.模型应用例1 (2019年泰州中考题)如图2,线段8AB =,射线BG AB ⊥,P 为射线BG 上一点,以AP 为边作正方形APCD ,且点,C D 与点B 在AP 的两侧,在线段DP 上取一点E ,使EAP BAP ∠=∠.直线CE 与线段AB 相交于点F (点F 与点,A B 不重合)(1)求证:AEP CEP ∆≅∆;(2)判断CF 与AB 的位置关系,并说明理由;(3)求AEF ∆的周长.思路分析(1) (2)略.(3)如图3,已知AP PC =,且90ABP APC ∠=∠=︒,故过点C 作CN PB ⊥,构造“一线三直角”全等模型,从而实现边的相等关系的转化,使问题得到解决.解 (1)易证AEP CEP ∆≅∆.(2)∵AEP CEP ∆≅∆,∴EAP ECP ∠=∠.又EAP BAP ∠=∠, ∴BAP FCP ∠=∠.设AP 交CF 于点M .∵90FCP CMP ∠+∠=︒,AMF CMP ∠=∠,∴90AMF PAB ∠+∠=︒,∴CF AB ⊥.(3)如图3,过点C 作CN PB ⊥交于点N .根据全等模型,得PCN APB ∆≅∆,∴,CN PB PN AB ==.由(2)可知,四边形CFBN 是矩形,∴CN BF =.∵AEP CEP ∆≅∆,∴AE CE =,∴AE EF AF CE EF AF ++=++BN AF =+PN PB AF =++AB CN AF =++AB BF AF =++216AB ==.例2 (2019年无锡中考题)如图4,在ABC ∆中,5,AB AC BC D ===为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连结BE ,则BDE ∆面积的最大值为 . 思路 分析如图5,要求BDE ∆的面积,学生自然想到,过点E 作EH BA ⊥的延长线于H ,得高EH .因为ED CD =,且90EDC EHD ∠=∠=︒,故过点C 作CG BA ⊥的延长线于G ,构造“一线三直角”模型,得到两全等的直角三角形(EHD DGC ∆≅∆),从而实现边的相等关系的转化(EH DG =).又D 是AB 上一动点,则可设变元,将BDE ∆的面积用一元二次函数来表示,最后求得其最大值.如图5,过,C E 两点分别作CG AB ⊥,EH AB ⊥交BA 延长线于G ,H .由5,AB AC BC ===,易得cos ABC ∠= ∴8BG =.设BD x =,则8DG x =-.由全等模型,得EHD DGC ∆≅∆.∴8EH DG x ==-, ∴211(8)(4)822BDE S x x x ∆=-=--+, 故当4x =时,BDE ∆面积的最大值为8.二、“一线三直角”相似模型1.模型简介如图6所示,已知90DAC DCE EBC ∠=∠=∠=︒,则DAC CBE ∆∆:.2.模型应用例3 (2019年连云港中考题)问题情境 如图7,在正方形ABCD 中,E 为边BC 上一点(不与点,B C 重合),垂直于AE 的一条直线MN 分别交,,AB AE CD 于点,,M P N .判断线段,,DN MB EC 之间的数量关系,并说明理由.问题探究在“问题情境”的基础上,作出如下探究.(1)如图8,若垂足P 恰好为AE 的中点,连结BD ,交MN 于点Q ,连结EQ ,并延长交边AD于点F .求AEF ∠的度数; (2)如图9,当垂足P 在正方形ABCD 的对角线BD 上时,连结AN ,将APN ∆沿着AN 翻折,点P 落在点'P 处.若正方形ABCD 的边长为4,AD 的中点为S ,求'P S 的最小值.问题拓展 如图10,在边长为4的正方形ABCD 中,点,M N 分别为边,AB CD 上的点,将正方形ABCD 沿着MN 翻折,使得BC 的对应边''B C 恰好经过点A ,'C N 交AD 于点F .分别过点,A F 作,AG MN FH MN ⊥⊥,垂足分别为,G H .若52AG =,请直接写出FH 的长. 思路分析 基于问题情境,易证DN MB EC +=.问题探究 (1)如图11,由MN 垂直平分AE ,连结AQ ,则AQ EQ =.猜想AQ EQ ⊥,由可能的等腰直角AQE ∆的两腰加一线(HI )(即过点Q 作HI AD ⊥),构造一线三直角模型.又易证AH AD HD HI HQ QI =-=-=,再加上AQ EQ =,可得AHQ QIE ∆≅∆,故AQ EQ ⊥成立,从而45AEF ∠=︒.(2)如图12,连结AC 交BD 于O ,由题意易得APN ∆的直角顶点P 在OB 上运动. 若点P 与点B 重合,则点P '与点D 重合.若点P 与点O 重合,则点P 的对应点为O ',易得45ADO '∠=︒.当点P 在OB 上运动时,易证四边形APNP '为正方形.过点P 作PG CD ⊥于G ,过点P '作P H CD '⊥延长线于H ,由“一线三直角”全等模型,得PGN NHP '∆≅∆,所以,PG NH GN HP '==.又易得PG GD =,故GN DH =,从而DH HP '=,所以45P DH '∠=︒,故点P '在线段DO '上运动。
利用正方形的性质探索线段的数量关系
利用正方形的性质探索线段的数量关系正方形是一种特殊的四边形,它里面隐含着许多的线段之间的关系,历年中考题总会出现有关利用正方形的性质探索线段的数量关系问题,求解时只要我们能充分利用正方形的特性,结合图形大胆的探索、归纳、验证即可使问题获解.例1如图1,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1)求证:DE-BF = EF.(2)当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3)若点G为CB延长线上一点,其余条件不变.请你在图2中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).分析:(1)考查正方形的性质及全等三角形的判定及性质,找出图中全等的直角三角形,得两线段的差等于某条线段,(2)利用相似找三角形的性质,然后根据对应边成比例来到处两线段的倍数关系,从而使问题获解.证明:(1)∵四边形ABCD是正方形, BF⊥AG , DE⊥AG∴DA=AB,∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴∠BAF = ∠ADE∴△ABF≌△DAE∴BF = AE , AF = DE∴DE-BF = AF-AE = EF(2)EF = 2FG理由如下:∵AB⊥BC , BF⊥AG , AB =2 BG∴△AFB∽△BFG∽△ABG∴2===FG BF BF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知, AE = BF ,∴ EF = BF = 2 FG(3) 如图3DE + BF = EF评注:正方形是有一个角是直角的菱形;正方形又是对角线相互垂直的矩形;正方形是中心对称对称图形,也是轴对称图形.正方形的对角线分其四个全等的等腰直角三角形.例2已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图4中△BEF 绕B 点逆时针旋转45º,如图5所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由.(3)将图4中△BEF 绕B 点旋转任意角度,如图6所示,再连接相应的线段,问(1)中的结论是否仍然成立通过观察你还能得出什么结论(均不要求证明)分析:要猜想EG 与CG 之间的大小关系,由正方形的图形特征,可以先证CG= FD ,进而可以利用G 为DF 中点的知识或全等三角形的知识即可验证.解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG= FD.同理,在Rt △DEF 中,EG= FD.F BA D CEG图4 D F B AD CE G图5 F B A C E 图6∴ CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN,MG=NG,∴△AMG≌△ENG.∴ AG=EG.∴ EG=CG.(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.评注:求解本题中的问题一定要根据图形的特征,从中找到求解的最佳突破口.要说明两条线段的关系应分别从数量和位置两个方面去考虑,否则就有可能出现错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D P A 如图 2 ,若将 AB1F P BF 平移到
位置,即AE⊥B1F ,则线段 O F AE与B F 还相等吗? 1 /
O B C O Q E
D N F
O/
M
E Q C N 图3 G 如图 3,O为正方形 ABCD 内任意一点, 如图 4,若将 MN、PQ 分别平移到 MN⊥PQ于O,求证:MN=PQ. 图4 正方形外部,则它们还相等吗?
M B
深化提高
反思:你获得哪些证明方法?
问题 1 :如图① , 将等腰直角三角尺 AMN A 与正方形 问题 2:如图②,若三角尺 AMN绕点 A的非直角顶点 继续逆时针旋转, AM与 ABCD 的顶点 A 重合 ,于 斜边 AN 与正方形的对角线 BC 的延长 线交 点E , AN 与 CD 的 延 长 线 AC 交 重合 于 点. F若正方形 ,连接 ABCD 保持不动 ,将三角尺AMN 绕点 A按逆时针方向旋转 ,当AM与BC交 EF .此时,猜想线段 BE 、 DF 、 EF 又有怎样的数量关系?请 于点 E,AN 与CD交于点F时,连接EF. 猜想BE+DF与EF满足的数量关 写出你的猜想,并证明. N 系,并证明. A 1 D F F 32 D BE=0 N A 12 F / 4 DF=DCF B (E) E C (F) 3 EF=BC N / C E E B F M M M N 图① 图② M -DF=EF 猜想:BE+DF=EF 猜想:BE
A
D
A
D (A)
观察思考
A
B A
图1
D
B
图2
C(B) A B
E
E C
C
A
O
C
D
B
F B B
F A
D(C)
图4
E
B O
B
B
图3
E
D
C
F
C
A
F
基本图形
图6
F
D 图5 C E
E
C
典例精析
A
O E 图2 1
BE=CF 反思:你获得哪些知识与方法? 猜想:AE=BF , AE AE=BF ⊥BF AE=B1F ,如何证明呢?
已知 简单 特殊
结束寄语
下课了!
观察、操作、思考、感悟 是能否进入数学大门,领略数 学奥妙的关键.
D
F C
B1 B
转化思想 如图1,已知正方形 ,已知正方形 ABCD ABCD 中, 中, F1 转化思想能够 BE=CF AE AE=BF ⊥BF ,探究线段 , ,则线段 则 线 段 BE BE AE 与 与 与 CF BF 相 相等 的 等 使复杂的问题 数量关系和位置关系? 吗? AE与BF相等吗? 垂直吗? 简单化,陌生
◆截长补短法: 上面问题中,通过延长或截取的
方法,将三条线段的数量关系转化为两条线段的数 量关系,而解题关键就是要证明两个三角形全等。
回顾反思
1.本堂课中复习到了哪些数学知识? 2.你学习到哪些新的题型,处理这类问题你有什么方法? 3.在解题的过程中你学习了哪些数学方法和数学思想?
未知 复杂 ●截长补短法 ●转化思想 一般 ●变中找不变,即在平移与 运动