通信原理樊昌信课后答案完整版
通信原理教程 樊昌信 课后习题答案第一章至第八章
−
1 8
log
2
1 8
−
1 2
log
2
1 2
= 1.75bit / 符号
习题 1.12 一个由字母 A,B,C,D 组成的字。对于传输的每一个字母用二 进制脉冲编码,00 代替 A,01 代替 B,10 代替 C,11 代替 D。每个脉冲宽 度为 5ms。
(1) 不同的字母是等概率出现时,试计算传输的平均信息速率。
解:该信息源的熵为
H
(X
)
=
−
M i =1
P(xi
)
log
2
P(xi
)
=
−
64 i =1
P(xi
)
log
2
P(xi
)
=
16
*
1 32
log
2
32
+
48
*
1 96
log
2
96
=5.79 比特/符号 因此,该信息源的平均信息速率 Rb = mH = 1000*5.79 = 5790 b/s 。 习题 1.6 设一个信息源输出四进制等概率信号,其码元宽度为 125 us。试 求码元速率和信息速率。
码组 00,01,10,11 表示。若每个二进制码元用宽度为 5ms 的脉冲传输,试分
别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如
习题 1.2 所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持
续时间为 2×5ms。传送字母的符号率为的概率的 1/3。 (1) 计算点和划的信息量; (2) 计算点和划的平均信息量。
解:令点出现的概率为 P(A) ,划出现的频率为 P(B)
通信原理教程樊昌信课后习题答案第一章至第八章
通信原理教程樊昌信课后习题答案第一章至第八章第一章习题习题1.1 在英文字母中E 出现的概率最大,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-=b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1)这四个符号等概率出现;(2)这四个符号出现概率如习题1.2所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =??=-R 等概时的平均信息速率为b 2004log log 2B 2B b ===R M R R(2)平均信息量为符号比特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 b 7.197977.1100B b =?==H R R习题1.4 试问上题中的码元速率是多少?解:311200 Bd 5*10B B R T -===习题1.5 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
通信原理教程 樊昌信 课后习题答案第一章至第八章
瞬时相位偏移为(t) = kpm(t) ,则 kp =10 。
瞬时角频率偏移为
d
d(t) dt
=
k pm
sin mt
则最大角频偏
=
k pm
。
因为相位调制和频率调制的本质是一致的,根据对频率调制的分析,可得调
制指数
mf
=
m
=
k pm m
= kp
= 10
因此,此相位调制信号的近似带宽为
B = 2(1+ mf ) fm = 2(1+10)*10 = 220 kHZ
(2)
x x H = −
P(
)
i
log2
p(
)
i
=
−
1 5
log2
1 5
−
1 4
log2
1 4
−
1 4
log2
1 4
−
3 10
log2
3 10
=
1.985
bit
/
字母
平均信息速率=1.985(bit/字母)/(2*5ms/字母)=198.5bit/s
习题 1.13 国际莫尔斯电码用点和划的序列发送英文字母,划用持续 3 单位 的电流脉冲表示,点用持续 1 单位的电流脉冲表示,且划出现的概率是点出现
图 3-1 习题 3.1 图
习题 3.2 在上题中,已调信号的载波分量和各边带分量的振幅分别等于多 少?
解:由上题知,已调信号的载波分量的振幅为 5/2,上、下边带的振幅均为 5/4。
习题 3.3 设一个频率调制信号的载频等于 10kHZ,基带调制信号是频率为 2 kHZ 的单一正弦波,调制频移等于 5kHZ。试求其调制指数和已调信号带宽。
通信原理教程樊昌信版主要课后习题答案
第二章习题习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5 试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ=/2)2cos(2)=cos(2)sin 22t t t ππππ+-cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
[]/2/2/2/21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dt T t t dtT ττπθπτθ→∞-→∞-=+=+++⎰⎰222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j tj t j f X P f R e d ee e df f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.3 设有一信号可表示为:4exp() ,t 0(){0, t<0t X t -≥=试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X (t )的傅立叶变换为:(1)004()()441j t t j t j tX x t edt e e dt e dt j ωωωωω+∞-+∞--+∞-+-∞====+⎰⎰⎰ 则能量谱密度 G(f)=2()X f =222416114j fωπ=++习题2.4 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。
通信原理教程 樊昌信 课后习题答案第一章至第八章
的概率的 1/3。 (1) 计算点和划的信息量; (2) 计算点和划的平均信息量。
解:令点出现的概率为 P(A) ,划出现的频率为 P(B)
1 P( A) + P(B) =1, 3 P( A) = P(B)
P(A) = 3 4
(1)
P(B) = 1 4
I ( A) = − log2 p( A) = 0.415bit I (B) = − log2 p(B) = 2bit
2
+X (u) 1
−
2
+
Y
(
−
−
u )d e jtu
= 1
2
( ) +
X
u
e jut
−
1 2
+
Y
−
(
)e
jtddu
= 1 + X (u)ejut y(t)du
2 −
= x(t)y(t)
又因为
z(t) = x(t)y(t) = F -1 Z()
则
F −1 Z() = F -1 X ()Y ()
信号,码元宽度为 0.5ms,求传码率 RB 和独立等概时的传信率 Rb 。
解:二进独立等概信号: RB
=
1 0.5*10−3
=
2000B, Rb
=
2000bit
/s
四进独立等概信号:
RB
=
1 0.5*10−3
=
2000B, Rb
=
2 * 2000
=
4000bit
/s 。
第三章习题
习题 3.1 设一个载波的表达式为 c(t) = 5cos1000t ,基带调制信号的表达
通信原理樊昌信课后习题答案
习题解答《通信原理教程》樊昌信第一章 概论某个信息源由A 、B 、C 、D 等4个符号组成。
这些符号分别用二进制码组00、01、10、11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这4个符号等概率出现;(2) 这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解: 每秒可传输的二进制位为:()20010513=⨯÷-每个符号需要2位二进制,故每秒可传输的符号数为:1002200=÷(1) 4个符号等概率出现时每个符号包含的平均信息量为: bit 24log 2=故平均信息速率为:s b R b /2002100=⨯=(2)每个符号包含的平均信息量为:bit 977.11651log 1651631log 163411log 41411log 412222=+++故平均信息速率为: s b R b /7.197977.1100=⨯=设一个信号源输出四进制等概率信号,其码元宽度为125s μ。
试求码元速率和信息速率。
解:码元速率为:()baud R B 80001012516=⨯÷=- 信息速率为:s kb R R B b /16280004log 2=⨯==第二章 信号设一个随机过程X (t )可以表示成:()()∞<<∞-+=t t t X θπ2cos 2其中θ在(0,2π)之间服从均匀分布,判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它的能量无限,功率有界,所以是一个功率信号。
`()[]()[]()()()πτθπτθππτπθπθπτπθπππ2cos 4224cos 2cos 22122cos 22cos 22020=+++=•+++=⎰⎰d t d t t由维纳-辛钦关系有:()()ττωωτd e R P j X -+∞∞-⎰=()()[]πωδπωδπ222++-=设有一信号可表示为:()()⎩⎨⎧>≥-=000exp 4t t t t x试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
樊昌信《通信原理》课后答案
第二章2-1 试证明图 P2-1 中周期性信号可以展开为 〔图略〕(- 1n )s(t )= ∑c o sn + π t1 )(2π n = 0 2n + 1 4 ∞ 证明:因为 s(- t )= s( t )所以2π kt ∞2π kt ∞s(t ) = ∑ c k cos = ∑ c k cos = ∑ c k cos π ktT 02k =0k =0k =0∞ ⎰ 1-1 1-1 s( t ) d = 0⇒ 0 c = 0t12 -1 - 1 1 21- 2 c k = ⎰ s(t ) cos k π tdt = -( ⎰ + ⎰1 ) cos k π tdt + ⎰ cos k π tdt = 2 4k πsink π20,k = 2n ⎧⎪=⎨4(-1)n k = 2n + 1⎪(2n + 1)π⎩ 所以 (-1)ns(t ) = ∑cos(2n + 1)π tπ n = 0 2n + 14 ∞ 2-2 设一个信号 s(t ) 可以表示成s( t )= 2 c o s ( 2 θπt + 解:功率信号。
) < <∞-∞t试问它是功率信号还是能量信号,并求出其功率谱密度或能量谱密度。
s τ ( f ) = ⎰ τ2-τ 2 cos(2π t + θ )e - j 2π ftdtτsin π ( f - 1)τsin π ( f + 1)τ= [e j θ+ e - j θ]2π ( f - 1)τπ ( f + 1)τ12P( f ) = lim s ττ →∞ τ τ sin 2 π ( f - 1)τ sin 2 π ( f + 1)τsin π ( f - 1)τ sin π ( f + 1)τ= lim +2+2cos 2θτ →∞ 4 π 2 ( f - 1) 2τ 2π ( f + 1)2τ 2π 2 ( f - 1)( f + 1)τ 2由公式sin 2 xt lim = δ ( x) t →∞ π tx 2 有 和 sinxt lim =δ x )(t →∞ π xP( f ) = π 441= [δ ( f + 1) + δ ( f - 1)]4π δ [π ( f - 1)] + δ [π ( f + 1)] 或者1P( f ) = [δ ( f - f 0 ) + δ ( f + f 0 )]42-3 设有一信号如下:-t ⎧2 exp(x(t ) = ⎨⎩0 ) t ≥ t <0 0试问它是功率信号还是能量信号,并求出其功率谱密度或能量谱密度。
通信原理樊昌信答案
通信原理樊昌信答案第⼀章习题1.1 在英⽂字母中E 出现的概率最⼤,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独⽴出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-= b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别⽤⼆进制码组00,01,10,11表⽰。
若每个⼆进制码元⽤宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1)这四个符号等概率出现;(2)这四个符号出现概率如习题1.2所⽰。
解:(1)⼀个字母对应两个⼆进制脉冲,属于四进制符号,故⼀个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =??=-R等概时的平均信息速率为s b 2004log log 2B 2B b ===R M R R(2)平均信息量为符号⽐特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 s b 7.197977.1100B b =?==H R R习题1.4 试问上题中的码元速率是多少?解:311200 Bd 5*10B B R T -===错误!未找到引⽤源。
习题1.5 设⼀个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独⽴的符号,试求该信息源的平均信息速率。
《通信原理》樊昌信--课后习题答案
习题解答《通信原理教程》樊昌信第一章 概论1.3 某个信息源由A 、B 、C 、D等4个符号组成。
这些符号分别用二进制码组00、01、10、11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这4个符号等概率出现;(2) 这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解: 每秒可传输的二进制位为:()20010513=⨯÷-每个符号需要2位二进制,故每秒可传输的符号数为:1002200=÷(1) 4个符号等概率出现时每个符号包含的平均信息量为: bit 24log 2=故平均信息速率为:s b R b /2002100=⨯=(2)每个符号包含的平均信息量为:bit 977.11651log 1651631log 163411log 41411log 412222=+++故平均信息速率为: s b R b /7.197977.1100=⨯=1.6 设一个信号源输出四进制等概率信号,其码元宽度为125s μ。
试求码元速率和信息速率。
解:码元速率为:()baud R B 80001012516=⨯÷=- 信息速率为:s kb R R B b /16280004log 2=⨯==第二章 信号2.2 设一个随机过程X(t )可以表示成:()()∞<<∞-+=t t t X θπ2cos 2其中θ在(0,2π)之间服从均匀分布,判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它的能量无限,功率有界,所以是一个功率信号。
`()[]()[]()()()πτθπτθππτπθπθπτπθπππ2cos 4224cos 2cos 22122cos 22cos 22020=+++=•+++=⎰⎰d t d t t由维纳-辛钦关系有:()()ττωωτd e R P j X -+∞∞-⎰=()()[]πωδπωδπ222++-=2.3 设有一信号可表示为:()()⎩⎨⎧>≥-=000exp 4t t t t x试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。