(完整word版)湘教版九年级数学期末综合测试卷.docx
湘教版九年级数学上册期末综合检测试卷(有答案)-精品
湘教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.下列方程中,没有实数根的是()A. B. C. D.2.如图,在中,点,,分别在边,,上,且,.若,则的值为().A. B. C. D.3.在Rt ABC中,∠ABC=90°、tanA= ,则sinA的值为()A. B. C. D.4.据兰州市旅游局最新统计,2014年春节黄金周期间,兰州市旅游收入约为11.3亿元,而2012年春节黄金周期间,兰州市旅游收入约为8.2亿元.假设这两年兰州市旅游收入的平均增长率为x,根据题意,所列方程为()A. 11.3(1﹣x%)2=8.2B. 11.3(1﹣x)2=8.2C. 8.2(1+x%)2=11.3D. 8.2(1+x)2=11.35.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价后售价为148元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为()A. 200(1+x)2=148B. 200(1-x)2=148C. 200(1-2x)=148D. 148(1+x)2=2006.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB 等于()A. 90°B. 80°C. 70°D. 60°7.在ABC中,∠C=90°,AB=15,sinA=,则BC等于()A. 45B. 5C.D.8.若x1,x2是一元二次方程x2+4x﹣2016=0的两个根,则x1+x2﹣x1x2的值是()A. ﹣2012B. ﹣2020C. 2012D. 20209.已知函数的图像与x轴的交点坐标为且,则该函数的最小值是()A. 2B. -2C. 10D. -1010.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.二、填空题(共10题;共30分)11.如图,若点的坐标为,则∠=________.12.如图,已知点A在反比例函数y= 上,AC⊥x轴,垂足为点C,且AOC的面积为4,则此反比例函数的表达式为________.13.如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为________ .14.我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2﹣4x﹣1=0②x(2x+1)=8x﹣3③x2+3x+1=0④x2﹣9=4(x﹣3)我选择第________个方程.15.方程的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为________ .16.如图,Rt ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,反比例函数(x>0)的图像经过点A,若S BEC=10,则k等于________.17.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________.18.若方程(m﹣x)(x﹣n)=3(m、n为常数,且m<n)的两实数根分别为a、b(a<b),则将m,n,a,b按从小到大的顺序排列为________.19.如图,一次函数与反比例函数的图象交于点A(2,1)、B(-1,-2),则使>的x的取值范围是________。
(word版)新湘教版九年级上数学期末试卷含答案,文档
期末测试(时间:90分钟总分值:120分)一、选择题 (每题3分,共24分)1.以下函数中:(1)y=-2;(2)y=- x;(3)y=2-1;(4)y=1.是反比例函数的有()x2xx2个个个个2.(厦门模拟)两个相似三角形的面积比为 1∶4,那么它们的对应边的比为 ()∶16 ∶1 ∶2∶123.关于x 的一元二次方程 x-6x+2k=0有两个不相等的实数根,那么实数k 的取值范围是()9999≤<≥>2222°-sin30°+tan45°的值为()5.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 2甲=0.002,s 2乙,那么()A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定6.如图,在Rt △ABC 中,∠D.无法确定哪一品种的产量更稳定C=90°,∠A=30°,c=10,那么以下不正确的选项是()A.∠B=60°B.a=5C.b=5 3D.tanB=337.如图,AB ∥CD ,AC 、BD 、EF 相交于点O ,那么图中相似三角形共有()对对对对8.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,那么以下结论不一定成立的是()A.AD=BC ′B.∠EBD=∠EDBC.△ABE ∽△CBD AE ∠ABE=ED二、填空题(每题3 分,共 24分)9.(无锡中考)双曲线y=k1经过点(-1,2),那么k 的值等于______.x10.某校开展“节约每一滴水〞活动,为了了解开展活动一个月以来节约用水的情况, 从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表:请你估计这400名同学的家庭一个月节约用水的总量大约是______m 3.11.(舟山中考)方程x 2-3x=0的根为______.12.如图,以O 为位似中心,把五边形ABCDE 的面积扩大为原来的 4倍,得五边形ABCDE ,那么OD ∶OD=______.1 1 1 1 1113.(济宁中考)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 3,那么AB 的长为______.14.(丽水中考)如图,某小区规划在一个长 30m 、宽20m 的长方形 ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与 AD 平行,其余局部种花草 .要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少米?设通道的宽为 xm ,由题意列得方程 ______.15.(包头中考)如图,在平面直角坐标系中, Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数 y=k的图象交于点 D ,且OD=2AD ,过点D 作x 轴的垂线交 x 轴于点C.假设S 四边形ABCD =10,那么k 的值为______. x 16.(贵阳中考)如图,在 Rt △ABC 中,∠BAC=90°,AB=AC=16cm ,AD 为BC 边上的高.动点P 从点A 出发,沿 A →D方向以 2 cm/s 的速度向点 D 运动.设△ABP 的面积为 S 1,矩形PDFE 的面积为 S 2,运动时间为 t 秒(0<t <8),那么 t=______秒时,S 1=2S 2.三、解答题(共72分) (6分)解以下方程:(1)2(x-5)=3x(x-5);(2)x 2-2x-3=0.18.(6分),如图,△ ABC 是等边三角形,点 D 、E 分别在CB 、AC 的延长线上,∠ADE=60°.求证:△ABD ∽△DCE.19.(8分)(衡阳中考)学校去年年底的绿化面积为 5000平方米,预计到明年年底增加到 7200平方米,求这两年的年平均增长率.20.(10分)(重庆中考)如图,在△ABC 中,CD ⊥AB ,垂足为D.假设AB=12,CD=6,tanA=3,求sinB+cosB 的值.221.(10分)游泳是一项深受青少年喜爱的体育活动,学校为了加强学 生的平安意识,组织学生观看了纪实片“孩子,请不要私自下水〞,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图答复以下问题:1〕这次抽样调查中,共调查了名学生;2〕补全两个统计图;3〕根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳〞?22.(10分):如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,假设S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)假设直线AB与y轴的交点为C,求△OCB的面积.23.(10分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东 60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?24.(12分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE;1(2)假设sin∠DFE=,求tan∠EBC的值.3参考答案1=0,x2=3∶213.3+314.(30-2x)(20-x)=6×7817.(1)x1=5或x2=2/3.(2)x1=3,x2=-1.∠18.证明:∵∠ABC=∠ACB=60°,∴∠ABD=∠ECD=120°.又∵∠ADB+∠DAB=∠ABC=60°,∠ADB+∠EDC=60°,∴∠DAB=∠EDC,∴△ABD∽△DCE.19.设这两年的年平均增长率为x,根据题意得5000(1+x)2=7200,即(1+x)2,解得x=0.2=20%,或x=-2.2(舍去).答:这两年的年平均增长率为20%.20.在Rt△ACD中,∵∠ADC=90°,∴tanA=CD/AD=6/AD=32,∴AD=4,∴BD=AB-AD=12-4=8.在Rt△BCD中,∵∠BDC=90°,BD=8,CD=6,∴BC=10,∴sinB=CD/BC=35,cosB=BD/BC=45,∴sinB+cosB=3/5+4/5=7/5.21.(1)400(2)略.(3)根据题意得:2000×5%=100〔人〕.答:该校2000名学生中大约有100人“一定会下河游泳〞.22.(1)由A(-2,0),得OA=2.∵点B(2,n)在第一象限内,S△AOB=4,∴1/2OA·n=4,∴n=4,∴点B的坐标是(2,4).设该反比例函数的解析式为y=a/x(a≠0),将点B的坐标代入,得4=a/2,∴a=8.∴反比例函数的解析式为y=8/x.设直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得-2k+b=0,2k+b=4.解得k=1,b=2.∴直线AB的解析式为y=x+2;(2)在y=x+2中,令x=0,得y=2.∴点C的坐标是(0,2),∴OC=2.∴S△OCB=1/2OC×2=1/2×2×2=2.23.过点A作AD⊥BC于D,根据题意得∠ABC=30°,∠ACD=60°,∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB∵.CB=50×2=100(海里),∴CA=100海里,在直角△ADC中,∠ACD=60°,∴CD=1/2AC=1/2×100=50(海里).故船继续航行50海里与钓鱼岛A的距离最近.24.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°.∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°-∠BFE=90°.又∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE.(2)在Rt△DEF中,sin∠DFE=DE/EF=13,设DE=a,那么EF=3a,DF=22a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF又.由(1)△ABF∽△DFE,∴BF/FE=AB/DF,∴FE/BF=DF/AB=22a/4a=2,∴tan∠EBF=FE/BF=2,tan∠22∠EBC=tan∠EBF=22。
湘教版九年级上册数学期末考试试卷含答案详解
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.一元二次方程x2+5x=6的一次项系数、常数项分别是()A .1,5B .1,-6C .5,-6D .5,62.若反比例函数y=k x (k≠0)的图象经过点P (-1,1),则k 的值是()A .0B .-2C .2D .-13.一元二次方程x2+x+1=0的根的情况为()A .有两个相等的实数根B .没有实根C .只有一个实数D .有两个不相等的实数根4.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm 2,则较大多边形的面积为()A .9cm 2B .16cm 2C .56cm 2D .24cm 25.sin30°+tan45°-cos60°的值等于()A B .0C .1D .6.在直角三角形ABC 中,已知∠C=90°,∠A=60°,BC 等于()A .30B .10C .2D .7.如图,Rt △ABC ∽Rt △DEF ,∠A=35°,则∠E 的度数为()A .35°B .45°C .55°D .65°8.如图,为测量河两岸相对两电线杆A 、B 间的距离,在距A 点16m 的C 处()AC AB ⊥,测得ACB 52∠= ,则A 、B 之间的距离应为()A .16sin52°mB .16cos52°mC .16tan52°mD .16tan52m9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A .100只B .150只C .180只D .200只10.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为()A .B .C .D .二、填空题11.若()221ay a x -=+是反比例函数,则a 的取值为______.12.已知关于x 一元二次方程ax 2+bx +c =0有一个根为1,则a +b +c =_____.13.甲同学身高为.5m ,某时刻他影长为1m ,在同一时刻一中老塔影长为20m ,则塔高为____m .14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S 甲2=17,S 乙2=15.则成绩比较稳定的是_____(填“甲”、“乙”中的一个).15.已知sinα=35,则tanα=____.16.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是____米.17.已知锐角A 满足关系式2sin2A-7sinA+3=0,则sinA 的值为_____.18.已知关于x 的一元二次方程x 2+2x-a=0的两个实根为x1,x2,且121123x x +=,则a 的值为.三、解答题19.解下列方程(1)x (x-2)+x-2=0;(2)x2-4x-12=0.20.已知x=-1是一元二次方程x2-mx-2=0的一个根,求m 的值和方程的另一个根.21.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图).等级非常了解比较了解基本了解不太了解频数50m4020根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为人,表中m 的值为;(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少?22.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.23.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732 1.732,60千米/小时≈16.7米/秒)24.在矩形ABCD中,E为CD的中点,H为BE上的一点,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若EHBH=3,∠CGF=90°,求ABBC的值.25.如图,已知在平面直角坐标系xOy中,直线y=12x+b经过点B(1,3),且与直线y=﹣2x交于点A,抛物线y=(x﹣m)2+n的顶点在直线y=﹣2x上运动.(1)求点A的坐标.(2)当抛物线经过点A时,求抛物线的解析式.(3)当﹣1<x<1时,始终满足(x﹣m)2+n<12x+b,结合图象,直接写出m的取值范围.参考答案1.C【详解】试题解析:x 2+5x=6,x 2+5x-6=0,一次项系数是5,常数项-6.故选C .考点:一元二次方程的一般形式.2.D .【解析】试题解析:∵反比例函数y=k x (k≠0)的图象经过点P (-1,1),∴1=1k ,解得k=-1.故选D .考点:反比例函数图象上点的坐标特征.3.B 【详解】试题解析:一元二次方程x 2+x+1="0"中,△=1-4×1×1<0,∴原方程无解.故选B .考点:根的判别式.4.A 【详解】∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm 2,∴较大多边形的面积为9cm 2,故选A .5.C .【解析】试题解析:原式=12+1-12=1.故选C.考点:特殊角的三角函数值.6.A【详解】试题解析:∵∠C=90°,∠A=60°,∴∠B=90°-60°=30°,∴由勾股定理得:==30.故选A.考点:1.勾股定理;2.含30度角的直角三角形.7.C.【解析】试题解析:∵Rt△ABC∽Rt△DEF,∠A=35°,∴∠D=∠A=35°.∵∠F=90°,∴∠E=55°.故选C.考点:相似三角形的性质.8.C【详解】试题解析:因为AC=16米,∠C=52°,在直角△ABC中tan52°=ABAC,所以AB=16•tan52°米.故选C.考点:解直角三角形的应用.9.D.【解析】试题解析:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为4 40,∴池塘里青蛙的总数为20÷440=200.故选D.考点:用样本估计总体.10.C【详解】试题解析:如图,由勾股定理得AC=.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选C.考点:1.勾股定理;2.三角形的面积.11.1【分析】先根据反比例函数的定义列出关于a的不等式和方程,求出a的值即可.【详解】∵此函数是反比例函数,∴210 21a a +≠⎧⎨-=-⎩,解得a=1.故答案为1.【点睛】本题考查的是反比例函数的定义,即形如y=kx(k为常数,k≠0)的函数称为反比例函数.12.0.【详解】试题解析:根据题意,一元二次方程ax2+bx+c="0"有一个根为1,即x=1时,ax2+bx+c=0成立,即a+b+c=0,考点:一元二次方程的解.13.30.【解析】试题解析:∵同一时刻物高与影长成正比例∴1.5:1=塔高:20∴塔高为30m.考点:相似三角形的应用.14.乙.【解析】试题解析:∵S甲2=17,S乙2=15,15<17,∴成绩比较稳定的是乙.考点:方差.15.3 4.【解析】试题解析:如图:设∠A=α,∵sinα=3 5,∴35 BCAB=,设AB=5x,BC=3x,则,∴tanα=34 BCAC=.考点:同角三角函数的关系.16.250.【解析】试题解析:∠AOB=90°-60°=30°,∵∠ABO=90°,OA=500m ,∴AB=12OA=250m .考点:1.含30度角的直角三角形;2.方向角.17.12【解析】试题解析:2sin 2A-7sinA+2=0,把方程左边分解因式得:(sinA-3)=0,2sinA-1=0,sinA-3=0,解得:sinA=12或sinA=3(不合题意舍去)考点:1.解一元二次方程-因式分解法;2.锐角三角函数的定义.18.3.【详解】解:∵关于x 的一元二次方程x 2+2x-a=0的两个实根为x 1,x 2,∴x 1+x 2=-2,x 1x 2=-a ,∴12121211223+-+===-x x x x x x a ∴a=3.19.(1)x 1=2,x 2=-1.(2)x 1=6,x 2=-2.【详解】试题分析:(1)提取公因式,转化为两个一元一次方程,解一元一次方程即可.(2)分解因式转化为两个一元一次方程,解一元一次方程即可.试题解析:(1)x (x-2)+x-2=0,提取公因式,得(x-2)(x+1)=0,解得x1=2,x2=-1.(2)x2-4x-12=0,分解因式得,(x-6)(x+2)=0,解得x1=6,x2=-2.考点:解一元二次方程-因式分解法.20.m的值为1,方程的另一根为x=2.【分析】由于x=-1是方程的一个根,直接把它代入方程即可求出m的值,然后解方程可以求出方程的另一根.【详解】解:∵x=-1是关于x的一元二次方程x2-mx-2=0的一个根,∴(-1)2-m×(-1)-2=0,∴m=1,将m=1代入方程得x2-x-2=0,(x-2)(x+1)=0解得:x=-1或x=2.故m的值为1,方程的另一根为x=2.【点睛】本题考查一元二次方程的解及解一元二次方程,掌握因式分解的解方程技巧是解题关键.21.(1)200,90;(2)90°,补全图形见解析(3)200人.【详解】试题分析:(1)利用基本了解的人数÷基本了解的人数所占百分比即可算出本次问卷调查共抽取的学生数;m=抽查的学生总数×比较了解的学生所占百分比;(2)等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数=360°×所占百分比,再补图即可;(3)利用样本估计总体的方法,用2000人×调查的学生中“不太了解”的学生所占百分比.试题解析:(1)40÷20%=200人,200×45%=90人;(2)50200×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图所示:(3)2000×10%=200人.答:这些学生中“不太了解”梅山文化知识的人数约为200人.考点:1.扇形统计图;2.用样本估计总体;3.频数(率)分布表.22.(1)20%.(2)小华选择方案一购买更优惠.【解析】试题分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2元列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.试题解析:(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.考点:一元二次方程的应用.23.(1)112米(2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米)。
湘教版九年级数学上册期末测试卷及答案【全面】
湘教版九年级数学上册期末测试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把 )A B .C D .2.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01±3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x+1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x+1)2+3D .y=﹣5(x ﹣1)2+3 6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B .C .D .8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2ab a -=_______.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H,已知BO=4,S菱形ABCD=24,则AH=__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m的值为多少?3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、A6、A7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、a(b+1)(b﹣1).3、7或-14、135、x≤1.6、24 5三、解答题(本大题共6小题,共72分)1、无解2、(1)34m≥-;(2)m的值为3.3、(1)略;(2)S平行四边形ABCD=244、(2)略;(2)四边形EBFD是矩形.理由略.5、(1)2、45、20;(2)72;(3)1 66、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
湘教版九年级上册数学期末考试试卷附答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.将方程2368x x =-+化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A .3、6、8B .3、-6、-8C .3、-6、8D .3、6、-82.已知反比例函数k y x =的图象过点()2,3-则该反比例函数的图象位于()A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.关于x 的一元二次方程3x 2﹣6x+m=0有两个不相等的实数根,则m 的取值范围是A .m <3B .m≤3C .m >3D .m≥34.若()()()1233,,2,,1,A y B y C y --三点都在函数1y x=-的图象上,则123y y y ,,的大小关系是()A .123y y y <<B .123y y y >>C .132 y y y <<D .无法确定5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是()A .438(1+x )2=389B .389(1+x )2=438C .(1+2x )2=438D .438(1+2x )2=3896.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A .50%B .55%C .60%D .65%7.如图,若P 为△A BC 的边AB 上一点(AB>AC ),则下列条件不一定能保证△ACP ∽△ABC的有()A .∠ACP=∠B B .∠APC=∠ACBC .AC AP AB AC =D .PC AC BC AB =8.如图,正方形网格中, ABC 如图放置,其中点A 、B 、C 均在格点上,则()A .tanB=32B .cosB=23C .sinB=13D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是()A .4B .14C .13D .310.如图,△ABC 中,D 、E 两点分别在BC 、AD 上,且AD 为∠BAC 的角平分线.若∠ABE=∠C ,AE:ED=2:1,则△BDE 与△ABC 的面积比为何?()A .1:6B .1:9C .2:13D .2:15二、填空题11.随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为13x =甲,13x =乙,2 3.6s =甲,2 4.2s =乙,则小麦长势比较整齐的是______.12.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____.13.如图,在△ABC 中,∠A =30°,∠B =45°,AC =AB 的长为_______.14.如图所示,AB ⊥BD ,CD ⊥BD ,连接AC 交BD 于O .若AB =3,BO =4,BD =12,则OC 的长是________.15.如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A 处前进4米到达B 处时,测得影子BC 长为1米,已知小明身高1.6米,他若继续往前走4米到达D 处,此时影子DE 长为______米.三、解答题16.解一元二次方程:(1)241210x -=(2)4)25()(x x --=17.计算:(1)2cos306045︒-︒+︒(2)()101202023tan 303π-⎛⎫---+︒⎪⎝⎭18.钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问海监船继续航行多少海里与钓鱼岛A 的距离最近?19.如图,等腰三角形ABC 中,AB=AC ,D 为CB 延长线上一点,E 为BC 延长线上点,且满足AB 2=DB·CE.(1)求证:△ADB ∽△EAC ;(2)若∠BAC=40°,求∠DAE 的度数.20.某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?21.已知:如图所示,在ABC 中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当P 、Q 两点中有一点到达终点,则同时停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PBQ △的面积等于24cm(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于?(3)PQB △的面积能否等于27cm 请说明理由.22.如图,一次函数y =kx +b 的图像与反比例函数y =m x的图像相交于A (1,2),B (n ,-1)两点.(1)求一次函数和反比例函数的表达式.(2)直线AB 交x 轴于点C ,点P 是x 轴上的点,若△ABP 的面积是6,求点P 的坐标.23.如图,已知二次函数222(1)2(0)y x m x m m m =-+++>的图像与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接AC BC 、.(1)线段AB =______;(2)若AC 平分OCB ∠,求m 的值;(3)该函数图像的对称轴上是否存在点P ,使得PAC △为等边三角形?若存在,求出m 的值;若不存在,说明理由.24.如图1在矩形ABCD 中,点E 是CD 边上的动点(点E 不与点C ,D 重合),连接AE ,过点A 作AF AE ⊥交CB 延长线于点F ,连接EF ,点G 为EF 的中点,且点G 在线段AB 的左侧,连接BG .(1)求证:ADE ∽ABF ;(2)若20AB =,10AD =,设DE x =,点G 到直线BC 的距离为y .①求y 与x 的函数关系式;②当85EC BG =时,求x 的值;(3)如图2,若AB BC =,设四边形ABCD 的面积为S ,四边形BCEG 的面积为1S ,当114S S =时,求DC :DE 的值.参考答案1.D【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:23+680x x -=.从而确定二次项系数为3,一次项系数为6,常数项为-8,故选择:D .【考点】本题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.2.C【分析】先根据点的坐标求出k 值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数k y x=(k≠0)的图象经过点P (2,-3),∴k=2×(-3)=-6<0,∴该反比例函数经过第二、四象限.故选:C .【点睛】本题考查了反比例函数的性质.反比例函数k y x=(k≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大.3.A【分析】一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【详解】解:根据题意得△=(﹣6)2﹣4×3×m >0,解得m <3.故选A .4.A【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】解:∵点A (3,y 1),B (-2,y 2),C (-1,y 3)在反比例函数1y x=-的图象上,∴y 1=13-,y 2=12,y 3=1,又∵13-<12<1,∴y 1<y 2<y 3.故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值是解题的关键.5.B【分析】先用含x 的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【详解】解:设每半年发放的资助金额的平均增长率为x ,则去年下半年发放给每个经济困难学生389(1+x )元,今年上半年发放给每个经济困难学生()23891x +元,由题意,得:()23891438x +=,故选:B .【点睛】本题考查求平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.6.C【详解】先求出m 的值,再用一周课外阅读时间不少于4小时的人数除以抽取的学生数即可:∵m=40﹣5﹣11﹣4=20,∴该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:20+440×100%=60%.故选C .7.D【解析】试题分析:本题中隐含着一个条件,即∠A=∠A,选项A和B可以利用有两个角相等的两个三角形相似得到判定;C选项可以利用两组对应边分别成比例,且夹角相等来判定两个三角形相似;D选项无法进行判定.考点:三角形相似的判定.8.C【分析】在Rt△ABC中,AC=2,BC=3,由勾股定理得:AB=利用锐角三角函数定义求出tanB,cosB,SinB即可选出答案.【详解】解:如图在Rt△ABC中,AC=2,BC=3,由勾股定理得:∴tanB=AC2= BC3,∴cosB=BCAB∴SinB=ACAB13.故选:C.【点睛】本题考查网格中锐角三角函数问题,掌握三角函数的定义,熟记锐角三角函数的定义是解题关键.9.A【分析】证明△BEF∽△DAF,得出EF=12AF,EF=13AE,由矩形的对称性得:AE=DE,得出13EF DE=,设EF=x,则DE=3x,由勾股定理求出DF=再由三角函数定义即可得出答案.【详解】∵四边形ABCD 是矩形,∴AD=BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE=12BC=12AD ,∴△BEF ∽△DAF ,∴12EF BE AF AD ==,∴EF=12AF ,∴EF=13AE ,∵点E 是边BC 的中点,∴由矩形的对称性得:AE=DE ,∴EF=13DE ,设EF=x ,则DE=3x ,∴x ,∴tan ∠BDE=EF DF =.故选A .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.10.D【分析】根据已知条件先求得S △ABE :S △BED =2:1,再根据三角形相似求得S △ACD =94S △ABE =92S △BED ,根据S △ABC =S △ABE +S △ACD +S △BED 即可求得答案.【详解】解:∵AE :ED =2:1,∴S △ABE :S △BED =2:1,AE :AD =2:3,∵∠ABE =∠C ,∠BAE =∠CAD ,∴△ABE ∽△ACD ,∴S △ABE :S △ACD =4:9,∴S △ACD =94S △ABE ,∵S △ABE =2S △BED ,∴S △ACD =94S △ABE =92S △BED ,∵S △ABC =S △ABE +S △ACD +S △BED =2S △BED +92S △BED +S △BED =152S △BED ,∴S △BDE :S △ABC =2:15,故选D .【点睛】本题考查了相似三角形的判定和性质,利用不同底等高的三角形面积的之间的关系进行等量代换是解决本题的关键.11.甲【分析】根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵13x =甲,13x =乙,由方差的意义2 3.6s =甲,2 4.2s =乙,∵3.6 4.2<,∴2s <甲2s 乙,∴甲块试验田的方差小,故甲试验田小麦长势比较整齐.故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是熟练掌握方差的意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.-2【分析】根据根与系数的关系即可求解.∵x 1+x 2=-2,x 1.x 2=k-1,22212121212()3x x x x x x x x +-=+-⋅=4-3(k-1)=13,K=-2.故答案为:-2.【点睛】此题主要考查一元二次方程根与系数的关系,解题的关键是熟知根与系数的关系及应用.13.3+3【详解】过C 作CD ⊥AB 于D ,∴∠ADC =∠BDC =90°.∵∠B =45°,∴∠BCD =∠B =45°,∴CD =BD .∵∠A =30°,23AC =,∴3CD =,∴3BD CD ==.由勾股定理得:223AD AC CD =-=,∴33AB AD BD =+=+.故答案是:3+314.10由CD⊥BD,AB⊥BD,与∠DOC=∠BOA,可证△DOC∽△BOA,由性质OC CD OD==OA AB OB,在Rt△AOB中,由勾股定理AO=5,可求OC=6【详解】解:∵CD⊥BD,AB⊥BD,∴∠D=∠B=90º∵∠DOC=∠BOA∴△DOC∽△BOA∴OC CD OD== OA AB OB∵AB=3,BO=4,BD=12,∴OD=BD-BO=12-4=8在Rt△AOB中由勾股定理∴OC8= 54∴OC=10故答案为:10【点睛】本题考查勾股定理与相似三角形的判定与性质,掌握勾股定理与相似三角形的判定与性质是解题关键15.2【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE长.【详解】如图,由FB ∥AP 可得,△CBF ∽△CAP ,∴CB BF CA AP=,即1 1.614AP +,解得AP=8,由GD ∥AP 可得,△EDG ∽△EAP ,∴ED GD EA PA ,即 1.6448ED ED ++=,解得ED=2,故答案为2.【点睛】此题考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.16.(1)121111,22x x ==-;(2)1236,36x x ==【分析】(1)利用直接开平方法求解即可;(2)利用公式法求解即可.【详解】解:(1)∵241210x -=,∴24121x =,∴21214x =,∴12111122x x ==-;(2)∵4)25()(x x --=,∴2630x x -+=,∴2-466=3622b b ac x a ±-±==±∴1233x x ==.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17.(1)2;(2)0【分析】(1)先把函数值代入,在进行二次根式的乘方,再乘法,最后计算加减即可;(2)先把函数值代入同时计算零次幂负指数去绝对值,再进行二次根式的乘除法,最后合并同类项即可.【详解】解:(1)2cos306045︒︒+︒,2122⎛+ ⎝⎭,=222-+,=2;(2)()101202023tan 303π-⎛⎫---+︒ ⎪⎝⎭,=13233-+⨯,=132-+,=0.【点睛】本题考查特殊三角函数值化简求值问题,掌握特殊的三角函数值及零次幂,负指数,绝对值化简,二次根式混合运算法则是解题关键.18.50海里【分析】过点A 作AD ⊥BC 于D ,根据题意得∠ABC=30°,∠ACD=60°,∠BAC =30°,可证CA=CB ,由CB=50×2=100(海里),可求CA=100(海里),在直角△ADC 中,CD=AC0cos60=100×12=50(海里)即可.【详解】解:过点A作AD⊥BC于D,根据题意得∠ABC=90°-60°=30°,∴∠ACD=90°-30°=60°,∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,∴CD=AC cos60 =100×12=50(海里).答:船继续航行50海里与钓鱼岛A的距离最近.【点睛】本题考查特殊角三角函数在解直角三角形中的应用,等腰三角形的判定与性质,掌握三角函数的定义,关键是作出正确的图形.19.(1)见解析;(2)(2)∠DAE=110︒【解析】试题分析:(1)根据AB=AC,求得∠ABD=∠ACE,再利用AB2=DB•CE,即可得出对应边成比例,然后即可证明.(2)由△ADB∽△EAC,得出∠BAD=∠E,∠D=∠CAE,则∠DAE=∠BAD+∠BAC+∠CAE=∠D+∠BAD+∠BAC,很容易得出答案.试题解析:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴AB DB CE AB=,∵AB=AC,∴AB DB CE AC=∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∠D=∠CAE,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.20.(1)见解析;(2)180名【分析】()1由条形图与扇形图知良好的人数与百分比可求抽取的学生数:1640%40(÷=人);可求抽取的学生中合格的人数10,可求合格所占百分比:25%,优秀人数百分比:124030%÷=,即可补全条形图与扇形图;()2求出成绩未达到良好的男生所占比例为:30%,用部分估计总体60030%180(⨯=名)即可.【详解】解:()1由条形图与扇形图知良好的人数16人,百分比为40%则抽取的学生数:1640%40(÷=人);抽取的学生中合格的人数:401216210---=,合格所占百分比:104025%÷=,优秀人数所占百分比:124030%÷=,如图所示:;()2成绩未达到良好的男生所占比例为:25%5%30%+=,所以600名九年级男生中有60030%180(⨯=名),九年级有600名男生成绩未达到良好有180名.【点睛】本题考查条形统计图、扇形统计图、解题的关键是明确题意,利用数形结合的思想解答问题.21.(1)1秒;(2)3秒;(3)不能,理由见解析【分析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2t (5-t )=7,化简该方程后,判断该方程的24b ac -与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x 秒以后,PBQ △面积为24(0 3.5)cm x <≤,此时=AP xcm ,()5BP x cm =-,2=BQ xcm ,由142BP BQ ⋅=,得()15242x x -⨯=,整理得:2540x x -+=,解得:1x =或4(x =舍),答:1秒后PBQ △的面积等于24cm ;(2)设经过t 秒后,PQ 的长度等于210cm由222PQ BP BQ =+,即2240(5)(2)t t =-+,解得:t=3或-1(舍),∴3秒后,PQ 的长度为;(3)假设经过t 秒后,PBQ △的面积等于27cm ,即72BQ BP ⨯=,()2572t t -⨯=,整理得:2570t t -+=,由于24252830b ac -=-=-<,则原方程没有实数根,∴PQB △的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.22.(1)y =x +1,2y x =;(2)(-5,0)或(3,0)【分析】(1)根据反比例函数的图象过点A (1,2),可以求得反比例函数的解析式,然后即可得到点B 的坐标,再根据一次函数y =kx +b 的图象过点A 和点B ,然后即可得到一次函数的解析式;(2)根据一次函数的解析式可以得到一次函数与x 轴的交点,然后根据△ABP 的面积是6,即可求得点P 的坐标.【详解】解:(1)∵反比例函数m y x =的图象过点A (1,2),B (n ,-1),∴21m =,解得m =2,即反比例函数的解析式为2y x =,∴21n-=,解得n =-2,∴点B (-2,-1),∵一次函数y =kx +b 的图象过点A (1,2),B (-2,-1),∴221k b k b +=⎧⎨-+=-⎩,解得11k b =⎧⎨=⎩,即一次函数的解析式为y =x +1;(2)设点P 的坐标为(p ,0),∵一次函数y =x +1,∴当y =0时,x =-1,∵△ABP 的面积是6,点A (1,2),B (-2,-1),∴()()12162p --⨯--⎡⎤⎣⎦=,解得p =-5或p =3,即点P 的坐标为(-5,0)或(3,0).【点睛】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)2;(2(3【分析】(1)设1(A x ,0),2(B x ,0),12()x x <,根据题意可得1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,解出1x ,2x ,进而得出212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,根据角平分线的性质可得AD OA m ==,推测出sin OC AD OBC BC AB∠==,进而解得2(2)BC m =+,在Rt BOC 中利用勾股定理可得,m =(3)连接PB ,P 为对称轴上的点,所以PA PB =,又PAC ∆为等边三角形推出PA PC =,进而可得点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,推出1302OBC APC ∠=∠=︒,进而可得tan OC OBC OB ∠==m .【详解】解:(1)设1(A x ,0),2(B x ,0),12()x x <,1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,即1x ,2x 为方程()[(2)]0(0)x m x m m --+=>的根,所以1x m =,2x m 2=+所以212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,若AC 平分OCB ∠,则有AD OA m ==,因为sin OC ADOBC BC AB ∠==,即222m m mBC +=,所以2(2)BC m =+,在Rt BOC 中,因为222OC OB BC +=,所以2222(2)(2)[2(2)]m m m m +++=+,即2222(2)(2)4(2)m m m m +++=+,0m >,所以2(2)0m +≠,所以214m +=,解得m =(3)存在点P 满足题意,连接PB ,则有PA PB =,因为PAC ∆为等边三角形,所以PA PC =,所以PA PB PC ==,所以点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,所以11603022OBC APC ∠=∠=⨯︒=︒,所以tan 3OCOBC OB ∠==,因为0m >,所以20m +≠,所以3m =.【点睛】本题考查二次函数的图象和性质,角平分线,等边三角形的判定,解题的关键是掌握相关知识的,利用数形结合的思想来解答,属于中档题.24.(1)证明见解析;(2)①110(020)2y x x =-+<<;②10011;(3【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)①作GH ⊥BF 于H .利用三角形的中位线定理,推出EC=2y ,再根据DE+EC=20,即可解决问题;②由85EC BG =,可以假设EC=8k ,BG=5k ,利用相似三角形的性质构建方程求出k 即可解决问题;(3)连接BE ,先证△ADE ≌△ABF ,设DE=a ,CD=BC=b ,则==BF DE a ,根据112EBG ECB BFE EBC S S S S S =+=+△△△△及14S S =,构建一元二次方程,即可解决问题.【详解】证明:(1)AE AF ⊥ ,90EAF ∴∠=︒,四边形ABCD 是矩形,90BAD ABC ABF D ∴∠=∠=∠=∠=︒,EAF BAD ∴∠=∠,FAB DAE ∴∠=∠,90ABF D ∠=∠=︒ ,ADE ∴V ∽ABF ;(2)①如图1中,作GH BF ⊥于H ,90GHF C ∠=∠=︒ ,//GH EC ∴,FG GE = ,FH HC ∴=,22EC GH y ∴==,20DE EC CD AB +=== ,220x y ∴+=,110(020)2y x x ∴=-+<<.②∵85ECBG =,∴假设8EC k =,5BG k =,∵2EC GH =,∴4GH k =,∴3BH k ==,∴310FH CH k ==+,∴610FB k =+∵1102y x =-+,∴208x k =-,∵ADE ∽ABF ,AD ABDE BF ∴=,即102020-8610k k =+,解得:1511k =,∴10011x =;(3)如图2中,连接BE ,∵ABCD 为矩形且AB=BC ,∴四边形ABCD 为正方形,∴AB=AD ,∠ABF=∠ADE=90°,又∵AF ⊥AE ,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD ,∴△ADE ≌△ABF ,设DE a =,CD BC b ==,∴==BF DE a ,∴112EBG ECB BFE EBCS S S S S =+=+△△△△()()221111142244a b a b a b a ab=-+-=--∵2S b =,14S S =,∴2222b b a ab =--,即220b ab a --=,∴210b b a a ⎛⎫⎛⎫--= ⎪ ⎝⎭⎝⎭,∴12b a +=或12b a -=(舍去),∴DC DE 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,正方形的性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.。
湘教版九年级数学下册期末综合检测试卷(有答案)
湘教版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.下图是某个几何体的三视图,该几何体是()A. 长方体B. 正方体 C. 圆柱 D. 三棱柱2.一个口袋里有5个红球,5个黄球,每个球除颜色外都相同,任意摸1个,则下列说法正确的是()A. 只摸到1个红球B. 一定摸到1个黄球C. 可能摸到1个黑球D. 不可能摸到1个白球3.如图所示的四个几何体中,主视图与其他几何体的主视图不同的是()A.B.C.D.4.如图,已知⊙O的直径AB为10,弦CD=8,CD⊥AB于点E,则sin∠OCE的值为()A. 45B.35C.3 4D. 435.AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠BAC=25°,则∠ADC等于()A. 20°B. 3 0°C. 40°D. 50°6.若y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的另一个解为()A. -2B. -1C. 0D. 17.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A. 12 √3B. 15√3−6π C. 30√3−12π D. 48√3−36π8.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为()A. y=2(x+1)2+3B. y=2(x-1)2-3C. y=2(x+1)2-3 D. y=2(x-1)2+39.一个点到圆的最大距离为9cm,最小距离为4cm,则圆的半径是()A. 5cm或13cmB. 2.5cmC. 6.5cmD. 2.5cm或6.5cm10.如图二次函数y=ax2+bx+c的图象与x轴交于(–1,0),(3,0);下列说法正确的是()A. abc<0B. 当x>1时,y随x值的增大而增大C. a+b+c>0 D. 当y>0时,−1<x<3二、填空题(共10题;共39分)11.正八边形的中心角等于________度.12.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).13.将抛物线y=x2-2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是________.14.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,如果BC=DC=3,那么△ABC和△ACD的外心距是________.15.抛物线y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.16.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为________.17.在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为________ cm.18.如图,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=________.19.若扇形的半径为3cm,扇形的面积为2πcm2,则该扇形的圆心角为________ °,弧长为________ cm.20.如图,PA、PB分别切圆O于A、B两点,并与圆O的切线分别相交于C、D两点,•已知PA=7cm,则△PCD 的周长等于________ .三、解答题(共8题;共64分)21.某鞋店有A、B、C、D四款运动鞋,元旦期间搞“买一送一”促销活动,用树状图或表格求随机选取两款不同的运动鞋,恰好选中A、C两款的概率.22.已知如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。
湘教版九年级数学上册期末测试卷及完整答案
湘教版九年级数学上册期末测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是()A.15B.0.5C.5D.502.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.55.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.16.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A .40°B .45°C .50°D .55°9.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.因式分解:a 3-a =_____________.33x +有意义,则实数x 的取值范围是__________. 4.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、A5、A6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (a -1)(a + 1)3、x ≥-3且x ≠24、32;5、12.6、2三、解答题(本大题共6小题,共72分)1、3x =-2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)略;(2)37°4、(1)BF =10;(2)r=2.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、()()21y 5x 800x 2750050x 100=-+-≤≤;(2)当x 80=时,y 4500=最大值;(3) 销售单价应该控制在82元至90元之间.。
湘教版九年级数学上册期末测试卷【及参考答案】
湘教版九年级数学上册期末测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________. 2.因式分解:39a a -=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、A6、B7、A8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(a+3)(a-3)3、-124、40°.5、46、2.5×10-6三、解答题(本大题共6小题,共72分)1、原方程无解.2、(1)证明见解析;(2)-2.3、(1)略(2)64、(1)略;(2)AC的长为5.5、(1)50、30%.(2)补图见解析;(3)35.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
湘教版九年级上册数学期末考试试卷及答案
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知反比例函数经过(-2,3),则下列哪个点在此函数图象上()A .(-1,-6)B .(3,2)C .(-2,-3)D .(-6,1)2.一元二次方程x 2+4x=3配方后化为()A .(x+2)2=3B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-13.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为()A .2B .2C .12D 1-4.Rt △ABC 中,∠C=90°,若AB=4,cosA=35,则AC 的长为()A .95B .125C .163D .55.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h ).则估计本班大多数同学一周写数学作业的时间约为()A .4hB .5hC .6hD .7h6.已知二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,则m 的值为()A .BC .D .27.如图,在△ABC 中,∠A =90°,sinB =35,点D 在边AB 上,若AD =AC ,则tan ∠BCD 的值为()A .15B .16C .17D .188.函数y =mx与y =mx ﹣m (m ≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .9.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是()A .2m ≠B .6m =且2m ≠C .6m <D .2m =或6m ≤10.如图,已知直线l 1∥l 2∥l 3,直线m 、n 分别与直线l 1、l 2、l 3分别交于点A 、B 、C 、D 、E 、F ,若DE =3,DF =8,则BC AC的值为()A .35B .58C .53D .85二、填空题11.若反比例函数2k y x-=的图象经过第一、三象限,则k 的取值范围是______________.12.已知2334b a b =-,则a b=________13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h 为___米.14.若关于x 的一元二次方程220x x k +-=有实数根,则k 的取值范围是__________.15.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________.16.如图所示,D 为AB 边上一点,AD :DB=3:4,DE //AC 交BC 于点E ,则S △BDE :S △AEC 为_____.17.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =24x (x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C 、D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E 、F ,则OFBEADS S 的值为_____.三、解答题18.计算:4sin60°+(3.14- )0-tan 230°.19.随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.20.某高速公路建设中,需要确定隧道AB 的长度.已知在离地面1800m 高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角分别为60°和45°(即∠DCA =60°,∠DCB =45°).求隧道AB 的长.(结果保留根号)21.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°,(1)求证:BD 2=BA·BE ;(2)若AB=6,BE=8,求CD 的长.22.已知关于x 的一元二次方程x 2+2mx+m 2+m=0有两个不相等的实数根.(1)求m 的取值范围.(2)若x 1,x 2是方程的两根,且x 12+x 22=12,求m 的值.23.如图,直线y 1=kx+b 与函数y 2=(0)kx x的图象相交于点A(-1,6),与x 轴交于点C ,且∠ACO=45°,点D 是线段AC 上一点.(1)求k 的值与一次函数的解析式.(2)若直线与反比例函数的另一支交于B 点,直接写出y 1<y 2自变量x 的取值范围,并求出△AOB 的面积.(3)若S △COD :S △AOC =2:3,求点D 的坐标.24.如图,抛物线y=ax2+bx+c的图象过点A(-1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.25.(1)如图1,在四边形ABCD中,点M在BC上,∠B=∠C=∠AMD时.求证:△ABM∽△MCD.(2)如图2,在△ABC中,点M是边BC的中点,点D,E分别在边AB,AC上.若∠B =∠C=∠DME=45°,BC=2CE=6,求DE的长.参考答案1.D【分析】将已知点代入反比例函数的解析式kyx=中求出k值,再根据k=xy解答即可.【详解】解:设反比例函数的解析式为kyx =,将(﹣2,3)代入解析式中,得:k=﹣2×3=﹣6,只有D选项满足k=﹣6×1=﹣6,故选:D.【点睛】本题考查反比例函数图象上的点的坐标特征、待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解答的关键.2.B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.B【分析】根据黄金分割的定义可得出较长的线段AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴AC,∵AC=4,∴BC=2.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=12AB≈0.618AB,并且线段AB的黄金分割点有两个.4.B【分析】根据三角函数可求出AC长.【详解】解:∵∠C=90°,若AB=4,∴cosA=ACAB,即345AC=,AC=12 5,故选:B.【点睛】本题考查了三角函数的计算,解题关键是理解余弦的意义,熟练进行计算.5.C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.6.A 【分析】根据次数为2可列方程,再根据函数增减性确定m 值.【详解】解:根据题意可知,232m -=,解得,m =∵二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,∴m+2<0,解得m <-2,综上,m=故选:A .【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.7.C 【分析】作DE ⊥BC 于E ,在△CDE 中根据已知条件可求得DE,CE 的长,从而求得tan ∠BCD.【详解】解:作DE ⊥BC 于E.∵∠A =90°,sinB =35,设AC=3a=AD ,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=35a,∴根据勾股定理,得BE=45a,∴CE=BC-BE=215a,∴tan ∠BCD=1.7DE CE =故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.8.C 【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.9.D 【分析】分两种情况讨论,当方程是一元一次方程时,20m -=,或方程是一元二次方程时,根据一元二次方程的定义,二次项系数不为零,再结合一元二次方程根的判别式:当0∆≥时,方程有实根,据此解题.【详解】解:当20m -=时,即2m =时,原方程是一元一次方程450x +=54x ∴=-,方程有实根;当2m ≠时,一元二次方程2(2)230m x mx m -+++=有实根,则0∆≥即22444(2)(3)0b ac m m m -=--+≥4240m -+≥解得6m ≤故选:D .【点睛】本题考查方程的根、一元二次方程的根的情况求参数等知识,是重要考点,涉及分类讨论的数学思想,掌握相关知识是解题关键.10.B 【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵l 1∥l 2∥l 3,∴=EF BCDF AC,∵DE =3,DF =8,∴838BCAC-=,即BCAC=58,故选:B.【点睛】本题考查了平行线分线段成比例定理,注意:一组平行线截两条直线,所截的线段对应成比例.11.2k>【分析】根据反比例函数的图象和性质即可得.【详解】由题意得:20k->,解得2k>,故答案为:2k>.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题关键.12.11 9【解析】∵2334ba b=-,∴8b=3(3a-b),即9a=11b,∴119ab=,故答案为11 9 .13.1.4【分析】根据相似三角形对应边成比例列式计算即可得解.【详解】由题意得,40.8 43h=+,解得h=1.4.故答案为1.4.【点睛】本题考查了相似三角形的应用,熟练掌握性质定理是解题的关键. 14.1k≥-【分析】一元二次方程220x x k +-=有实数根,即240b ac ∆=-≥【详解】解: 一元二次方程220x x k +-=有实数根24440b ac k ∴∆=-=+≥解得1k ≥-【点睛】本题考查24b ac ∆=-与系数的关系.15.7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x 2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x 轴的距离是纵坐标的绝对值,注意:分类讨论.16.16:21【分析】根据平行线分线段成比例得出DE :AC=BD :AB=4:7,再根据相似三角形的面积比等于相似比的平方可求得S △BDE :S 四边形ADEC =16:33,然后根据平行线间的距离相等得到S △ADE :S △AEC =DE :AC=4:7,进而可求得S △BDE :S △AEC .【详解】解:∵DE ∥AC ,∴△BDE ∽△BAC ,又AD :DB=3:4,∴DE :AC=BD :AB=4:7,∴S △BDE :S △BAC =16:49,∴S △BDE :S 四边形ADEC =16:33,∵DE ∥AC ,∴△ADE 与△AEC 的高相等,∴S △ADE :S △AEC =DE :AC=4:7=12:21,∴S △BDE :S △AEC =16:21,故答案为:16:21.【点睛】本题考查平行线分线段成比例、相似三角形的判定与性质、平行线的性质、比例性质,熟练掌握平行线分线段成比例和相似三角形的面积比等于相似比的平方是解答的关键.17.16【分析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点A B 、横坐标为a ,则点A 纵坐标为2a ,点B 的纵坐标为24a ,∵BE ∥x 轴,∴点F 纵坐标为24a ,∵点F 是抛物线2y x =上的点,∴点F横坐标为12x a ==,∵CD x 轴,∴点D 纵坐标为2a ,∵点D 是抛物线24x y =上的点,∴点D横坐标为2x a ==,22131,,,244AD a BF a CE a OE a ∴====∴1141218362OFB EAD BF OE S S AD CE ⋅⋅==⨯=⋅⋅ ,故答案为16.【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.18.23.【分析】先计算特殊角的三角函数值、零指数幂,化简二次根式,再计算各部分的和即可得到结果.【详解】4sin60°+(3.14-π)0-tan 230°=4×2+1-2()3=13=23.【点睛】本题考查特殊角的三角函数值、零指数幂及化简二次根式,熟记各特殊角的三角函数值及实数运算法则是解题关键.19.(1)见解析;(2)48︒;(3)800人.【分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【详解】(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90−24−18−12=36,补全的条形统计图如图所示:;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360︒×1290=48︒,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48︒;(3)3000×2490=800(人),答:该校对在线阅读最感兴趣的学生有800人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.隧道AB的长为(1800﹣3m【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB 的长.【详解】解:∵CD//OB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在Rt CAO中,tan∠CAO=COOA=tan60°,∴18003 OA=,∴OA=3在Rt CAO中,tan∠CBO=COOB=tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣3答:隧道AB的长为(1800﹣3m.本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.21.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD,再根据相似三角形的判定证明△BAD∽△BDE,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD长,再根据勾股定理求得AD长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC长,即可求得CD长.【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠EBD,又∵∠BDE=∠BAD=90°,∴△BAD∽△BDE,∴BD:BE=BA:BD,即BD2=BA·BE;(2)∵由(1)可知,BD2=BE·BA,且AB=6,BE=8,∴∴AD2=BD2-AB2=12即AD=,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴,∴【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.22.(1)0m ;(2)-2(1)根据根的判别式大于零求解即可;(2)先求出x 1+x 2=-2m ,x 1·x 2=m 2+m ,然后把x 12+x 22=12变形为(x 1+x 2)2-2x 1x 2=12,再把x 1+x 2=-2m ,x 1·x 2=m 2+m 代入求解即可;【详解】解:(1)∵此方程有两个不相等的实数根,∴b 2-4ac>0,即4m 2-4(m 2+m)>0,∴m<0;(2)x 1+x 2=-2m ,x 1·x 2=m 2+m ,∵x 12+x 22=12,∴(x 1+x 2)2-2x 1x 2=12,∴m=3或m=-2,由(1)可知m<0,故m=3舍去,∴m=-2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,以及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a ⋅=.23.(1)16,5k y x =-=-+;(2)10x -<<或6x >,352;(3)D (1,4)【分析】(1)将A(-1,6)代入y=(0)k x x <可求出k 的值,再求出点C 的坐标,然后用待定系数法即可求出一次函数的解析式;(2)解1256y x y x =-+⎧⎪-⎨=⎪⎩即可求出点B 的坐标,根据图象可求出y 1<y 2时自变量x 的取值范围,根据S △AOB =12OC AE ⋅求解即可求出△AOB 的面积;(3)过点D 作DF ⊥x 轴,垂足为F ,设D(x ,-x+5)(x >0),然后根据DF :AE=2:3列方程即可求解.【详解】解:(1)∵反比例函数经过点A(-1,6),∴k=-1×6==-6.如图1,作AE ⊥x 轴,交x 轴于点E ,∴E(-1,0),EA=6,∵∠ACO=45°,∴CE=AE=6,∴C(5,0),∴650k b k b -+=⎧⎨+=⎩,∴15k b =-⎧⎨=⎩,∴直线y 1`=-x+5;(2)解1256y x y x=-+⎧⎪-⎨=⎪⎩,得x 1=-1,x 2=6,故B(6,-1).如图2,由图象可知,当y 1<y 2时,-1<x<0或x>6,S △AOB =1·2OC AE =352;(3)如图1,作DF⊥x轴,交x轴于点F.:S△AOC=2:3,∵S△COD∴DF:AE=2:3.设点D(x,-x+5),即有(-x+5):6=2:3,∴x=1,∴D(1,4).【点睛】本题考查了反比例函数与一次函数额综合,待定系数法求解析式,三角形的面积等,解题关键是能够熟练运用反比例函数的性质.24.(1)2=-++;(2)存在,P(1,2),△PAC1032;(3)y x2x3存在,点M的坐标为(1,1),(16),(1,6),(1,0)【分析】(1)将A、B、C分别代入抛物线表达式中求解a、b、c即可解答;(2)由于10PAC的周长最小,只需PA+PC最小,由点A与点B关于对称轴对称,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置,求出直线BC的解析式,将x=1代入即可求得点P的坐标及最小周长;(3)根据题意,分三种情况:①MA=MC;②MA=AC;③MC=AC进行求解即可解答.【详解】解:(1)将A,B,C代入抛物线的解析式y=ax2+bx+c中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x 2x 3=-++;(2)因为,所以要使得△PAC 的周长最小,只需PA+PC 最小,由题意,抛物线的对称轴为直线x=1,根据抛物线的对称性,点A 的对称点为B ,连接BC ,与对称轴的交点即为△PAC 周长取得最小值点P 的位置.设直线BC 的解析式为y=kx+t ,将B(3,0)、C (0,3)代入,得303k t t +=⎧⎨=⎩,解得:13k t =-⎧⎨=⎩,∴直线BC 的解析式为y=﹣x+3,当x=1时,y=2,∴P(1,2),又BC==∴△PAC 周长的最小值为AC+BC=+;(3)设M (1,n ),A(-1,0),C(0,3),则MA 2=4+n 2;MC 2=1+(3-n)2;AC 2=10,根据题意,分三种情况:①当MA=MC 时,由4+n 2=1+(3-n)2得:n=1,②当MA=AC 时,由4+n 2=10得:n=,③当MC=AC 时,由1+(3-n)2=10得:n 1=0,n 2=6,但当n=6时,A ,C ,M 三点共线,不构不成三角形,需舍去,综上所述,满足条件的点M 的坐标为(1,1),(1),(1,),(1,0).【点睛】本题是二次函数的综合题,主要考查待定系数法求二次函数的解析式、二次函数的图象与性质、轴对称-最短路径、两点间距离公式、等腰三角形的判定、解一元一次方程、解一元二次方程等知识,解答的关键是明确题意,找寻知识的关联点,利用数形结合思想和分类讨论的方法等解题方法进行推理、探究和计算.25.(1)见解析;(2)10 3【分析】(1)由∠AMB+∠AMD+∠DMC=180°及△ABM内角和为180°、∠B=∠AMD,可得∠BAM=∠DMC,从而可判定△ABM∽△MCD;(2)可判定△BDM∽△CME,从而有对应边成比例,则易求得BD的长,然后在Rt△ADE 中,利用勾股定理或求得DE的长.【详解】(1)∵∠AMB+∠AMD+∠DMC=180°,∠B+∠AMB+∠BAM=180°,∠B=∠AMD∴∠BAM=∠DMC∵∠B=∠C∴△ABM∽△MCD(2)∵M是BC的中点∴BM=CM=11822 22BC=⨯=∵∠DMB+∠DME+∠EMC=180°,∠B+∠DMB+∠BDM=180°,∠B=∠DME ∴∠BDM=∠EMC∵∠B=∠C∴△BDM∽△CME∴BM BD CE CM=∴1663 BM CMBDCE===∵∠B=∠C=45°∴∠A=180°-∠B-∠C=90°∴由勾股定理得:AB=AC=82BC=∴AD=AB-BD=168833-=,AE=AC-CE=8-6=2在Rt△ADE中,由勾股定理得:103 DE===【点睛】本题考查了相似三角形的判定与性质,勾股定理,三角形内角和定理,关键是得出两个三角形相似.。
湘教版九年级数学上册期末考试卷(及答案)
湘教版九年级数学上册期末考试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1aab+有意义,那么直角坐标系中点A(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.4 3.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分C.对角线相等 D.对角线互相垂直4.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或06.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.分解因式:a2b+4ab+4b=_______.3.若a,b都是实数,b12a-21a-﹣2,则a b的值为__________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、B6、C7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、b(a+2)23、44、a,b,d或a,c,d5、x=26、 1三、解答题(本大题共6小题,共72分)1、无解2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2)45°;(3)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)12;(2)概率P=16。
湘教版九年级数学上册期末测试卷【及参考答案】
湘教版九年级数学上册期末测试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣6的倒数是( )A .﹣16B .16C .﹣6D .62.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01±3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x -=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,AB 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,△ABC 中,∠A=30°,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD .若BD 平分∠ABC ,AD=23,则线段CD 的长是( )A .2B .3C .32D .33210.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:2218x -=______.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x =+ (2)21124x x x -=--2.计算:()011342604sin π-----+().3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、C5、D6、C7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2(3)(3)x x +-3、如果两个角是等角的补角,那么它们相等.4、1-或35、36、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =-2、33、(1)略;(2)略.4、(1)略(2)菱形5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
湘教版九年级上册数学期末考试试卷含答案解析
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知反比例函数ky x=的图象经过点(1,2),则k 的值为()A .0.5B .1C .2D .42.已知a b =23,则a b b-的值是()A .23B .35C .﹣13D .133.方程x 2﹣2x+1=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根4.已知点A (3,y 1),B (5,y 2)在函数y =5x的图象上,则y 1,y 2的大小关系是()A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定5.下列各式中,不成立的是()A .cos60°=2sin30°B .sin15°=cos75°C .tan30°•tan60°=1D .sin 230°+cos 230°=16.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A .中位数是5B .平均数是5C .众数是6D .方差是67.在同一平面直角坐标系中,函数y =kx与y =kx +1(k 为常数,k ≠0)的大致图象是()A .B .C .D .8.如图,在ABC ∆中,点,D E 分别在边AB ,AC 上,下列条件中不能判断AED ABC ∆∆∽的是()A .AED ABC ∠=∠B .ADE ACB ∠=∠C .AD EDAC BC=D .AD AEAC AB=9.如图,点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE ∥BC ,已知AE =3,AC =6,AD =2,则BD 的长为()A .4B .6C .7D .810.在Rt ABC 中,90A ∠=︒,若45B ∠=︒,则sin C 的值为()A .12B .2C D .1二、填空题11.如图,在△ABC 中,点D 是AB 的中点,DE ∥BC 交AC 于点E ,若BC =2,则DE 的长是_____.12.点P 在反比例函数y =﹣4x图象上,过点P 作PA ⊥x 轴于点A ,则△POA 的面积是_____.13.如图,某商店营业大厅自动扶梯AB 的坡度为i =1:2.5,过B 点作BC ⊥AC .垂足为点C .若大厅水平距离AC 的长为7.5m ,则两层之间的高度BC 为_____米.14.已知关于x的方程x2+3x+q=0的一个根为﹣3,则它的另一个根为_____,q=_____.15.两个相似三角形的最短边长分别为5cm和3cm,它们的周长之差为12cm,那么较大三角形的周长为_____cm.16.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.17.如图所示是小明家房子的侧面图,屋面两侧的斜坡AB=AC=6米,屋顶∠BAC=150°,计划把图中△ABC(阴影部分)涂上墙漆,若墙漆的造价每平方米为100元,则这部分墙漆的造价共需_____元.18.我们规定:等腰三角形的底角与顶角度数的比值叫做等腰三角形的“特征值”.如图,△ABC是以A为顶点的“特征值”为12的等腰三角形,在△ABC外有一点D,若∠ADB=∠ABC,AD=4,BD=3,则∠ABC=_____度,CD的长是_____.三、解答题19.计算:|﹣2|+(π+2019)0﹣2tan45°.20.2018年全国青少年禁毒知识竞赛开始以来,永州市青少年学生跃参如,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解我市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图(1)本次抽查的人数是;(2)扇形统计图中不及格学生所占的圆心角的度数为度;(3)补全条形统计图;(4)若某校有2000名学生,请你估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?21.为了预防“流感“,某学校对教室采用熏法进行消毒,已知药物燃烧时.室内每立方米空气中的含药量y(毫克/立方米)与药物点燃后的时间x(分钟)成正比例;药物燃尽后,y 与x成反比例(如图所示)已知药物点燃后6分钟燃尽,此时室内每立方米空气中含药量为15毫克.(1)分别求出这两个函数的表达式:(2)研究表明,当空气中每立方米的含药量低于3毫克时对人体没有危害,那么此次消毒后经过多长时间学生才可以安全进入教室?22.某公司2016年的生产成本是100万元,由于改进技术,生产成本逐年下降,2018年的生产成本是81万元,若该公司2017、2018年每年生产成本下降的百分率都相同.(1)求平均每年生产成本下降的百分率;(2)假设2019年该公司生产成本下降的百分率与前两次相同,请你预测2019年该公司的生产成本.23.如图,某数学兴趣小组为测量教学楼CD的高,先在A处用高1.5米的测角仪测得教学楼顶端D的仰角∠DEG为30°,再向前走20米到达B处,又测得教学楼顶端D的仰角∠DFG 为60°,A、B、C三点在同一水平线上,求教学楼CD的高(结果保留根号).24.已知关于x的方程x2﹣4x+3﹣a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数值时,求方程的解;(3)在(2)的条件下,若方程x2﹣4x+3﹣a=0的两个根是等腰△ABC的两条边长,求等腰△ABC的周长.25.如图,在等腰△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式及自变量x的取值范围,并求出当BD为何值时AE取得最小值?(3)在AC 上是否存在点E ,使△ADE 是等腰三角形?若存在,求AE 的长;若不存在,请说明理由.26.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴、y 轴上,D 是对角线的交点,若反比例函数y =xk的图象经过点D ,且与矩形OABC 的两边AB ,BC 分别交于点E ,F .(1)若D 的坐标为(4,2)①则OA 的长是,AB 的长是;②请判断EF 是否与AC 平行,井说明理由;③在x 轴上是否存在一点P .使PD +PE 的值最小,若存在,请求出点P 的坐标及此时PD +PE 的长;若不存在.请说明理由.(2)若点D 的坐标为(m ,n ),且m >0,n >0,求EFAC的值.参考答案1.C 【解析】将(1,2)代入解析式中即可.【详解】解:将点(1,2)代入解析式得,21k =,k =2.故选:C .【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.2.C 【分析】将a b b-变形为ab ﹣1,再代入求值即可.【详解】解:∵a b =23,∴a b b -=a b ﹣1=23﹣1=﹣13,故选:C .【点睛】此题考查的是比例的性质,掌握性质是解决此题的关键.3.B 【解析】【分析】先计算出△的值,然后根据△的意义进行判断方程根的情况.【详解】∵△=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根.故选B .本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4.B【分析】把A(3,y1),B(5,y2)代入函数解析式中,即可求出y1和y2,从而比较y1,y2的大小关系.【详解】解:把A(3,y1),B(5,y2)代入y=5x中得y1=53,y2=55=1,∵51 3∴y1>y2.故选:B.【点睛】此题考查的是比较反比例函数值的大小,将横坐标代入求出纵坐标是解决此题的关键. 5.A【分析】根据一个角的正弦值等于它的余角的余弦值、一个角的正切值和它的余角的正切值互为倒数和一个角的正弦值与余弦值的平方和等于1逐一判断即可.【详解】解:A、cos60°=sin(90°-60°)=sin30°,错误;B、sin15°=cos(90°-15°)=cos75°,正确;C、tan30°•tan60°=1,正确;D、sin230°+cos230°=1,正确;故选:A.【点睛】此题考查的是锐角三角函数的性质,掌握一个角的正弦值等于它的余角的余弦值、一个角的正切值和它的余角的正切值互为倒数和一个角的正弦值与余弦值的平方和等于1,是解决此题的关键6.C根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A 、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B 、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C 、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D 、方差是:S 2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C .【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.7.D 【分析】根据k 的取值分类讨论即可.【详解】解:当k >0时,函数y =xk的图象在第一、三象限,函数y =kx +1在第一、二、三象限,故选项C 错误,选项D 正确,当k <0时,函数y =xk的图象在第二、四象限,函数y =kx +1在第一、二、四象限,故选项A 、B 错误,故选:D .【点睛】此题考查的是反比例函数和一次函数的图像及性质,掌握系数k 与反比例函数和一次函数的图像的关系是解决此题的关键.8.C 【分析】根据相似三角形的判定定理对各选项进行逐一判断即可.【详解】解:A、∠ABC=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠ACB,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD EDAC BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选C.【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9.B【分析】只需要证明△AED∽△ACB即可求解.【详解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴236 AD AEAB AC AB===∴4AB=∴BD=AD+AB=2+4=6.故选B.【点睛】本题主要考查了平行线的性质,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.10.B【分析】根据直角三角形的性质求出∠C,根据45°的正弦值解答.【详解】解:∵∠A=90°,∠B=45°,∴∠C=90°-45°=45°,∴sin C=sin45°=2,【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.11.1【分析】根据已知条件和平行线分线段成比例定理可得:AB=2AD,12DE ADBC AB==,从而求出DE的长.【详解】解:∵DE∥BC,AD=DB,∴AB=2AD,12 DE AD BC AB==∴DE=12BC=1,故答案为1.【点睛】此题考查的是平行线分线段成比例定理,根据平行列出比例式是解决此题的关键.12.2【分析】设点P的坐标为(x,y),根据反比例函数的解析式可得:xy=﹣4,然后根据三角形的面积公式即可求出△POA的面积.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=﹣4x的图象上,∴xy=﹣4,∴S△POA =12|xy|=2,故答案为:2.【点睛】此题考查的是反比例函数系数的几何意义,掌握三角形的面积与反比例函数上点的坐标的关系是解决此题的关键.13.3根据AB的坡度即为BC:AC,从而求出BC的长.【详解】解:∵AB的坡度为i=1:2.5,BC⊥AC,大厅水平距离AC的长为7.5m,∴BC:AC=1:2.5,则BC=7.5÷2.5=3(m).故答案为3.【点睛】此题考查的是坡度,熟知坡度的公式:坡面的垂直高度和水平距离的比,是解决此题的关键. 14.00【分析】将﹣3代入方程中即可求出q的值,然后根据韦达定理可知:x1+x2=﹣3,从而求出方程的另一个根.【详解】解:根据题意,得9﹣9+q=0,解得,q=0;由韦达定理,知x1+x2=﹣3;则﹣3+x2=﹣3,解得,x2=0.故答案是:0,0.【点睛】此题考查的是一元二次方程的解和韦达定理,掌握一元二次方程的解的定义和利用韦达定理求另一个根是解决此题的关键.15.30【分析】根据已知条件即可求出两个三角形的相似比为5:3,然后根据相似三角形的性质,可设大三角形的周长为5x,则小三角形的周长为3x,根据周长之差为12cm,列方程并解方程即可.【详解】解:∵两个相似三角形的最短边分别是5cm和3cm,∴两个三角形的相似比为5:3,设大三角形的周长为5x,则小三角形的周长为3x,由题意得,5x﹣3x=12,解得,x=6,则5x=30,故答案为30.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键. 16.3.【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC 的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE=43=ADCD,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.17.900【分析】过点B 作BD 垂直于CA 延长线于点D ,根据已知条件可求:∠BAD =30°,然后解直角三角形即可求出BD ,从而求出△ABC 的面积,即可求出这部分墙漆的造价.【详解】解:如图,过点B 作BD 垂直于CA 延长线于点D ,∵∠BAC =150°,∴∠BAD =30°.∴BD =AB •sin30°=12AB =3米.∴S 阴影=12AC •BD =1632⨯⨯=9(平方米)则造价为:9×100=900(元)故答案是:900.【点睛】此题考查的是解直角三角形和三角形的面积,掌握构造直角三角形的方法是解决此题的关键.18.45【分析】设等腰三角形的底角为x ,根据“特征值”的定义即可得:顶角为2x ,再根据三角形的内角和定理即可求出x =45°,即∠ABC =45°,∠BAC =90°,然后过C 点作CH ⊥DA 垂足为H ,交DB 延长线于E ,先证出△ADB ∽△BEC ,从而得出AD DB AB BE EC BC==,根据等腰直角三角形的性质和已知条件即可求出BE =CE =,从而求出EH 的长,即可求出CH ,然后根据勾股定理即可求出CD 的长.【详解】解:设等腰三角形的底角为x ,∵△ABC 是以A 为顶点的“特征值”为12的等腰三角形,根据定义可知顶角为2x .∴x +x +2x =180°,∴x =45°,即∠ABC =45°,∠BAC =90°,过C 点作CH ⊥DA 垂足为H ,交DB 延长线于E ,如图:∵∠ADB +∠DAB =∠ABC +∠CBE ,∠ADB =∠ABC =45°,∴∠ADB =∠E =45°,∠DAB =∠EBC ,∴△ADB ∽△BEC ,∴AD DB AB BE EC BC==,∵△ABC 是等腰直角三角形,∴AB BC =,∵AD =4,BD =3,∴BE =,CE =∴DE =∵△DHE 是等腰直角三角形,∴DH =EH =4+∴CH =EH -CE =42-,在Rt △DCH 中,CD故答案为:45【点睛】此题考查的是新定义类问题、三角形的内角和定理、相似三角形的判定及性质、等腰直角三角形的性质和勾股定理,掌握新定义类问题的定义、三角形的内角和列方程和相似三角形的判定及性质是解决此题的关键.19.1【分析】根据绝对值的性质、任何非0数的0次幂都等于1和45°的正切值代入计算即可.【详解】解:原式=2+1﹣2=1.【点睛】此题考查的是实数的运算,掌握绝对值的性质、任何非0数的0次幂都等于1和45°的正切值是解决此题的关键.20.(1)120人;(2)18;(3)见解析;(4)1000.【分析】(1)根据优秀人数和优秀率即可求出本次抽查的人数;(2)求出不及格率乘360°即可求出不及格学生所占的圆心角的度数;(3)根据总人数和其他人数计算出良好的人数,然后补全条形统计图即可;(4)求出优秀率和良好率的和乘2000即可.【详解】解:(1)本次抽查的人数为24÷20%=120(人),故答案为:120人;(2)扇形统计图中不及格学生所占的圆心角的度数为360°×6120=18°,故答案为:18;(3)良好的人数为120﹣(24+54+6)=36(人),补全图形如下:(4)估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有2000×2436120+=1000(人).【点睛】此题考查的是扇形统计图和条形统计图,结合扇形统计图和条形统计图计算数据是解决此题的关键.21.(1)正比例函数的解析式为y =52x ,反比例函数的解析式为:y =90x ;(2)此次消毒后经过30分钟学生才可以安全进入教室.【分析】(1)设正比例函数解析式为:y ax =,反比例函数的解析式为:b y x=,再将(6,15)分别代入解析式即可;(2)将y =3代入反比例函数解析式即可求出经过多长时间学生才可以安全进入教室.【详解】解:(1)设正比例函数解析式为:y ax =,反比例函数的解析式为:b y x=∵正比例函数的图象经过点(6,15),∴156a=解得:52a =∴正比例函数的解析式为y =52x ,∵反比例函数的图象经过点(6,15),∴156b=解得:90b =∴反比例函数的解析式为:y =90x;(2)把y=3代入y=90x中得x=30,∴此次消毒后经过30分钟学生才可以安全进入教室.【点睛】此题考查的是求正比例函数和反比例函数解析式及应用,掌握用待定系数法求正比例函数和反比例函数解析式和实际意义与函数的关系是解决此题的关键.22.(1)每年生产成本的下降率为10%;(2)预测2019该公司的生产成本为72.9万元.【分析】(1)设每年生产成本的下降率为x,根据增长率问题的公式列一元二次方程并解方程即可;(2)根据(1)中下降率列式计算即可.【详解】解:(1)设每年生产成本的下降率为x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:每年生产成本的下降率为10%.(2)81×(1﹣10%)=72.9(万元).答:预测2019该公司的生产成本为72.9万元.【点睛】此题考查的是一元二次方程的应用:增长率问题,掌握增长率问题的公式是解决此题的关键. 23.CD=(【分析】根据三角形外角的性质可得:∠DEF=∠FDE=30°,根据等角对等边即可得:EF=FD=20米,再根据锐角三角函数即可求出DG,根据矩形的性质即可求出CG,从而求出教学楼CD 的高.【详解】解:∵∠DFG=∠DEF+∠EDF,∠DFG=60°,∠DEF=30°,∴∠DEF=∠FDE=30°,∴EF=FD=20米,在Rt△DFG中,DG=DF•sin60°=,∵四边形AEGC是矩形,∴CG=AE=1.5米,∴CD=DG+CG=(【点睛】此题考查的是解直角三角形,掌握利用锐角三角函数解直角三角形是解决此题的关键. 24.(1)a>﹣1;(2)x1=3,x2=1;(3)7.【分析】(1)根据一元二次方程有两个不相等的实数根,可得△>0,列不等式并解不等式即可;(2)根据(1)中a的取值范围,求出a最小整数值,然后代入解方程即可;(3)根据(2)中方程的解和等腰三角形的腰分类讨论,然后根据三角形的三边关系进行取舍,最后求周长即可.【详解】解:(1)根据题意得△=(﹣4)2﹣4(3﹣a)>0,解得a>﹣1;(2)a的最小整数为0,此时方程为x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0或x﹣1=0,所以x1=3,x2=1;(3)∵方程x2﹣4x+3﹣a=0的两个根是等腰△ABC的两条边长,∴等腰三角形的三边为3,3,1或1,1,3∵1+1<3∴1,1,3不能构成三角形∴等腰△ABC的腰长为3,底边长为1,∴等腰△ABC的周长=3+3+1=7.【点睛】此题考查的是一元二次方程根的情况、解一元二次方程和求等腰三角形的周长,掌握一元二次方程根的情况和△的关系、因式分解法解一元二次方程及三角形的三边关系是解决此题的关键.25.(1)见解析;(2)y=x2+1;0x<<x=2时,y有最小值,最小值为12;(3)在AC上存在点E,使△ADE是等腰三角形,AE的长为2或1 2.【分析】(1)由等腰直角三角形的性质可得:∠B=∠C=∠ADE=45°,再根据三角形外角的性质可得:∠ADC=∠B+∠BAD=∠ADE+∠CDE,从而得出∠BAD=∠CDE,最后根据有两组对应角相等的两个三角形相似即可证出△ABD∽△DCE;(2)由△ABD∽△DCE,可得:BDEC=ABCD,然后分别用x和y表示出CD、EC,代入到比例式中即可求出y关于x的函数关系式,再根据点D是BC边上的一个动点(不与B、C 重合),即可求出x的取值范围,最后根据二次函数求最值即可;(3)根据等腰三角形腰的情况分类讨论:当AD=DE时,可得:△ABD≌△DCE,从而可得BD=CE,根据此等式列方程即可求出AE;当AE=DE时,可得:△ADE为等腰直角三角形,即DE⊥AC,由相似的性质得AD⊥BC,根据三线合一可得D是BC中点,再根据直角三角形斜边上的中线等于斜边的一半可得AD=DC,从而得出:E也是AC的中点,即可求出AE;当AD=AE时,因为∠ADE=45°,可得∠DAE=90°,此时D与B重合,不符合题意.【详解】(1)证明:∵∠BAC=90°,AB=AC∴∠B=∠C=∠ADE=45°∵∠ADC=∠B+∠BAD=∠ADE+∠CDE∴∠BAD=∠CDE∴△ABD∽△DCE;(2)由(1)得△ABD∽△DCE,∴BDEC=ABCD∵∠BAC=90°,AB=AC=1,∴BC ,CD x ,EC =1﹣y ,∴1x y -y =x 2x +1=(x ﹣2)2+12,∵点D 是BC 边上的一个动点(不与B 、C 重合)∴0<BD <BC即0x <<当x =2时,y 有最小值,最小值为12;(3)当AD =DE 时,△ABD ≌△DCE ,∴BD =CE ,∴x =1﹣y x ﹣x 2=x ,∵x ≠0,∴等式左右两边同时除以x 得:x ﹣1,将x ﹣1代入y=x 2+1中,∴AE =y =2当AE =DE 时,∵∠ADE=45°∴△ADE 为等腰直角三角形∴DE ⊥AC ,∴AD ⊥BC∴D 是BC 中点,∴AD=DC∴E 也是AC 的中点,所以,AE =12;当AD =AE 时,∵∠ADE=45°∴∠DAE =90°,D 与B 重合,不符合题意;综上,在AC 上存在点E ,使△ADE 是等腰三角形,AE 的长为212.【点睛】此题考查的是相似三角形的判定及性质、二次函数求最值和等腰三角形的性质,掌握有两组对应角相等的两个三角形相似、利用二次函数求最值和根据等腰三角形腰的情况分类讨论是解决此题的关键.26.(1)①8;4;②EF ∥AC ,理由见解析;③当点P 的坐标为(203,0)时,PD+PE 的值最小,最小值为5.(2)EF AC =34.【分析】(1)①根据矩形的性质和点O 、D 的坐标即可求出点B 的坐标,从而求出OA 和AB 的长;②将点D 坐标代入反比例函数解析式中即可求出反比例函数的解析式,从而求出E 、F 两点坐标,然后根据有两组对应边成比例且对应夹角相等的两个三角形相似,证出:△ABC ∽△EBF ,从而得出∠BCA =∠BFE ,根据平行线的判定即可证出EF ∥AC ;③作点E 关于x 轴对称的点E′,连接DE′交x 轴于点P ,此时PD+PE 的值最小,根据平面直角坐标系中任意两点之间的距离公式即可求出此时的DE′,然后利用待定系数法求出直线DE′的解析式,从而求出此时P 点坐标;(2)设点D 的坐标为(m ,n ),与(1)①同理可得:点B 的坐标为(2m ,2n ),然后与(1)②中同理可证:△ABC ∽△EBF ,从而求出EF AC.【详解】解:(1)①∵四边形OABC 是矩形,∴D 为OB 的中点∵点O 的坐标为(0,0),点D 的坐标为(4,2),∴点B 的坐标为(8,4),∴OA =8,AB =4.故答案为:8;4.②EF ∥AC ,理由如下:∵反比例函数y =x k 的图象经过点D (4,2),∴k =4×2=8.∵点B 的坐标为(8,4),BC ∥x 轴,AB ∥y 轴,∴点F 的坐标为(2,4),点E 的坐标为(8,1),∴BF =6,BE =3,∴BFBC=34,BEBA=34,∴BFBC=BEBA.∵∠ABC=∠EBF,∴△ABC∽△EBF,∴∠BCA=∠BFE,∴EF∥AC.③作点E关于x轴对称的点E′,连接DE′交x轴于点P,根据两点之间,线段最短,此时PD+PE的值最小,并且PD+PE=PD+P E′=DE′,如图所示.∵点E的坐标为(8,1),∴点E′的坐标为(8,﹣1),∴根据平面直角坐标系中任意两点之间的距离公式得:DE′5.设直线DE′的解析式为y=ax+b(a≠0),将D(4,2),E′(8,﹣1)代入y=ax+b,得:42 81 a ba b+=⎧⎨+=-⎩,解得:345ab⎧=-⎪⎨⎪=⎩,∴直线DE′的解析式为y=﹣34x+5.当y=0时,﹣34x+5=0,解得:x=20 3,∴当点P的坐标为(203,0)时,PD+PE的值最小,最小值为5.(2)∵点D的坐标为(m,n),∴点B的坐标为(2m,2n).∵反比例函数y=kx的图象经过点D(m,n),∴k=mn,∴点F的坐标为(12m,2n),点E的坐标为(2m,12n),∴BF=32m,BE=32n,∴BFBC=34,BEBA=34,∴BFBC=BEBA.又∵∠ABC=∠EBF,∴△ABC∽△EBF,∴EFAC=BFBC=34.【点睛】此题考查的是矩形的性质、相似三角形的判定及性质、求一次函数及反比例函数解析式和两条线段和最小时的作图方法和求法,掌握矩形的对角线互相平分、有两组对应边成比例且对应夹角相等的两个三角形相似、两点之间线段最短、平面直角坐标系中任意两点之间的距离公式和待定系数法求函数解析式是解决此题的关键.。
湘教版九年级数学上册期末综合检测题(含答案 )
上册综合测试题一、选择题(每小题3分,共30分)1. 关于x的一元二次方程2x2-3x-a2+1=0的一个根为2,则a的值是( ) A. 1 B. 3 C. -3 D. ±32. 若函数y =xa 4+的图象在其所在的每一个象限内,函数值y 都随自变量x 的增大而增大,则a 的取值范围是( ) A . a <-4 B . a <0 C . a >-4D . a >03. 若方程x 2+x-1=0的两实根为α,β,那么下列说法不正确的是( ) A. α+β=-1B. αβ=-1C. α2+β2=3D.βα11+=-14. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比.其中正确命题的序号是( ) A. ②③ B. ①② C. ③④ D. ②③④5. 某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为( )A. x(x-10)=200 B. 2x+2(x-10)=200 C. x(x+10)=200 D. 2x+2(x+10)=200 6. 在Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,下列关系错误的是( ) A. a=c·sinA B. b=a·tanB C. a 2=c 2-b 2 D. b=c·cosB7. 如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB .若AD=2BD ,则BFCF的值为( ) A. 21B.31 C. 41 D.328. 在同一坐标系中,正比例函数y =x 与反比例函数y=x2的图象大致是( )9. 某社区开展“节约每一滴水”活动,为了解开展活动一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,绘制如下表:请你估计这1000个家庭一个月节约用水的总量大约是( )A. 325 m3 B. 330 m3 C. 400 m3D. 650 m310. 如图,将△DEF缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP,FP,取它们的中点B,C,得到△ABC,则下列说法:①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1∶2;④△ABC与△DEF的面积比是1∶2.其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题(每小题4分,共24分)11. 如图,在Rt △ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线,已知AB=43,那么AD=_________.12. 已知关于x 的方程x 2+(1-m )x+42m =0有两个不相等的实数根,则m 的最大整数值是 . 13. 在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,∠C=90°,若a=6,∠B=45°,则c= ,tanA= .14. 河堤横断面如图所示,堤高BC =52米,迎水坡AB 的坡比是1∶2(坡比是坡面的铅垂高度BC 与水平长度AC 之比),则AC 的长是 .15. 北京市2011~2016年机动车保有量统计如图所示.根据统计图中提供的信息,预估2017年北京市机动车的保有量约为 万辆,你的预估理由是: .16. 如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B ,E 在反比例函数y =xk的图象上,OA =1,正方形ADEF 的边长为2,则OC=_____________. 三、解答题(共66分)17. (6分)已知反比例函数y=x m 2的图象经过点(-3,-12),且双曲线y=xm的图象位于第二、四象限,求m 的值.18. (每小题4分,共8分)用指定的方法解下列方程: (1)x 2+2x-35=0(配方法解); (2)3x 2-3=8x (用公式法解).19.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.20.(10分)今年我市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)补全统计表和统计图;(2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为;(3)求被调查的消费者平均每人的年收入为多少万元.21.(10分)如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE 为10米,塔高AB为123米(AB垂直于地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据:2≈1.4,3≈1.7)22.(12分)如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)点P从点A出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒,试问:当t为何值时,DP⊥AC?23.(12分)如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问:该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)附加题(20分,不计入总分)24. 如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y=xk的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的表达式;(2)当k 为何值时,△EFA 的面积最大?最大面积是多少?上册综合检测题一、1. D 2. A 3. D 4. A 5. C 6. D 7. A 8. B 9. A 10. C 二、11. 4 12. 0 13. 23 1 14. 10米 15. 562 从近几年的保有量增长看,2017年保有量相对2016年变化不大 16. 6三、17. 解:把点(-3,-12)代入反比例函数y=x m 2中,得m 2=-3×(-12)=36.解得m=±6.因为双曲线y=xm的图象位于第二、四象限,所以m=-6. 18. (1)x 1=5,x 2=-7.(2)x 1=3,x 2=-31.19. 解:(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得x1=0.1,x2=-2.1(不合题意,舍去). 所以可变成本平均每年增长的百分率为10%. 20. 解:(1)100-10-30-9-1=50(人),所以年收入为6万元的有50人.打算购买住房面积为100~120平方米的人数为100-4-12-36-20=28(人),图略. (2)52% (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5(万元).故被调查的消费者平均每人年收入为7.5万元. 21. 解:在Rt △ABD 中,BD=︒=60tan 123tan βAB =413(米),则DF=BD-OE=413-10(米),CF=DF+CD=413-10+40=413+30(米).在Rt △CEF 中,EF=CF·tanα=413+30≈41×1.7+30≈100(米).答:点E 离地面的高度EF 约是100米.22. (1)证明:因为四边形ABCD 是矩形,所以AB ∥CD ,所以∠QPA=∠QDC ,∠QAP=∠QCD ,所以△APQ ∽△CDQ.(2)解:当DP ⊥AC 时,∠QCD+∠QDC=90°. 因为∠ADQ+∠QDC=90°,所以∠ADQ=∠QCD. 又∠ADC=∠DAP=90°,所以△ADC ∽△PAD ,所以ADPADC AD =. 所以102010PA=,解得PA=5.所以t=5,当t =5时,DP ⊥AC. 23. 解:如图,过点A 作AP ⊥BC ,垂足为P ,设AP=x 海里. 在Rt △APC 中,∠APC=90°,∠PAC=30°,所以tan ∠PAC=APCP,所以CP=AP·tan ∠PAC=33x.在Rt △APB 中,∠APB=90°,∠PAB=45°,所以BP=AP=x . 因为PC+BP=BC=30×21,所以33x+x=15,解得x=()23315-,所以PB=x=()23315-.所以航行时间为()23315-÷30=433-(小时). 答:该渔船从B 处开始航行433-小时,离观测点A 的距离最近.24. 解:(1)在矩形OABC中,OA=3,OC=2,所以点B(3,2).因为点F为AB的中点,所以点F(3,1).因为点F在反比例函数y=x k 的图象上,所以k=3.所以该函数的表达式为y=x 3. (2)由题意,知E,F两点的坐标分别为E(2k,2),F(3,3k ),所以S△EFA=21AF·BE=21·3k (3-2k )=-121k2+21k=-121(k-3)2+43.所以当k=3时,S有最大值,S最大值=43,即当k=3时,△EFA 的面积最大,最大面积为43。
湘教版九年级数学上册期末考试卷及答案【完美版】
湘教版九年级数学上册期末考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-7 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个8.如图,AB 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:29a -=__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、C7、A8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、()()33a a +-3、x 1≥-且x 0≠415、706、.三、解答题(本大题共6小题,共72分)1、x 3=-2、(1)34m ≥-;(2)m 的值为3.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)50、30%.(2)补图见解析;(3)35.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
湘教版九年级数学下册期末综合检测试卷含答案
湘教版九年级数学下册期末综合检测试卷含答案一、单选题(共10题;共30分)1.如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A. 几何体1的上方B. 几何体2的左方C. 几何体3的上方D. 几何体4的上方2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y=﹣2(x+1)2+1B. y=﹣2(x﹣1)2+1C. y=﹣2(x﹣1)2﹣1D. y=﹣2(x+1)2﹣13.从1~9这九个自然数中任取一个,是2的倍数的概率是( )A. B. C. D.4.抛物线y=﹣x2向左平移1个单位长度得到抛物线的解析式为()A.y=﹣(x+1)2B.y=﹣(x﹣1)2C.y=﹣x2+1D.y=﹣x2﹣15.有长度分别为3cm,5cm,7cm,9cm的四条线段,从中任取三条线段能够组成三角形的概率是()A. B. C. D.6.(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A. 100°B. 110°C. 115°D. 12 0°7.下列说法中正确的是()A. “任意画出一个等边三角形,它是轴对称图形”是随机事件B. “概率为0.001的事件”是不可能事件C. “任意画出一个平行四边形,它是中心对称图形”是必然事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次8.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A. 40°B. 140°C. 70°D. 8 0°9.抛物线y=x2﹣8x+m的顶点在x轴上,则m等于()A. -16B. -4C. 8D.1610.如图所示,二次函数的图象经过点和,下列结论中:①;②;③④;⑤;其中正确的结论有()个A. 2B. 3C. 4D.5二、填空题(共10题;共30分)11.在不透明口袋内有形状.大小.质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是________.12.用12m长的木材做窗框(如图所示),要使透过窗户的光线最多,窗框的长应为________ m,宽应为________ m.13.如图,一边靠墙,其它三边用12米的篱笆围成一个矩形(ABCD)花圃,则这个花圃的面积S(平方米)与AB的长x(米)之间的函数关系式为________.14.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为________cm.15.将抛物线先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为________.16.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件 ________.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.18.如图,是二次函数y=3x2的图象,把该图象向左平移1个单位,再向下平移2个单位,所得的抛物线的函数关系式为________.19.如图,ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=110°,则∠FBE=________.20.如图,把抛物线y= x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y= x2交于点Q,则图中阴影部分的面积为________.三、解答题(共10题;共60分)21.小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.22.已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.23.下面是由些棱长的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的表面积(包含底面).24.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.25.如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.(1)求证:∠BED=∠C;(2)若OA=5,AD=8,求AC的长.26.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q 分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.27.(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.28.株洲五桥主桥主孔为拱梁钢构组合体系(如图1),小明暑假旅游时,来到五桥观光,发现拱梁的路面部分有均匀排列着9根支柱,他回家上网查到了拱梁是抛物线,其跨度为20米,拱高(中柱)10米,于是他建立如图2的坐标系,发现可以将余下的8根支柱的高度都算出来了,请你求出中柱左边第二根支柱CD的高度.29.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.30.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标;判断△OBP的形状;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S △PCD= S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】D10.【答案】A二、填空题11.【答案】12.【答案】3;213.【答案】S=﹣2x2+12x14.【答案】5015.【答案】16.【答案】5m+2n≠917.【答案】4﹣18.【答案】y=3(x+1)2﹣219.【答案】55°20.【答案】三、解答题21.【答案】解:这个游戏规则对双方公平.理由如下:画树状图为:共有9种等可能的结果数,其中摸出的两张卡片的正面数字之积小于10的结果数为4;摸出的两张卡片的正面数字之积超过10的结果数为4,所以小明获胜的概率= ,小亮获胜的概率= .所以这个游戏规则对双方公平22.【答案】解:(1)∵抛物线的顶点D的坐标为(1,−4),∴设抛物线的函数关系式为y=a(x−1)2−4,又∵抛物线过点C(0,3),∴3=a(0−1)2−4,解得a=1,∴抛物线的函数关系式为y=(x−1)2−4,即y=x2−2x−3;(2 )令y=0,得:x2,解得, .所以坐标为A(3,0),B(-1,0).23.【答案】解:①∵俯视图中有个正方形,∴最底层有个正方体小木块,由主视图和左视图可得第二层有个正方体小木块,第三层有个正方体小木块,∴共有个正方体小木块组成.②根据①得:③表面积为:24.【答案】解:由l1上选一个点,在l2上选两个点可以得到3×3=9个三角形,由l1上选两个点,在l2上选一个点可以得到3×3=9个三角形,即任取三个点连成一个三角形总个数为18个,(1)连成△ABE的概率为;(2)连成的三角形的两个顶点在直线l2上的概率为.25.【答案】(1)证明:∵AC是⊙O的切线,AB是⊙O直径,∴AB⊥AC.则∠1+∠2=90°,又∵OC⊥AD,∴∠1+∠C=90°,∴∠C=∠2,而∠BED=∠2,∴∠BED=∠C;(2)解:连接BD,∵AB是⊙O直径,∴∠ADB=90°,∴BD===6,∴△OAC∽△BDA,∴OA:BD=AC:DA,即5:6=AC:8,∴AC=.26.【答案】解:△PBQ的面积S随出发时间t(s)成二次函数关系变化,∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,∴BP=12﹣2t,BQ=4t,∴△PBQ的面积S随出发时间t(s)的解析式为:y= (12﹣2t)×4t=﹣4t2+24t,(0<t<6)27.【答案】(1)解:∵⊙O的直径为10cm,∴⊙O的半径为10÷2=5(cm),当点P在线段OA的延长线上时,PA取得最大值,当点P在线段OA上时,PA取得最小值∵OA=12cm,∴PA的最大值为12+5=17cm,PA的最小值为12﹣5=7cm;(2)证明:连接CO,如图所示,∵OA=OB,且D、E分别是半径OA和OB的中点,∴OD=OE,又∵=,∴∠COD=∠COE,在△COD和△COE中,,∴△COD≌△COE(SAS),∴CD=CE.28.【答案】解:设抛物线的解析式为:y=ax2,∵A的坐标是(-10,10),∴100a=−10 ,∴a=−0.1 ,∴抛物线的解析式为:y=−0.1x2 ,又∵x=−4 ,∴y=−0.1×16=−1.6,∴点C坐标为(-4,-1.6),又∵点D坐标为(-4,-10)∴CD=10-1.6=8.4(米),答:中柱左边第二根支柱CD的高度为8.4米.29.【答案】(1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入y2=k2x+b,得:,解得:(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值。
湘教版九年级数学下册期末考试卷及答案【A4打印版】
湘教版九年级数学下册期末考试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是()A.8 B.18C.18-D.-82.若实数m、n满足02m=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0 D.若|a|>|b|,则a>b.4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或06.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.分解因式:2x3﹣6x2+4x=__________.3.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°,则此圆锥高 OC 的长度是__________.5.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD =3,则S△AOC=__________.6.如图,在矩形ABCD中,8AD=,对角线AC与BD相交于点O,AE BD⊥,垂足为点E,且AE平分BAC∠,则AB的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m的值为多少?3.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、B6、B7、A8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、2x(x﹣1)(x﹣2).3、﹣34、5、5.6、.三、解答题(本大题共6小题,共72分)1、无解.2、(1)34m≥-;(2)m的值为3.3、(1)略;(2)3.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
湘教版九年级数学下册期末综合检测试卷含答案
...教习网 - 免费精品课件试卷任意下载∵OA=OB ,且 D 、 E 分别是半径OA 和 OB 的中点,∴OD=OE ,又∵=,∴∠COD= ∠COE,在△COD 和△COE 中,,∴△COD ≌△COE〔SAS 〕,∴CD=CE .28. 【答案】解:设抛物线的解析式为:y=ax 2,∵A 的坐标是〔 -10,10 〕,∴ 100a=-10,∴ a=-0.1,∴抛物线的解析式为:y=-0.1x2 ,又∵x=-4 ,∴y=-0.1 × 16=-1.6 ,∴点 C 坐标为〔 -4 , -1.6 〕,又∵点 D 坐标为〔 -4 , -10 〕∴CD=10-1.6=8.4 〔米〕,答:中柱左边第二根支柱CD 的高度为8.4 米 .∵OA=OB ,且 D 、 E 分别是半径OA 和 OB 的中点,∴OD=OE ,又∵=,∴∠COD= ∠COE,在△COD 和△COE 中,,∴△COD ≌△COE〔SAS 〕,∴CD=CE .28. 【答案】解:设抛物线的解析式为:y=ax 2,∵A 的坐标是〔 -10,10 〕,∴ 100a=-10,∴ a=-0.1,∴抛物线的解析式为:y=-0.1x2 ,又∵x=-4 ,∴y=-0.1 × 16=-1.6 ,∴点 C 坐标为〔 -4 , -1.6 〕,又∵点 D 坐标为〔 -4 , -10 〕∴CD=10-1.6=8.4 〔米〕,答:中柱左边第二根支柱CD 的高度为8.4 米 .∵OA=OB ,且 D 、 E 分别是半径OA 和 OB 的中点,∴OD=OE ,又∵=,∴∠COD= ∠COE,在△COD 和△COE 中,,∴△COD ≌△COE〔SAS 〕,∴CD=CE .28. 【答案】解:设抛物线的解析式为:y=ax 2,∵A 的坐标是〔 -10,10 〕,∴ 100a=-10,∴ a=-0.1,∴抛物线的解析式为:y=-0.1x2 ,又∵x=-4 ,∴y=-0.1 × 16=-1.6 ,∴点 C 坐标为〔 -4 , -1.6 〕,又∵点 D 坐标为〔 -4 , -10 〕∴CD=10-1.6=8.4 〔米〕,答:中柱左边第二根支柱CD 的高度为8.4 米 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版九年级数学期末综合复习测试卷
学校 _____________班级 _____________姓名 _____________得分
一. 选择题 (每小题 3 分,共 30 分 ) 1. 下列函数中: (1)y=-
2
; (2)y=-
x
; (3)y=
2 -1 ;(4)y= 1 . 是反比例函数的有 ( )
x 2
x x 2
A.4 个
B.3 个
C.2 个
D.1 个
2. 如图是小明设计用手电来测量某古城墙高度的示意图
. 点 P 处放一水平的平面镜 , 光线 从点 A 出发经平面镜反射后刚好射到古城墙
CD 的顶端 C 处 , 已知 AB ⊥ BD , CD ⊥ BD , 且
测得 AB =1.2 米, BP =1.8 米, PD =12 米 , 那么该古城墙的高度是(
)
A. 6
米
B. 8
米
C. 18 米
D.24 米
3.
(tan30o 1)2 等于(
)
A . 1
3
B . 2 1
C . 3 1
D . 13
3
3
4. 用两块全等的含 30°角的直角三角板拼成形状不同的平行四边形,最多可以拼成( )
A . 1 个
B . 2 个
C . 3 个
D . 4 个
5. 下列方程中有实数根的是(
)
A. x 2 +2x+3=0
B.x
2
+1=0 C. x
2
+3x+1=0
D.
x 1
x-1 x 1
6. 有一个人造湖泊在一张比例尺为1:2000 的地图上的面积为 12cm 2, 那么你能计算出这个 湖泊的实际面积有多大吗?( )
A. 24000 cm 2
B. 4800 m 2
C. 240m 2
D. 480000m
2
7. 关于 x 的一元二次方程 x 2-6x+2k=0 有两个不相等的实数根, 则实数 k 的取值范围是 ( )
A.k ≤
9
B.k <
9
C.k ≥
9
D.k >
9
2 2 2 2
8. 十字路口的交通信号灯每分钟红灯亮30s ,绿灯亮 25s ,黄灯亮 5s ,当你抬头看信号灯
时,是黄灯的概率是( )
A.
1 1 5 1
B.
C.
D.
2
12
3
12
9. 美是一种感觉,当人体下半身长与身高的比值越接近
0.618 时,越给人一种美感.某女士
身高 165cm ,下半身长 x 与身高 l 的比值是 0.60 ,为尽可能达到好的效果, 她应穿的高跟鞋
的高度大约为( )
A . 4cm
B . 6cm
C . 8cm
D . 10cm
10. 下列四个三角形,与左图中的三角形相似的是( )
A .
B .
C .
D .
二. 填空: (每小题 3 分,共 24 分 )
11. 一元二次方程 x(x-1)=x 的解是
12. 如图,以 O 为位似中心,把五边形
ABCDE 的面积扩大为原来的 4 倍,得五边形 A 1B 1C 1D 1E 1,
则 OD ∶ OD 1=______.
13. 如图,在△ ABC 中,∠ A=30°,∠ B=45°, AC=2 3 ,则 AB 的长为 ______.
14. 如图,某小区规划在一个长 30 m 、宽 20 m 的长方形 ABCD 上修建三条同样宽的通道,使其
中两条与 AB 平行,另一条与 AD 平行,其余部分种花草 . 要使每一块花草的面积都
为 78 m 2,那么通道的宽应设计成多少米?设通道的宽为
x m ,由题意列得方程 ______.
15. 如图,在平面直角坐标系中, Rt △ ABO 的顶点 O 与原点重合,顶点 B 在 x 轴上,∠ ABO=90°,
OA 与反比例函数 y= k
的图象交于点 D ,且 OD=2AD ,过点 D 作 x 轴的垂线交 x 轴于点 C.
x
若 S 四边形 ABCD = 10 ,则 k 的值为 ______. 16. 如果
a
4 , 那么 2a b
b
3 b
17. 在△ ABC 中,
E.F
分别是 AB.AC 边上的点,且 EF ∥ BC,AF:FC=1:2 , BC=9,则
EF=。
18. 如图,在 Rt △ ABC 中,∠ BAC=90°, AB=AC=16 cm ,AD
为 BC 边上的高 . 动点 P 从点 A 出发,沿 A → D 方向
以
2 cm/s 的速度向点 D 运动 . 设△ ABP 的面积为 S 1
,
矩形 PDFE 的面积为 S 2,运动时间为 t 秒 (0 < t < 8) ,则 t=______ 秒时, S 1=2S 2.
三、解答题(每小题 6 分,共 30 分)
19.解下列方程:
(1)2(x-5)=3x(x-5);(2)x 2-2x-3=0.
20.已知,如图,△ ABC是等边三角形,点 D、 E 分别在 CB、AC的延长线上,∠ ADE=60°.
求证:△ ABD∽△ DCE.
21.学校去年年底的绿化面积为
两年的年平均增长率.
5 000 平方米,预计到明年年底增加到7 200 平方米,求这
22.如图,在△ ABC中,CD⊥ AB,垂足为 D.若AB=12,CD=6,tanA=3
,求sinB+cosB的值. 2
23.如图,我国的一艘海监船在钓鱼岛 A 附近沿正东方向航行,船在 B 点时测得钓鱼岛A
在船的北偏东60°方向,船以50 海里 / 时的速度继续航行 2 小时后到达 C 点,此时钓鱼岛 A 在船的北偏东30°方向 . 请问船继续航行多少海里与钓鱼岛 A 的距离最近?
四、( 8 分) 24.游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,
组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的 2 000 名学生中作了抽样调查. 请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了名学生;
(2)补全两个统计图;
(3)根据抽样调查的结果,估算该校 2 000 名学生中大约有多少人“一定会下河游泳”?
五、( 8 分) 25.已知:如图,在平面直角坐标系xOy 中,直线AB与 x 轴交于点A(-2 , 0) ,
与反比例函数在第一象限内的图象交于点B(2 , n) ,连接 BO,若 S△AOB= 4.
(1)求该反比例函数的解析式和直线AB 的解析式;
(2)若直线 AB与 y 轴的交点为C,求△ OCB的面积 .。