lidWorksFlowSimulation全局旋转与局部旋转的应用
Solidworksflowsimulation实例分析演示幻灯片
8、二维流动
定义流动对称条件和域的大小
? 在SolidWorks flow simulation tree中,右击input data下的 computational domain,选择edit definition
式中,??为流体的密度,v为自由流的速度(平均
速度),A为前沿面积,Cd为阻力系数。
2020/4/13
19
? 插入方程式目标---右键单击goal选择insert equation goal,在expression中输入公式:{GG 力 (X) 1}*2*998.19/1.01241e-3^2*0.01/0.001/140^2 , 在dimensionality(量纲)中选择no unit(无 单位)
Solidworks flow simulation 外流瞬态分析示例
2
1
1、实例分析:圆柱绕流
? 使用二维平面流动分析围绕一个圆柱体的流 体流动
? 温度和压力分别为293.1K和 1atm(1atm=101325Pa)的水流过直径为0.01m, 高为0.01m的圆柱体,流动的雷诺数为140, 计算其对应的阻力系数,湍流强度为1%。
Result &geometry resolution(结 设置 geometry resolution为7 果及几何精细度)
2020/4/13
6
2020/4/13
7
2020/4/13
8
2020/4/13
9
2020/4/13
10
2020/4/13
11
solidworks flow simulation工程实例详解 -回复
solidworks flow simulation工程实例详解-回复SolidWorks Flow Simulation是一种计算流体动力学(CFD)软件工具,用于分析和优化流体流动、传热和空气动力学的应用。
它是SolidWorks CAD软件系列的一部分,可以与SolidWorks CAD无缝集成,提供丰富的功能和工具,以帮助工程师进行流体流动仿真和分析。
在本文中,我们将详细介绍SolidWorks Flow Simulation的一个工程实例,并一步一步回答有关该工程实例的问题。
工程实例:流体流动和传热分析假设我们正在设计一个电子设备的外壳,该设备会产生大量热量。
我们需要分析电子设备的外壳内部的空气流动和传热情况,以保证设备在工作过程中的稳定性和可靠性。
为了达到这个目标,我们将使用SolidWorks Flow Simulation进行流体流动和传热分析。
步骤1:建立几何模型首先,我们需要在SolidWorks CAD中建立电子设备外壳的几何模型。
这可以通过绘制2D或3D几何体来实现。
我们需要包括设备外壳以及其他需要分析的部分,如散热片、风扇等。
确保几何模型的准确性和完整性非常重要,因为它会直接影响后续的仿真结果。
步骤2:定义流体和边界条件在这个工程实例中,我们的流体是空气。
我们需要定义空气的物理特性,如密度、粘度、热导率等。
除此之外,我们还需要定义流体的初始条件,如初始温度、初始速度等。
另外,我们还需要定义边界条件,如壁面条件、入口条件和出口条件。
壁面条件是指设备外壳的表面特性,如材料、热传导系数等。
入口条件是指空气进入设备外壳的速度、温度等。
出口条件是指空气离开设备外壳的速度、温度等。
步骤3:生成网格在进行流体流动和传热分析之前,我们需要生成网格。
网格是将三维几何模型离散化为小的计算单元的过程。
网格的细密程度会直接影响结果的准确性和计算的精度。
通常,我们需要在几何模型的关键区域生成更密集的网格,以捕捉更精细的流动和传热特性。
solidworks flow simulation 操作方法
solidworks flow simulation 操作方法(原创版3篇)篇1 目录一、solidworks flow simulation 操作方法简述1.solidworks flow simulation 简介2.操作方法的主要步骤3.操作方法的优点和局限性二、具体操作步骤1.打开 solidworks 软件并创建一个新文件2.导入模型并进行必要的修改3.添加流体仿真组件并进行设置4.进行仿真计算并分析结果5.保存文件并退出 solidworks篇1正文solidworks flow simulation 是一种用于模拟流体流动和传热过程的工具,它可以帮助工程师和设计师更好地理解他们的设计在实际应用中的性能。
下面是使用 solidworks flow simulation 进行操作的方法。
1.solidworks flow simulation 简介solidworks flow simulation 是 solidworks 软件中的一个附加模块,它可以帮助用户模拟各种不同类型流体的流动和传热过程。
通过模拟,用户可以了解设计在实际应用中的性能,并据此进行优化。
2.操作方法的主要步骤(1)打开 solidworks 软件并创建一个新文件。
(2)导入模型并进行必要的修改。
在导入模型之前,您需要确保模型已经被正确地网格划分。
在导入模型之后,您需要对模型进行必要的修改,以使其适合流体仿真。
(3)添加流体仿真组件并进行设置。
在 solidworks 中,您需要添加流体仿真组件,例如流体管路、阀门和散热器等。
然后,您需要设置仿真条件,例如流体的类型、压力和温度等。
(4)进行仿真计算并分析结果。
在完成组件的设置之后,您需要运行仿真计算。
在计算完成后,您将获得有关流体流动和传热的结果,例如流量、温度和压力等。
您可以使用这些结果来评估设计的性能并进行必要的优化。
(5)保存文件并退出 solidworks。
solidworks flow simulation 要点
solidworks flow simulation 要点SolidWorks Flow Simulation是一种基于计算流体力学(CFD)的仿真工具,用于分析和优化流体流动、传热和流体力学问题。
以下是使用SolidWorks Flow Simulation的要点:1. 几何建模:使用SolidWorks CAD软件创建几何模型,并确保几何模型准确、完整、封闭且无错误。
Flow Simulation可以直接使用SolidWorks模型,无需转换或重新建模。
2. 材料定义:为模型定义适当的材料属性,包括密度、粘度、热导率等。
这些属性将影响流体的行为和传热性能。
3. 网格生成:生成高质量的网格以离散化流体域。
Flow Simulation提供多种网格类型和生成选项,以满足不同的需求。
确保网格细化在关键区域(例如边界层和流动分离区域)处更加密集,以获得准确的结果。
4. 边界条件:定义流体域的边界条件,包括流速、压力、温度等。
这些边界条件将模拟实际流体流动和传热的情况。
5. 物理模型:选择适当的物理模型,如不可压缩流动、可压缩流动、传热、湍流等。
根据实际情况选择合适的模型,以获得准确的结果。
6. 设置求解器:选择适当的求解器设置,包括迭代次数、收敛准则等。
这些设置将影响求解的速度和准确性。
7. 运行仿真:运行Flow Simulation进行流体流动和传热仿真。
根据模型的复杂性和计算机性能,仿真可能需要一段时间。
8. 结果分析:分析仿真结果,包括流速、压力、温度、剪切力、湍流特性等。
Flow Simulation提供丰富的结果图表和动画,以帮助用户理解流体行为和优化设计。
9. 优化设计:根据仿真结果进行设计优化,例如调整几何形状、改变边界条件或材料属性等。
Flow Simulation可以通过反复仿真和优化循环来帮助用户改进设计。
10. 结果验证:验证仿真结果的准确性,可以与实验数据进行比较。
如果结果与实际数据相符,说明仿真模型和设置是合理的。
solidworks flow simulation工程实例详解
solidworks flow simulation工程实例详解1.引言1.1 概述概述部分的内容旨在简要介绍solidworks flow simulation工程实例详解这篇长文的主题和内容。
我们可以如下编写概述部分的内容:在当今工程领域,流体力学的分析和仿真已经成为设计和优化产品的不可或缺的一部分。
而solidworks flow simulation作为一种强大的流体力学分析工具,为工程师们提供了便利和精确的解决方案。
本文将详细介绍solidworks flow simulation的工程实例,旨在帮助读者更好地理解和应用这一工具。
本文将按照以下结构进行展开:引言、正文和结论。
引言部分首先会对整个文章的背景和目的进行概述,为读者提供一个整体的了解。
进一步,在正文部分,我们将通过两个工程实例的详细解析,展示solidworks flow simulation在实际工程问题中的应用。
每个工程实例将包含具体的问题描述、解决方案设计以及仿真结果分析,以便读者能够深入了解solidworks flow simulation的工作原理和功能。
最后,结论部分将对整篇文章进行总结,并展望solidworks flow simulation未来的发展和应用前景。
读者可以通过本文的内容,了解到solidworks flow simulation在工程实例中的应用价值,并对其在自己的工程项目中进行合理的选择和应用提供参考。
通过本文的阅读与理解,读者将能够更好地掌握并应用solidworks flow simulation,提升自己在工程领域的实际工作能力。
期望本文能够对有关solidworks flow simulation的工程专业人士提供一定的帮助和指导。
1.2 文章结构文章结构部分的内容可以包括以下内容:本文分为引言、正文和结论三部分。
引言部分包括概述、文章结构和目的三个小节。
在概述中,将介绍solidworks flow simulation工程实例的背景和重要性。
solidworks2020旋转曲面实例讲解
solidworks2020旋转曲面实例讲解SolidWorks 2020是一款三维CAD建模软件,它能够帮助工程师和设计师创建和修改复杂的设计。
在SolidWorks中,旋转曲面是一种常用的建模技术,可以通过旋转一个截面曲线来创建一个立体物体,下面我将为您讲解一些SolidWorks 2020旋转曲面的实例。
首先,我们先打开SolidWorks 2020软件,并创建一个新的零件文件。
然后,我们选择“曲线”工具栏上的“曲线”命令,然后选择“正交线”命令。
在图形窗口中,我们先画一个矩形作为截面曲线的起始线段。
选择矩形命令,点击图形窗口中心点,然后拖动鼠标创建一个矩形。
在矩形命令选项中,我们可以设置矩形的长宽尺寸,也可以选择不同的起点位置。
创建好矩形后,我们可以选择“曲面”工具栏上的“旋转”命令来生成旋转曲面。
选择旋转命令后,点击图形窗口中的矩形线段作为截面曲线,然后点击鼠标右键结束选择。
接下来,弹出一个对话框,我们可以设置旋转轴、旋转角度、旋转端点等参数。
我们可以选择一个轴作为旋转轴,然后设置旋转角度来确定旋转的起始位置和旋转的方向。
完成了旋转曲面的设置后,点击确定按钮。
此时,我们就可以看到在图形窗口中生成了一个旋转曲面。
接下来,我们可以进一步修改旋转曲面。
我们可以选择“实体编辑”工具栏上的“编辑”命令来修改旋转曲面的形状。
选择此命令,点击旋转曲面,然后选择需要修改的特定参数。
通过修改曲面的高度、半径、角度等参数,我们可以改变旋转曲面的形状。
我们还可以选择其他编辑工具,比如“变分形状”和“裁剪”,来进一步修改旋转曲面。
在SolidWorks 2020中,我们还可以为旋转曲面添加其他特征。
比如,我们可以选择“实体”工具栏上的“修剪”命令来修剪旋转曲面,或者选择“实体”工具栏上的“镜像”命令来创建一个旋转曲面的镜像。
在建模过程中,我们还可以使用SolidWorks 2020的草图工具来创建其他复杂的截面曲线,然后通过旋转命令来生成相应的旋转曲面。
solidworks flow simulation 操作方法
solidworks flow simulation 操作方法摘要:1.SolidWorks Flow Simulation 简介2.操作方法概述3.具体操作步骤3.1 创建模型3.2 设置分析参数3.3 运行模拟3.4 查看结果4.注意事项与优化建议正文:SolidWorks Flow Simulation 是一款专业的流体模拟软件,可以帮助工程师在设计阶段预测流体流动情况,优化产品性能。
本篇文章将为您介绍SolidWorks Flow Simulation 的操作方法。
一、SolidWorks Flow Simulation 简介SolidWorks Flow Simulation 是SolidWorks 公司开发的一款基于计算机流体力学(CFD)的流体模拟软件。
通过该软件,用户可以在设计阶段预测流体流动、热传递等物理现象,从而优化产品性能。
SolidWorks Flow Simulation 具有操作简单、结果精确等优点,广泛应用于工程领域。
二、操作方法概述SolidWorks Flow Simulation 的操作方法分为以下几个步骤:1.创建模型:在SolidWorks 中绘制或导入模型。
2.设置分析参数:定义模拟的物理参数,如流体材料、流速等。
3.运行模拟:启动SolidWorks Flow Simulation 软件,进行模拟计算。
4.查看结果:观察并分析模拟结果,如速度云图、压力分布等。
三、具体操作步骤1.创建模型在SolidWorks 中绘制或导入模型,确保模型尺寸准确,以便进行准确的模拟。
如需导入模型,请将模型文件保存为SolidWorks 可以识别的格式(如.stp、.sldprt 等)。
2.设置分析参数创建一个新的SolidWorks Flow Simulation 文件,并设置以下分析参数:(1)流体材料:选择合适的流体材料,如空气、水等。
(2)流速:设置入口和出口的流速。
solidworks flow simulation 操作方法
solidworks flow simulation 操作方法(最新版4篇)目录(篇1)一、solidworks flow simulation 操作方法简述1.solidworks flow simulation 简介2.操作方法的基本流程3.操作方法的详细步骤二、使用solidworks flow simulation 的注意事项1.软件版本要求2.硬件配置要求3.使用技巧和注意事项正文(篇1)solidworks flow simulation 是一款用于流体模拟的软件,它可以帮助工程师和设计师更好地理解产品在各种环境下的性能。
以下是使用solidworks flow simulation 的操作方法及注意事项:一、solidworks flow simulation 操作方法简述1.打开solidworks软件,选择“flowsimulation”模块。
2.创建新的模拟:在界面左侧的工具栏中选择“新建”,然后按照提示设置模拟的基本参数。
3.导入模型:将需要模拟的模型导入到软件中。
4.添加流体:在界面左侧的工具栏中选择“流体”,然后选择需要模拟的流体类型和材料。
5.定义边界条件:在界面左侧的工具栏中选择“边界条件”,然后设置流体在模型中的流动边界条件,如压力、速度等。
6.运行模拟:点击“运行”按钮,开始模拟。
7.分析结果:在模拟结束后,软件会自动生成模拟结果,包括速度、压力、流量等数据。
工程师可以根据结果进行优化设计。
二、使用solidworks flow simulation 的注意事项1.软件版本要求:solidworks flow simulation 需要在solidworks 2016或更高版本中使用。
2.硬件配置要求:软件对电脑硬件要求较高,建议使用配置较高的电脑运行。
3.使用技巧和注意事项:在使用软件时,需要注意模型的导入和边界条件的设置,以及结果的准确性和可靠性。
目录(篇2)一、solidworks flow simulation 操作方法概述1.solidworks flow simulation 是一款用于模拟流体流动的软件。
solidworksflowsimulation中文教程-part1
目录第一阶段:球阀设计打开模型……………………………………………………………………………1-1创建b 项目…………………………………………………………………1-2边界条件……………………………………………………………………………1-5定义工程目标…………………………………………………………………………1-7求解……………………………………………………………………………………1- 8监测求解过程…………………………………………………………………………1-8调整模型透明度………………………………………………………………………1-10切面云图……………………………………………………………………………1-10表面云图………………………………………………………………………………1-11等值图………………………………………………………………………………1-12流动迹线图…………………………………………………………………………1-13 XY 图………………………………………………………………………………1-15表面参数………………………………………………………………………………1-16分析球形部分中一个设计变化……………………………………………………… 1-16复制项目……………………………………………………………………………1-19分析b 应用中的一个设计变化……………………………………………1-19第一阶段:耦合热交换打开模型………………………………………………………………………………2-1 准备模型……………………………………………………………………………2-2 创建b 项目………………………………………………………………… 2-3 定义风扇………………………………………………………………………………2-6 定义边界条件…………………………………………………………………………2-8 定义热源………………………………………………………………………………2-9 创建新材料…………………………………………………………………………2-10 定义固体材料…………………………………………………………………………2-10 定义工程目标…………………………………………………………………………2-11 定义体积目标…………………………………………………………………… 2-11 定义表面目标…………………………………………………………………… 2-13定义全局目标…………………………………………………………………… 2-14改变几何求解精度…………………………………………………………………2-15 求解…………………………………………………………………………………2-16 观察目标………………………………………………………………………………2-16 流动迹线图…………………………………………………………………………2-17 切面云图……………………………………………………………………………2-19 表面云图……………………………………………………………………………2-22第一阶段:多孔介质打开模型………………………………………………………………………………3-2 创建b 项目…………………………………………………………………3-2 定义边界条件…………………………………………………………………………3-4 创建一个等向性的多孔介质………………………………………………………3-5 定义多孔介质-等向性………………………………………………………3-7 定义表面目标………………………………………………………………………… 3-7 定义方程目标………………………………………………………………………3-8 求解……………………………………………………………………………………3-9 观察目标……………………………………………………………………………… 3-10 流动迹线图…………………………………………………………………………… 3-10 复制项目……………………………………………………………………………… 3-11 创建一个单向性的多孔介质………………………………………………………… 3-12 定义多孔介质-单向性……………………………………………………………… 3-12 比较等向性和单向性多孔介质……………………………………………………… 3-13确定水力损失模型描述……………………………………………………………………………4-2 创建项目……………………………………………………………………………… 4-3 定义边界条件………………………………………………………………………… 4-7 定义表面目标………………………………………………………………………… 4-8 运行计算……………………………………………………………………………… 4-9 监测计算……………………………………………………………………………… 4-10 复制项目……………………………………………………………………………… 4-10 创建切面云图………………………………………………………………………… 4-11创建全局目标………………………………………………………………………… 4-15 计算器使用…………………………………………………………………………… 4-16 改变几何参数………………………………………………………………………… 4-18圆柱体阻力系数创建项目…………………………………………………………………………… 5-2 定义2D 流动平面………………………………………………………………… 5-6 定义全局目标……………………………………………………………………… 5-7 定义方程目标……………………………………………………………………… 5-7 复制项目并且创建一个新例子…………………………………………………… 5-8 改变项目设置………………………………………………………………………5-9 改变方程目标………………………………………………………………………5-10 创建模板…………………………………………………………………………… 5-10 以模板方式创建一个项目………………………………………………………… 5-11 求解一系列项目…………………………………………………………………… 5-12 获取结果…………………………………………………………………………… 5-12 热交换系数打开模型…………………………………………………………………………… 6-2 创建项目…………………………………………………………………………… 6-3 对称边界条件……………………………………………………………………… 6-5 定义流体子区域…………………………………………………………………… 6-6 定义边界条件……………………………………………………………………… 6-7 定义固体材料……………………………………………………………………… 6-10 定义体积目标……………………………………………………………………… 6-11 运行求解…………………………………………………………………………… 6-11 观察目标…………………………………………………………………………… 6-12显示流动迹线图…………………………………………………………………… 6-14 计算表面参数……………………………………………………………………… 6-16 计算热交换系数…………………………………………………………………… 6-18 定义参数显示范围…………………………………………………………………6-18网格优化问题描述…………………………………………………………………………… 7-2 模型定义…………………………………………………………………………… 7-3 定义项目……………………………………………………………………………7-3 边界条件……………………………………………………………………………7-3 手动设置最小网格间隙尺寸……………………………………………………… 7-7 关闭自动网格定义…………………………………………………………………7-9 生成网格如下所示,约75000网格单元使用Local Intial Mesh 选项…………………………………………………7-10 定义控制平面………………………………………………………………………7-12 再创建一个局部初始网格…………………………………………………………7-14EFD Zooming的应用问题描述……………………………………………………………………………8-1 两种使用b 进行求解问题的方式…………………………………………8-3 EFD Zooming 方法步骤……………………………………………………………8-3 EFD Zooming 第一阶段………………………………………………………8-4 EFD Zooming 项目第一阶段…………………………………………………8-4 EFD Zooming 第二阶段………………………………………………………8-8 EFD Zooming 项目第二阶段…………………………………………………8-8 改变散热器……………………………………………………………………8-14 复制项目到存在的模型定义…………………………………………………8-14局部初始化网格方法………………………………………………………………8-15 使用局部初始化网格方法的b 项目(Sink No1) …………………… 8-15 使用局部初始化网格方法的b 项目(Sink No2) …………………… 8-18 结果………………………………………………………………………………… 8-18纺织机械问题描述…………………………………………………………………………… 9-1 模型定义…………………………………………………………………………… 9-2 定义项目…………………………………………………………………………… 9-3 边界条件…………………………………………………………………………… 9-3 定义旋转壁面……………………………………………………………………… 9-4 初始条件-旋转…………………………………………………………………… 9-5 定义目标…………………………………………………………………………… 9-6 结果-光滑表面…………………………………………………………………… 9-7 显示粒子流和流动迹线……………………………………………………………9-8 模拟粗糙旋转壁面………………………………………………………………… 9-10 改变壁面粗糙度…………………………………………………………………… 9-10 结果-粗糙壁面…………………………………………………………………… 9-11圆形通道中的非牛顿流体流动问题描述………………………………………………………………………………10-1 模型定义………………………………………………………………………………10-2 定义非牛顿流体……………………………………………………………………… 10-2 定义项目………………………………………………………………………………10-2 边界条件………………………………………………………………………………10-3 定义目标…………………………………………………………………………10-3 与流体水进行比较…………………………………………………………………… 10-4 改变项目设置……………………………………………………………………10-4具有反射镜和屏幕的加热球问题描述…………………………………………………………………………… 11-1 模型结构…………………………………………………………………………… 11-2 案例 1 ………………………………………………………………………………11-3 定义项目……………………………………………………………………… 11-3 定义计算域……………………………………………………………………11-3 调整自动网格设置……………………………………………………………11-4 定义辐射表面…………………………………………………………………11-4 定义物体对于热辐射的可穿透性…………………………………………… 11-5 热源和目标定义………………………………………………………………11-5 案例 2 ……………………………………………………………………………… 11-6 改变辐射表面状况……………………………………………………………11-6 定义全局目标…………………………………………………………………11-6 定义固体的初始条件…………………………………………………………11-6结果………………………………………………………………………………… 11-7旋转叶轮问题描述………………………………………………………………………………12-1 模型定义………………………………………………………………………………12-2 定义项目………………………………………………………………………………12-2 边界条件………………………………………………………………………………12-3 定义静止壁面……………………………………………………………………12-4 叶轮效率………………………………………………………………………………12-4 定义项目目标…………………………………………………………………………12-5 结果……………………………………………………………………………………12-7CPU 冷却器问题描述………………………………………………………………………………13-1 模型定义………………………………………………………………………………13-2 定义项目………………………………………………………………………………13-2 定义计算域……………………………………………………………………………13-2 旋转区域………………………………………………………………………………13-3 定义静止壁面…………………………………………………………………………13-5 固体材料………………………………………………………………………………13-6 热源……………………………………………………………………………………13-6 初始网格设置…………………………………………………………………………13-7结果……………………………………………………………………………………13-11特性列表下面罗列了出现在教程中的b 相应的物理和界面特性。
solidworks教程6 solidworks旋转与阵列
计算机辅助三维设计
--S ol i dw orks旋转与阵列
2011
提纲::
提纲
旋转::蜡烛台
一、旋转
曲线、、草图
草图、、填充
圆周、、曲线
线性、、圆周
阵列::线性
二、阵列
包覆::旋转楼梯
三、转换实体引用
转换实体引用、、包覆
利用旋转和扫描功能完成蜡烛台
底座尺寸手柄尺寸
扫描的轮廓为一椭圆长轴17.5,短轴5
顶部拉伸切除
深度25,拔模角15度
线性阵列--随形变化阵列::线性阵列
阵列
阵列::圆周阵列阵列
阵列
曲线阵列、、草图阵列
草图阵列、、填充阵列
阵列::曲线阵列
曲线阵列
草图阵列
填充阵列
转换实体引用、、利用线性阵列、、转换实体引用利用线性阵列
包覆等功能完成旋转楼梯
第一步
第一步::拉伸圆柱
圆柱、、凸台第二步
第二步::在凸台面
上画直线
上画直线,,作为线
性阵列方向
第三步
第三步::线性阵列产生台阶
第四步
第四步::开启新的草图,转换实体引用
转换实体引用,,提取台阶轮廓
选择这个面
新的草图平面
用来转换实体的面
提取出来的轮廓
第五步
第五步::删除几何关系,退出草图第六步
第六步::压缩线性台阶
包覆,,完成旋转楼梯第七步::包覆
第七步。
如何使用SolidWorksFlowSimulation进行流体分析
如何使用SolidWorksFlowSimulation进行流体分析如何使用SolidWorks Flow Simulation进行流体分析第一章介绍SolidWorks Flow Simulation软件SolidWorks Flow Simulation是一款功能强大的流体分析软件,可用于研究和模拟各种流体行为,如流动、传热以及过程优化。
本章将介绍SolidWorks Flow Simulation的基本概念和软件界面。
1.1 SolidWorks Flow Simulation概述SolidWorks Flow Simulation是一款基于计算流体力学(CFD)原理的流体分析软件。
它提供了一种直观且易于使用的界面,使用户能够轻松地进行流体分析。
该软件适用于涉及空气、液体和气体等多种流体的工程领域,如航空航天、汽车、建筑、能源等。
1.2 SolidWorks Flow Simulation软件界面SolidWorks Flow Simulation软件的界面分为几个主要的模块,包括模型准备、模拟设定、网格划分、求解器设置和结果分析。
在模型准备模块中,用户可以导入、创建和编辑三维模型。
在模拟设定模块中,用户可以设置流体的边界条件、流体材料属性和求解器选项。
在网格划分模块中,用户可以对模型进行网格划分以提高计算精度。
在求解器设置模块中,用户可以选择不同的求解器和求解算法。
在结果分析模块中,用户可以对流体的流速、压力、温度等进行可视化和分析。
第二章 SolidWorks Flow Simulation基本操作本章将介绍使用SolidWorks Flow Simulation进行流体分析的基本操作,包括创建流体域、设置边界条件、定义流体材料和运行求解器。
2.1 创建流体域在使用SolidWorks Flow Simulation进行流体分析之前,首先需要创建定义流体域的模型。
用户可以使用SolidWorks CAD软件创建三维模型,然后导入到Flow Simulation中。
solidworksflowsimulation操作方法
solidworksflowsimulation操作方法SolidWorks Flow Simulation 是一款流体力学分析软件,它可以帮助用户模拟和优化涉及流体流动、传热和流体力学等方面的工程问题。
以下是 SolidWorks Flow Simulation 的操作方法详解,包括设置分析类型、创建流体域、定义边界条件、运行计算并分析结果等步骤。
1. 启动 SolidWorks,并打开要进行流体力学分析的模型。
2. 在 SolidWorks 菜单栏中选择 "工具"(Tools),再选择 "流体力学"(Flow Simulation)。
3. 在弹出的 "流体力学属性管理器"(Flow Simulation PropertyManager)中,选择 "新建项目"(New Project)。
4. 在 "项目名称"(Project Name)栏中输入项目名称,并选择 "测量单位"(Units)和 "流体"(Fluid)类型。
5. 在 "分析类型"(Analysis Type)中设置要进行的流体力学分析类型,如内部流动(Internal Flow)、外部流动(External Flow)或热传导(Heat Transfer)。
6. 在 "流体域"(Fluid Domain)中设置分析的流体域。
可以直接在三维模型上进行选择,也可以手动定义流体域的形状和尺寸。
7. 在 "材料属性"(Material Properties)中设置流体的物理性质,如密度、粘度和热导率等。
8. 在 "边界条件"(Boundary Conditions)中定义边界条件,包括进口流量、出口压力、壁面温度等。
可以直接在模型上选择相应的面或体进行设置。
solidworks旋转特征
Solidworks旋转特征简介Solidworks是一种三维计算机辅助设计软件,广泛应用于机械工程、航空航天、汽车工程等领域。
在Solidworks中,旋转特征是一种常用的建模方法,可以通过旋转几何体来创建新的几何体,非常灵活和高效。
本文将介绍Solidworks中旋转特征的使用方法和常见应用场景,以帮助读者更好地理解和使用该功能。
旋转特征的基本操作在Solidworks中,旋转特征可以通过以下几个步骤来创建:1.打开Solidworks软件并新建一个零件文件。
2.在FeatureManager设计树中选择一个要进行旋转的基准几何体,比如一个圆形或矩形。
3.在菜单栏中选择”特征”-“旋转特征”,或者在特征工具栏中点击”旋转特征”图标。
4.在旋转特征对话框中,设置旋转轴和旋转角度。
可以通过选择轴和输入角度的方式来定义旋转特征。
5.确认设置后,点击”确定”按钮即可创建旋转特征。
旋转特征的高级操作在Solidworks中,旋转特征的功能远不止于简单的旋转几何体。
下面将介绍几种常见的高级操作。
1. 创建圆柱体通过旋转特征,可以轻松地创建圆柱体。
选择一个圆形作为基准几何体,定义旋转轴为圆的中心点,设置旋转角度为360度,即可创建一个圆柱体。
2. 创建螺旋体螺旋体是一种具有旋转对称性的几何体,在一些机械设计中经常需要使用。
通过旋转特征,可以快速创建各种形式的螺旋体。
具体操作步骤如下:1.创建一个矩形或圆形作为基准几何体。
2.在旋转特征对话框中,设置旋转轴为基准几何体的边缘,旋转角度根据需要确定。
3.在旋转特征对话框的”螺旋”选项卡中,设置螺旋的参数,如螺距、升距、起始角度等。
4.确认设置后,点击”确定”按钮即可创建螺旋体。
3. 创建曲面扫描通过旋转特征,还可以创建复杂的曲面扫描。
选择一个曲线作为基准几何体,定义旋转轴为曲线的轴线,设置旋转角度为一定的范围,即可创建曲面扫描。
在创建曲面扫描时,可以选择是否保持曲线的弯曲性。
SOLID WORKS 使用技巧
1 您可以使用CTRL+TAB 键循环进入在SolidWorks 中打开的文件。
2 使用方向键可以旋转模型。
按CTRL 键加上方向键可以移动模型。
按ALT 键加上方向键可以将模型沿顺时针或逆时针方向旋转。
3 您可以钉住视图定向的对话框,使它可以使用在所有的操作时间内。
4 使用z 来缩小模型或使用SHIFT +z 来放大模型。
5 您可以使用工作窗口底边和侧边的窗口分隔条,同时观看两个或多个同一个模型的不同视角。
6 单击工具栏中的"显示/删除几何关系"的图标找出草图中过定义或悬空的几何关系。
当对话框出现时,单击准则并从其下拉清单上选择过定义或悬空。
7 您可以在FeatureManager设计树上拖动零件或装配体的图标,将其放置到工程图纸上自动生成标准三视图。
8 您可以用绘制一条中心线并且选择镜向图标然后生成一条"镜向线"。
9 您可以按住CTRL 键并且拖动一个参考基准面来快速地复制出一个等距基准面,然后在此基准面上双击鼠标以精确地指定距离尺寸。
10 您可以在FeatureManager设计树上以拖动放置方式来改变特征的顺序。
11 当打开一个工程图或装配体时,您可以借助使用打开文件对话框中的参考文件按钮来改变被参考的零件。
12 如果隐藏线视图模式的显示不够精准,可以使用工具/选项/文件属性/图象品质/线架图品质,以调整显示品质。
13 您可以用拖动FeatureManager设计树上的退回控制棒来退回其零件中的特征。
14 使用选择过滤器工具栏,您可以方便地选择实体。
15 按住CTRL 键并从FeatureManager设计树上拖动特征图标到您想要修改的边线或面上,您可以在许多边线和面上生成圆角、倒角、以及孔的复制。
16 在右键的下拉菜单上选择"选择其他"的选项可以在该光标所在位置上做穿越实体的循环选择操作。
17 单击菜单上的工具/选项/文件属性/颜色,然后从清单上选择一个特征类型,接着单击编辑来选择颜色,您可以对选择的特征类型指定颜色。
SolidWorksSimulation图解应用教程(一)
SolidWorksSimulation图解应用教程(一)SolidWorks Simulation图解应用教程(一)SolidWorks Simulation作为SolidWorks COSMOSWorks的新名称,是与SolidWorks完全集成的设计分析系统。
它提供了单一屏幕解决方案来进行应力分析、频率分析、扭曲分析、热分析和优化分析,凭借着快速解算器的强有力支持,使用户能够使用个人计算机快速解决大型问题。
SolidWorks Simulation提供了多种捆绑包,可满足各项分析需要。
为什么要分析?在我们完成了产品的建模工作之后,需要确保模型能够在现场有效地发挥作用。
如果缺乏分析工具,则只能通过昂贵且耗时的产品开发周期来完成这一任务。
一般产品开发周期通常包括以下步骤:1)建造产品模型;2)生成设计的原型;3)现场测试原型;4)评估现场测试的结果;5)根据现场测试结果修改设计。
这一过程将一直继续、反复,直到获得满意的解决方案为止。
而分析可以帮助我们完成以下任务:1)在计算机上模拟模型的测试过程来代替昂贵的现场测试,从而降低费用;2)通过减少产品开发周期次数来缩短产品上市时间;3)快速测试许多概念和情形,然后做出最终决定。
这样,我们就有更多的时间考虑新的设计,从而快速改进产品。
SolidWorks Simulation作为SolidWorks COSMOSWorks的新名称,是与SolidWorks完全集成的设计分析系统。
它提供了单一屏幕解决方案来进行应力分析、频率分析、扭曲分析、热分析和优化分析,凭借着快速解算器的强有力支持,使用户能够使用个人计算机快速解决大型问题。
SolidWorks Simulation提供了多种捆绑包,可满足各项分析需要。
为了使读者能更详尽地了解SolidWorks Simulation的分析应用功能,从本期开始,我们将分期介绍其强大的分析功能。
一、线性静态分析当载荷作用于物体表面上时,物体发生变形,载荷的作用将传到整个物体。
solidworksflowsimulation操作方法
solidworksflowsimulation操作方法Solidworks Flow Simulation是一款流体力学仿真软件,它可以帮助工程师设计、优化和验证其产品的流体流动和传热性能。
本文将介绍Solidworks Flow Simulation的基本操作方法,包括创建流体区域、设置边界条件、运行仿真和分析结果。
1.创建流体区域:在Solidworks中,打开一个装配或零件,然后选择"流体流动仿真"选项卡,在工具栏上选择"新建流体区域"。
在模型中选择一个闭合的空间作为流体区域,并定义其为内部或外部流体区域。
2.定义流体特性:在"流体流动仿真"选项卡上选择"定义材料",然后选择适当的流体类型。
您可以从自带的材料数据库中选择材料,或者创建自定义材料。
在此过程中,您还可以定义流体的温度、初始条件和边界条件。
3.设置边界条件:在"流体流动仿真"选项卡上选择"边界条件"。
您可以选择设置流体流动的进口、出口、壁面和对称性边界条件。
对于每个边界条件,您需要提供相关的参数,例如流量、压力或速度。
您还可以设置传热或传质边界条件。
4.设定模型参数:在"流体流动仿真"选项卡上选择"模型参数"。
在这里,您可以设置模型的尺寸、材料属性、初始条件和网格参数。
通过调整这些参数,您可以优化仿真的准确性和效率。
5.创建网格:在"流体流动仿真"选项卡上选择"创建网格"。
通过选择适当的网格类型,并提供网格尺寸和精度参数,您可以生成适合仿真的网格。
优化网格的选择和分辨率对于准确的仿真结果至关重要。
6.设置求解器选项:在"流体流动仿真"选项卡上选择"求解器选项"。
在这里,您可以选择合适的求解器,以确保获得准确且高效的仿真结果。
solidworks flow simulation 要点
solidworks flow simulation 要点一、介绍SolidWorks Flow Simulation是SolidWorks软件中的一项功能,它能够帮助用户对机械系统中流体流动进行模拟和分析。
通过使用此工具,用户可以对流体流动进行更精确的预测,从而更好地设计和优化流体系统。
二、功能特点1. 易于使用:SolidWorks Flow Simulation界面直观,易于学习和使用。
用户可以通过简单的拖放操作来设置模拟,并获得即时的反馈。
2. 多种流体介质:该工具可以模拟多种流体介质,包括空气、水、油、气体等。
用户可以根据需要选择适当的介质进行模拟。
3. 复杂系统:该工具可以模拟复杂的流体系统,包括管道、阀门、过滤器、风扇、泵等组件。
用户可以根据系统实际情况进行模拟,并获得更精确的结果。
4. 结果可视化:模拟结果可以通过SolidWorks软件中的可视化工具进行展示,方便用户观察和分析。
5. 优化设计:通过模拟和分析流体流动,用户可以发现设计中的问题,并对其进行优化。
这有助于提高系统的性能和效率。
6. 参数设置灵活:用户可以根据自己的需要进行参数设置,如流速、压力、温度等,以获得更符合实际的结果。
三、使用方法1. 打开SolidWorks软件,并打开需要模拟的机械系统模型。
2. 进入“分析”选项卡,选择“流体流动分析”按钮。
3. 创建模拟设置,包括流体介质、流量、压力等参数。
4. 运行模拟,并观察结果。
5. 分析结果,并根据需要调整模型或参数,重新模拟。
6. 将结果导出到其他软件中进行进一步分析。
四、案例分析以一个空调系统为例,使用SolidWorks Flow Simulation对其进行模拟和分析。
通过模拟,可以发现系统中的流动问题,如气流不均匀、压力损失过大等,并对其进行优化设计。
五、总结SolidWorks Flow Simulation是一款功能强大的流体流动模拟工具,它可以帮助用户更好地设计和优化流体系统。
Solidworksflowsimulation实例分析
根据实际情况设置出口边界条件,如压力、流量等。对于未知的出 口条件,可以使用实验数据或经验公式进行估算。
壁面边界
定义模型壁面的属性,如粗糙度、热传导系数等,以便模拟流体与 壁面之间的相互作用。
初始条件设置
初始压力
设置模拟开始时的流体压力。对于稳 态模拟,初始压力通常设置为入口压 力;对于非稳态模拟,初始压力应根 据实际情况进行设置。
SolidWorks Flow Simulation实例分析
• SolidWorks Flow Simulation简 介
• 实例分析准备 • 实例分析过程 • 实例分析结果应用 • 实例分析总结与展望
01
SolidWorks Flow Simulation简介
定义与特点
定义:SolidWorks Flow Simulation是一 款基于SolidWorks平 台的流体动力学仿真 软件,用于模拟和分 析产品在流体环境中 的性能表现。
初始温度
设置模拟开始时的流体温度。对于稳 态模拟,初始温度通常设置为入口温 度;对于非稳态模拟,初始温度应根 据实际情况进行设置。
03
实例分析过程
模拟启动与运行
打开SolidWorks软件,并打开需要 进行流体模拟的3D模型。
在Flow Simulation界面中,选择适 当的流体模拟类型,如稳态、瞬态等, 并设置模拟参数,如入口条件、出口 条件、流体属性等。
决策支持
总结词
SolidWorks Flow Simulation的实例分析结果可以为决策者提供支持,帮助其做出更科学、合理的 决策。
详细描述
在产品设计和开发过程中,决策者需要综合考虑各种因素,包括设计、性能、成本等。通过 SolidWorks Flow Simulation的实例分析,决策者可以获得更全面、准确的产品性能信息,从而做出 更科学、合理的决策。同时,这些分析结果也可以为后续的设计和优化提供参考和借鉴。
solidworks流体旋转扭矩
solidworks流体旋转扭矩SolidWorks流体旋转扭矩SolidWorks是一种广泛应用于机械设计和工程领域的三维建模软件。
它不仅能够进行静态和动态的机械设计,还可以进行流体力学模拟。
而在流体力学中,旋转扭矩是一个非常重要的概念。
旋转扭矩是指在流体中旋转物体时所产生的扭矩。
它的大小取决于旋转物体的形状、尺寸以及流体的性质。
在工程设计中,了解旋转扭矩对于设计和优化旋转机械设备非常重要。
在SolidWorks中,可以使用流体力学模块来模拟和分析旋转扭矩。
该模块提供了一系列的工具和功能,使工程师能够更好地理解和预测旋转机械设备的性能。
下面将详细介绍SolidWorks中流体旋转扭矩的分析和应用。
首先,要进行流体旋转扭矩的分析,需要建立一个几何模型并定义其边界条件。
几何模型可以是旋转机械设备的实际外形,也可以是其简化的几何模型。
边界条件包括物体的旋转速度、流体的性质以及流体和物体之间的接触面。
在SolidWorks中,可以通过CAD工具来创建几何模型,并通过流体力学模块来定义边界条件。
然后,需要将建立好的几何模型导入到流体力学模块中进行分析。
流体力学模块提供了一系列的求解器,可以数值计算旋转扭矩。
在分析过程中,可以根据需要选择不同的求解器,如雷诺平均Navier-Stokes方程、湍流模型等。
通过求解器求解得到的结果,可以得到旋转扭矩的大小和方向。
在分析完流体旋转扭矩后,可以进行结果的后处理和分析。
SolidWorks提供了丰富的后处理工具,可以对结果进行可视化和分析。
可以通过颜色图、剖面图、矢量图等方式来呈现旋转扭矩的分布情况。
通过对结果的分析,可以评估旋转机械设备的性能,发现潜在的问题,并进行优化设计。
在实际应用中,SolidWorks的流体旋转扭矩分析可以应用于各种旋转机械设备的设计和优化。
例如,风力发电机的叶片是旋转的,通过分析旋转扭矩可以优化叶片的形状和尺寸,提高风能的利用效率。
又如,在离心泵的设计中,通过分析旋转扭矩可以优化叶轮的形状和尺寸,提高泵的效率和性能。
机器人应用系统三维建模2-8旋转特征课件
机器人应用系统三维建模2-8旋转特征
6
第二步:退出草图,设置旋转有关参数,生成如图所示零件
机器人应用系统三维建模2-8旋转特征
7
三、旋转切除
机器人应用系统三维建模2-8旋转特征
8
第一步:在前视基准面上绘制如图所示草图
机器人应用系统三维建模2-8旋转特征
9
第二步:退出草图,设置旋转切除有关参数,生成特征旋转切除1
曾获省市教研教改先进个人因成绩突出被市人民政府荣记三等功撰写的论文和执教的优质课多次在各级大赛中获奖
特征造型 ——旋转特征
机器人应用系统三维建模2-8旋转特征
1
旋转特征是将截面草图绕着一条轴线旋转而成的实体特征。
机器人应用系统三维建模2-8旋转特征
2
一、旋转特征的基本要素
建立旋转特征必须 给定旋转特征的有关要 素,即草图要素、旋转 轴和旋转类型。
机器人应用系统三维建模2-8旋转特征
10
第三步:选择右视基准面作为镜像平面,将旋 转切除1进行镜像,生成特征旋转切除2
机器人应用系统三维建模2-8旋转特征
11
机器人应用系统三维建模2-8旋转ห้องสมุดไป่ตู้征
3
旋转类型
【单一方向】向一个方向旋转到指定角度。 【两侧对称】对称地向两个方向旋转到指定角度。 【两个方向】分别向两个方向旋转,分别定义不同的角 度。
机器人应用系统三维建模2-8旋转特征
4
二、 旋转凸台/基体
机器人应用系统三维建模2-8旋转特征
5
第一步:在上视基准面上绘制如图所示草图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lidWorksFlowSimulation全局旋转与局部旋转的应用
发表时间:2014-10-9 作者: 周洲来源: 互联网
关键字: SolidWorks Flow Simulation全局旋转局部旋转
本文介绍了以离心泵和CPU散热器仿真分析为例,介绍了在运用SolidWorks Flow Simulation进行旋转设置的过程中,设置全局旋转或局部旋转的具体步骤和方法。
当我们在SolidWorks Flow Simulation遇到有旋转的情况时,我们会考虑设置全局旋转或局部旋转。
设置全局旋转时,所有组件均参与旋转;而设置局部旋转时,只有包括在旋转区域内的组件参与旋转,那这两种情况该如何设置呢?请看下文的实例:
离心泵:
1.该离心泵模型由叶轮、盖子以及3个封盖组成,实例是研究空气通过具有旋转叶轮离心泵的流动情况。
空气通过进口封盖沿垂直于封盖表面的方向流入离心泵内部,通过旋转的叶轮从出口封盖流出,见图1。
图1 离心泵模型
2.通过向导设定分析类型为内部流动,旋转类型为全局旋转,参考轴为Z轴,角速度为
-209.43951rad/s(2000rpm)。
见图2:
图2 向导设定分析类型
3.插入进口封盖的边界条件为入口体积流量0.3m3/s,出口封盖的边界条件为环境压力。
见图3:
图3 插入进口封盖的边界条件
4.该离心泵只有叶轮转动,而其余组件不参与旋转,因此需要将这些组件视为“定子”的真实壁面。
选择插入边界条件,在打开的属性管理器中,选择盖子,在类型下选择“壁面”,设置为“真实壁面”,勾选“定子”。
在全局旋转下,不参与旋转的组件必须视为“定子”。
如图4所示:
图4 设置不参与旋转的组件为“定子”的真实壁面5.计算结果,如图5所示:
图5 计算结果
CPU散热器:
1.该CPU散热器模型由风扇、散热片、卡座、风扇附件等组成,实例是研究散热器冷却CPU 芯片的情况。
通过一定转速转动的风扇带动CPU芯片周围的空气流动,通过散热片来降低CPU 芯片温度,见图6。
图6 CPU散热器模型
2.通过向导设定分析类型为外部流动,旋转类型为局部旋转,勾选固体内热传导。
见图7:
图8 局部旋转区域设置需注意的细节
4.插入旋转区域,选择将风扇完全包裹住的组件(Rotation Region),角速度为-460.766923 rad/s (4400rpm)。
见图9:
图9 插入旋转区域
5.该散热器中只有风扇转动,而其余组件不参与旋转,因此需要将与局部旋转区域相交的面或组件视为“定子”的真实壁面。
选择插入边界条件,在打开的属性管理器中,选择卡座与旋转区域相交的面以及风扇附件,在类型下选择“壁面”,设置为“真实壁面”,勾选“定子”。
在局部旋转下,不参与旋转的面或组件必须视为“定子”。
如图10所示:
图10 将与局部旋转区域相交的面或组件视为“定子”的真实壁面
6.计算结果,如图11、12所示:
图11 速度计算结果
图12 温度结果
图7 导设定分析类型
3.局部旋转区域设置需注意的细节,红色区域为局部旋转区域。
见图8。