单纯形法典型例题
单纯形法习题
习题一 下表为求极大化的单纯形表,问表中 a1,a2,c1,c2,d为何值及表中变量为哪一类型时, (1)表中解为唯一最优解;(2)表中解为无穷多最 优解之一;(3)表中解为退化的可行解;(4)下一 步迭代将以x1替代基变量x5;(5)该问题具有无界解; (6)该问题无可行解; XB X3 X4 X5 b d 2 3 x1 4 -1 a2 x2 a1 -5 -3 x3 1 0 0 x4 0 1 0 X5 0 0 1
习题三 已知某线性规划问题的初始单纯形表和用 单纯形法迭代后得到的表如下所示,试求括号中未 知数a~l的值。
基变量 X4 X5 cj-zj b 6 1 X1 (b) -1 (a) X2 (c) 3 -1 X3 (d) (e) 2 X4 1 0 0 X5 0 1 0
X1
X5
(f)
4
Hale Waihona Puke (g)(h)2
(i)
Cj-Zj
c1
c2
0
0
继续
0
返回
习题二 线性规划的目标函数是maxZ,在用标准的 单纯形法求解的过程中,得到下表(其中a、b是常 数,部分数据有缺失)
基变量
X6 X2
CB
X1 2 0 a
X2 5
X3 8 3
X4 0
X5 0 0 0.5
X6 0
b
20 b
X4 Cj-Zj
-2
-1 -2
1
8
(1)在所有的空格中填上适当的数(其中可含a、b参数) (2)判断以下四种情况在什么时候成立,并简要说明理由。 1.此解为最优解,试写出相应的基解和目标函数值; 2.此解为最优解,且此规划有无穷多最优解; 3.此规划有无界解; 4.此解不是最优解,且能用单纯形法得到下一个基可行解。
两阶段单纯形法例题详解
两阶段单纯形法例题详解两阶段单纯形法是一种解决线性规划问题的有效方法。
这种方法分为两个阶段:第一阶段:使用单纯形法求解初始基可行解。
第二阶段:利用对偶价格和两阶段单纯形法的理论,通过迭代来获得最优解。
以下是一个两阶段单纯形法的例题详解:例题:假设我们有一个线性规划问题,形式如下:Maximize z = c1x1 + c2x2 + c3x3Subject to:Ax ≤bx1 + x2 + x3 ≤4x1, x2, x3 ≥0在这个问题中,我们有4个约束条件(A1, A2, A3, A4)和3个决策变量(x1, x2, x3)。
我们的目标是找到一组最优解,使得目标函数z最大化。
第一阶段:使用单纯形法求解初始基可行解。
1. 首先,我们找到一个初始基可行解。
在这个例子中,我们可以选择A1, A2, A3作为初始基。
对应的基变量为x1, x2, x3。
对应的对偶价格为pi1, pi2, pi3。
这些值可以通过解对应的对偶问题得到。
2. 根据基变量的值和对偶价格,我们可以计算出目标函数的值。
在这个例子中,目标函数的值为c1*x1 + c2*x2 + c3*x3。
3. 如果这个目标函数值不是最优的,我们需要进入第二阶段。
否则,我们可以直接输出这个基可行解作为最优解。
第二阶段:利用对偶价格和两阶段单纯形法的理论,通过迭代来获得最优解。
1. 在这个阶段,我们需要不断迭代,直到找到一个最优解或者确定不存在最优解为止。
每次迭代时,我们选择一个非基变量进入基变量,并重新计算目标函数的值。
在这个例子中,我们选择A4进入基变量。
对应的基变量为x1, x2, x4。
对应的对偶价格为pi1, pi2, pi4。
这些值可以通过解对应的对偶问题得到。
2. 根据基变量的值和对偶价格,我们可以计算出目标函数的值。
如果这个目标函数值比之前的最优解更好,那么我们更新最优解。
否则,我们继续迭代,直到找到一个最优解或者确定不存在最优解为止。
运筹学单纯形法的例题
可行域在x1+3x2=7与4x1+2x2=9之下__
3
.
05.07.2020
练习㈠用图解法
5
4 4x1+x2=9
3
2
1 (2.25,0)
0
1
2
3
4
5
6
7
4
.
05.07.2020
练习㈠. 单纯形表
1 31 0 7 4 20 1 9
填入第一个约束的数据.
填入第二个约束的数据.
5
.
05.07.2020
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系 数中有2正4 的,则可能有. 无穷多个最优0解5.07.。2020
基变量列中_x_5_换为_x_1_,
改CB列,_-_M__换为_4__.
Excel
17
.
05.07.2020
练习㈢用图解法和单纯形法求 如下线性规划问题的最优解:
Max z =4 x1 + x2 x1 + 3x2 ≥ 7
s.t. 4x1 + 2x2 ≥ 9 x1 , x2 ≥ 0
可行域在直线 x1+3x2=7之上__
s.t. 4x1 + 2x2 -x4+x6=9
基引是进谁两?个这 理x“1里?,x人“2 ,工x-”3 如变,x4何量,x5处”,x6≥0
x5 ,x620
.
05.07.2020
练习㈢.用单纯形法
Max z=4x1+x2+0x3+0x4 -Mx5 –Mx6
单纯形法的计算题
单纯形法的计算题
单纯形法是一种求解线性规划问题的数学方法。
下面是一道使用单纯形法求解的线性规划问题的例子:
求最大化目标函数z = -2x1 + 3x2,
约束条件:
1. x1 + x2 <= 4
2. 3x1 + 4x2 <= 12
3. x1, x2 >= 0
用单纯形法求解此问题,需要进行以下步骤:
1. 建立初始单纯形表格:根据约束条件,我们可以确定初始单纯形表格的基变量和非基变量。
2. 计算目标函数的系数和:根据目标函数的系数,我们可以计算出目标函数的系数和。
3. 检查退出条件:如果目标函数的系数和大于零,则无法找到可行解;如果目标函数的系数和小于等于零,则已经找到最优解。
4. 迭代计算:如果未达到最优解,需要继续迭代计算,更新单纯形表格,直到找到最优解为止。
5. 输出结果:最终的单纯形表格中,最优解对应的基变量和非基变量的值即为所求的最优解。
具体到这个例子中,可以使用线性规划软件包或编程语言实现单纯形法来求解。
通过输入约束条件和目标函数,可以得到最优解。
单纯形法例题
单纯形法例题1、例1、目标函数 maxz=2+3约束条件:解:首先要将约束条件化为标准形:由此可以看出我们需要加上三个松弛变量,.得到的标准形式为:maxz=2+3+0+0+0然后要将其初始的单纯形表画出来:2 3 0 0 0b0 8 1 2 1 0 0 40 16 4 0 0 1 0 -0 12 0 0 0 1 32 3 0 0 0由初始单纯形表可以看出,为换入变量,而为换出变量;然后根据:=(也就是如果与主元素同行,则用现在的值除以主元素即可得到即将要填入的值,否则,就用现在的值减去与主元素构成矩形的边角上的值的乘积再除以主元素之后的值。
例如:上面的第一行所对应的b值为8-(12*2)/4=2,故填入值应该为2。
而则是由我们根据非基变量的检验数的大小,挑选出最大的那个,作为换入变量,然后用b的值除以该换入变量所在的列的所有值,得到列的值。
2 3 0 0 0b0 2 0 1 0 -1/2 20 16 4 0 0 1 0 43 3 0 1 0 0 1/4 -2 0 0 0 -3/4由于在检验数中仍然存在大于等于0的数,而且P1,P5的坐标中有正分量存在,所以需要继续进行迭代运算。
通过观察可以看出主元素为1,换入变量为,换出变量为,故得到的单纯形表如下:2 3 0 0 0b2 2 1 0 1 0 -1/2 -0 8 0 0 -4 1 43 3 0 1 0 0 1/4 120 0 -2 0 1/4由于检验数中存在正数,且P5和P3中有正分量存在,所以需要继续迭代(换入变量为,换出变量为:得到单纯形表如下:2 3 0 0 0b2 4 1 0 0 1/4 00 4 0 0 -2 1/2 13 2 0 1 1/2 -1/8 00 0 -3/2 -1/8 0此时可以发现检验数中没有大于0的数,表明已经得到了最优解,所以最优解是:(4,2,0,0,4),故目标函数值z=2*4+2*3=142、合理利用线材问题,现在要做100套钢架,每套用长为2.9m,2.1m,和1.5m的钢各一根,已知原料长7.4m,问应如何下料,使用的原材料最省;解:首先我们必须要清楚该问题的需要设立的变量是什么。
运筹学 线性规划问题的单纯形法
线性规划的单纯形法
由上表可知:
S=100*X1+80*X2
约束条件:
2*X1+4*X2<=80
3*X1+1*X2<=60
X1,X2>=0
由此可以引入松弛变量:
2*X1+4*X2+k1<=80
3*X1+1*X2+k2<=60
S=100*X1+80*X2+(0)*k1+(0)*k2〃k1和k2为闲置时间不产生利润
可建表
注:Zj为Cj列的每行数分别与XI,X2,k1,k2列相乘然后加的结果(例如:0=0*2+0*3)由表可知X1所在列为最有列,所以K2退出基变组(列表下,红字部分表示交换格)
而由表可知要消去图中绿字所在行必须是图中绿字所在行-2*红字所在行。
消去后的表的情
注:此时由上表可知X2所在列是最有解,切Cj-Zj依旧为正。
所以,此时K1出基(将k1行中各数据*3/10)得到如下表:
注:由表可知此时Cj-Zj为零,如果接续下去此值将会为负所以此时由最大利润为2560即:当摩托车生产16辆,自行车生产12辆是有最大利润。
本题只是为了让和我有一样迷惑的人有一个解题案例,如若真正搞懂线性规划问题的单纯形法还得去以参考书为准。
最优化单纯形法例题
最优化单纯形法例题单纯形法是一种常用的数学优化方法,用于求解线性规划问题。
下面我将以一个例题来说明单纯形法的步骤和过程。
假设我们有以下线性规划问题:最大化目标函数,Z = 3x1 + 5x2。
约束条件:2x1 + x2 ≤ 10。
x1 + 3x2 ≤ 18。
x1, x2 ≥ 0。
首先,我们将上述问题转化为标准形式。
引入松弛变量,将不等式约束转化为等式约束:2x1 + x2 + x3 = 10。
x1 + 3x2 + x4 = 18。
x1, x2, x3, x4 ≥ 0。
接下来,我们构建初始单纯形表。
表格的第一行为目标函数系数,第一列为基变量。
x1 x2 x3 x4 b.----------------------------------。
Z | -3 -5 0 0 0。
----------------------------------。
x3 | 2 1 1 0 10。
x4 | 1 3 0 1 18。
然后,选择进入变量和离开变量。
进入变量选择目标函数系数最小的负值,即x2。
离开变量选择约束条件中比率最小的变量,即x4。
通过计算比率b/离开变量系数,得到x4的比率为18/3=6。
接下来,进行主元素列变换,使得离开变量的列成为单位向量。
具体步骤如下:1. 将主元素列除以主元素系数,使主元素系数变为1。
2. 将其他列减去相应比率乘以主元素列,使主元素列下的其他元素都变为0。
x1 x2 x3 x4 b.----------------------------------。
Z | 0 -1 0 5 90。
----------------------------------。
x3 | 0 -1 1 0 4。
x2 | 1 3 0 1 18。
然后,更新目标函数行。
将目标函数行减去目标函数系数乘以主元素列,使得目标函数系数下的其他元素都变为0。
x1 x2 x3 x4 b.----------------------------------。
运筹学原理单纯形法练习题
四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 6—10 10一14 14—18 18—22 22—24 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10XlX2 X3 X4 —10 b-1 f g X3 2 C O 1 1/5 Xlade1(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解 第四章 线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Yl﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
单纯形法的计算步骤例题
单纯形法的计算步骤例题
单纯形法是一种用于线性规划问题的求解方法,它通过不断地移动解空间中的顶点,逐步逼近最优解。
下面我将通过一个简单的例题来说明单纯形法的计算步骤。
考虑以下线性规划问题:
最大化目标函数Z = 3x1 + 4x2
约束条件:
2x1 + x2 <= 10
x1 + 2x2 <= 8
x1, x2 >= 0
首先,我们将这个线性规划问题转化为标准型,引入松弛变量将不等式约束转化为等式约束。
得到如下形式:
最大化目标函数Z = 3x1 + 4x2
约束条件:
2x1 + x2 + x3 = 10
x1 + 2x2 + x4 = 8
x1, x2, x3, x4 >= 0
然后,我们构建初始的单纯形表格,包括目标函数系数矩阵、系数矩阵、单位矩阵和右端常数向量。
初始单纯形表格如下:
基变量x1 x2 x3 x4 常数
x3 2 1 1 0 10
x4 1 2 0 1 8
Z -3 -4 0 0 0
接下来,我们通过单纯形法进行迭代计算,每次迭代都要找到一个入基变量和一个出基变量,然后更新单纯形表格,直到满足最优解的条件。
在这个例子中,我们不再继续举例,因为单纯形法的计算步骤较为复杂,需要逐步进行迭代计算。
希望这个简单的介绍对你有所帮助。
运筹学_单纯形法_的应用举例
(x11+x21+x31)≤100
(x12+x22+x32)≤100
(x13+x23+x33)≤60
通过整理,得到以下模型:
2010年8月
管理工程学院
《运筹学》
11
目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 约束条件: s.t. 0.5 x11-0.5 x12 -0.5 x13 ≥ 0 (原材料1不少于50%) -0.25x11+0.75x12 -0.25x13 ≤ 0 (原材料2不超过25%) 0.75x21-0.25x22 -0.25x23 ≥ 0 (原材料1不少于25%) -0.5 x21+0.5 x22 -0.5 x23 ≤ 0 (原材料2不超过50%)
解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。这样 我们建立数学模型时,要考虑: 对于甲: x11,x12,x13; 对于乙: x21,x22,x23; 对于丙: x31,x32,x33; 对于原料1: x11,x21,x31; 对于原料2: x12,x22,x32; 对于原料3: x13,x23,x33; 目标函数: 利润最大,利润 = 收入 - 原料支出 约束条件: 规格要求 4 个; 供应量限制 3 个。
x21 x22 x23 x24 250000 产量约束为飞机汽油2的产量:
PV p j v j可得有关蒸汽压力的约束条件: 由物理中的分压定律,
n
2.85 x11 1.42 x12 4.27 x13 18.49 x14 0
同样可得有关辛烷数的约束条件16.5 x11 2.0 x12 4.0 x13 17.0 x14 0 为: 7.5x 7.0 x 13.0 x 8.0 x 0
单纯形法 对偶法
1.单纯形法某工厂生产产品Ⅰ,Ⅱ。
生产单位产品所需台时为2台时和1台时,使用台时限额是40台时,生产单位产品使用的原材料分别是1Kg 和3Kg ,原材料的总限额是30Kg,单位产品的利润分别是3元和4元。
求该工厂所获利润最大的线性规划。
产品Ⅰ 产品Ⅱ 限额 台时 2 1 40 原材料1330解:设生产产品Ⅰ的数量是1x ,生产产品Ⅱ的数量是2x ,利润是y ,则有2143max x x y +=2143min x x y --=⎪⎩⎪⎨⎧≥≤+≤+;0,;303;402212121x x x x x x⎪⎩⎪⎨⎧≥=++=++;0,,;303;4024,321421321x x x x x x x x x x程序如下:D=[2 1 1 0 40;1 3 0 1 30;-3 -4 0 0 0]; N=[3 4 ];% 求解标准型线性规划:min c*x; s.t. A*x=b; x>=0% 本函数中的D 是单纯初始表,包括:最后一行是判别系数,最后一列是右端向量b ,D 的最后一个元素用0补齐,其余的元素是约束矩阵A % N 是初始的基变量的下标 % 输出变量x 是最优解% 输出变量y 是最优目标值,k 是迭代次数 [mD,nD]=size(D); B=D;k=0;%迭代次数 flag=1; while flag k=k+1;if D(mD,:)>=0 %全体判别系数为非负则已经得到了最优解, flag=0;化为标准型x=zeros(1,nD); %令非基变量xj=0,得到一个基解x,则此时x就是最优解优解for i=1:mD-1x(N(i))=D(i,nD);endy=x*(B(mD,:))'; %x为最优解,B(mD,:)为价格向量,得到y为最优解优解disp('最优值为:')ydisp('最优解为:')xdisp('迭代次数为:')kelsefor i=1:nDif D(mD,i)<0&D(1:mD-1,i)<=0 %若存在判别系数D(mD,i)<0且对所有D(1:mD,i)<=0,则线性规划无最优解disp('无最优解');flag=0;break;endend%存在最优解的情况if flagtemp=0;for i=1:nD-1 %找出最小的判别系数,其下标对应的向量作为进基变量if D(mD,i)<temptemp=D(mD,i);in=i; %进基变量的下标endendsita=zeros(1,mD-1); %确定离基变量for i=1:mD-1if D(i,in)>0sita(i)=D(i,nD)/D(i,in);endendtemp=inf;for i=1:mD-1if sita(i)>0&sita(i)<temptemp=sita(i);out=i; %最小的sita值其下标所对应的向量为离基变量endend%更新初始的基变量的下标向量Nfor i=1:mD-1if i==outN(i)=in;endendD(out,:)=D(out,:)/D(out,in); %主元归一化for i=1:mDif i~=outD(i,:)=D(i,:)-D(i,in)*D(out,:); %将主元所在其它行元素变为零 D(mD,nD)=0;endendendendend程序运行之后的结果是最优值为:y =-70最优解为:x = 18 4 0 0 0迭代次数为:k = 3该工厂所获最大的利润是70,生产产品Ⅰ的数量是18,生产产品Ⅱ的数量是4。
(参考资料)运筹学单纯形法例题
1
1
= 40
0
1
0
x4
30
1
[3]
0
σ
(1) j
=cj
− CB
⋅ Pj
3
4
0
30
1
= 10
3
0
0
x3
30
5 3
0
1
1
−
3
4
x2
10
1 3
1
0
1 3
σ
(2) j
=cj
− CB
⋅ Pj
5
4
0
0
−
3
3
这时,非基变量的检验数 σ1
=
5 3
,σ 4
=
−
4 3
,其中 σ 1
>
0
,所以该基可行解不是最优解。
(7)接下来,我们的任务就是找另一个基可行解。即转回到步骤(5)。
然不想干,怎么办呢?为了计算简便,我们期待 B2 = [P3 ,P 2 ] = I ,目前我们只是期待而已。
3
4
0
0
CB
XB
b
x1
x2
x3
x4
bi aik
40
0
x3
40
2
1
1
= 40
0
1
0
x4
30
1
[3]
0
σ
(1) j
=cj
− CB
⋅ Pj
3
4
0
0
x3
0
1
4
x2
1
0
1
30 = 10
3
0
第3页共9页
线性规划单纯形法(例题)资料
线性规划单纯形法(例题)《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》⎪⎩⎪⎨⎧≥=++=+++++=⎪⎩⎪⎨⎧≥≤+≤++=0,,,24261553).(002max ,,0,24261553).(2max 14.18432142132143214321212121x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。
分别用图解法和单纯形)】(页【为初始基变量,选择43,x x)1000(00)0010(01)2050(12)6030(24321=⨯+⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ为出基变量。
为进基变量,所以选择41x x3/1)6/122/10(00)0210(03/1)3/1240(10)1200(24321-=⨯+-⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ为出基变量。
为进基变量,所以选择32x x24/724/528/11012/112/124/1100021110120124321-=⨯+-⨯-=-=-⨯+⨯-==⨯+⨯-==⨯+⨯-=)()()()(σσσσ4334341522max ,)43,415(),(2112=+⨯=+===x x z x x X TT 故有:所以,最优解为⎪⎪⎩⎪⎪⎨⎧≥=++=+=+++++=⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,,,,18232424).(0002max ,,,0,182312212).(52max 24.185432152142315432154321212121x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。
min单纯形法简单例题详解
min单纯形法简单例题详解假设有一家工厂生产两种产品 A 和 B,目标是最大化利润。
已知每单位产品 A 的生产时间为 2 小时,产品 B 的生产时间为 3 小时。
每天工厂的总生产时间为 24 小时。
每单位产品 A的利润为 10 美元,产品 B 的利润为 8 美元。
现在要确定工厂每天应该生产多少单位的产品 A 和 B,以最大化总利润。
首先我们需要定义两个变量:x 和 y。
其中,x 表示每天生产的单位数目 A,y 表示每天生产的单位数目 B。
根据问题的要求,我们可以得到两个约束条件:1. 生产时间约束:2x + 3y <= 24(每天生产时间最大为 24 小时)2. 非负约束:x >= 0,y >= 0(生产单位数目不能为负)现在我们可以根据最大化利润的目标函数进行建模。
目标函数为:10x + 8y。
接下来,我们可以使用单纯形法来解决这个问题。
首先,我们将这个问题转化为标准形式。
通过引入两个松弛变量 s1 和 s2,我们可以将不等式约束转化为等式约束:2x + 3y + s1 = 24x + s2 = 0接下来,我们将目标函数进行转化。
由于目标是最大化,我们可以引入一个辅助变量 z,并将目标函数写为:z = -10x - 8y现在,我们可以构建一张初始单纯形表。
表格的第一行包含变量和约束条件的系数以及目标函数的系数。
第一列列出变量和约束条件的名字。
变量 |x |y |s1 |s2 |b |--------|----|----|----|----|----|z |-10 |-8 |0 |0 |0 |s1 |2 |3 |1 |0 |24 |s2 |1 |0 |0 |1 |0 |接下来,我们需要根据单纯形法的规则来迭代计算。
首先,选择一个入基变量和一个出基变量。
根据最大增益准则,我们找到目标函数中系数最小的变量,即 x。
然后,我们需要根据最小比率准则来选择出基变量。
计算每个约束条件右侧与对应入基变量系数的比率,并选择最小的非负比率对应的出基变量。
单纯形法及例题解析
= a11a22-a12a21
三阶行列式
a11 a12 a13 a21 a22 a23 a31 a32 a33
= a11a22a33+a12a23a31+a13a21a32-
a13a22a31-a11a23a32-a12a21a33
练习
14 3 -5 2 1 36 1
10 0 -5 2 3 33 5
x4
x5
0
x3
2
[1]
0
1
0
-1/2
1
0
x4
16
4
0
0
1
0
4
3
x2
3
0
1
0
0
1/4
-
Cj-Zj
2
0
0
0
-3/4
Cj
CB
XB
b
2
x1
2
0
x4
8
3
x2
3
Cj-Zj
单纯形表
2
3
0
x1
x2
x3
1
0
1
0
0
-4
0
1
0
0
0
-2
0
0
θ
x4
x5
0
-1/2
-
1
[2]
4
0
1/4
12
0
1/4
单纯形表
Cj
2
3
0
0
0
θ
CB
矩阵的乘法
A =(aij)m s B =(bij)s n C =AB =(cij)m n
cij = ai1b1j+ai2b2j+ … +aisbsj
最优化单纯形法例题讲解
例1 用单纯形法解下列问题:解:将原问题化成标准形:x 4与添加的松弛变量x 5,x 6在约束方程组中其系数列正好构成一个3阶单位阵,它们可以作为初始基变量,初始基可行解为X =(0, 0, 0,10, 8, 4)T列出初始单纯形表,见表1。
22x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量作为换出的基变量。
242)24,110(m in ===θ 因此确定2为主元素(表1中以防括号[]括起),意味着将以非基变量x 2去置换基变量x 6,采取的做法是对约束方程组的系数增广矩阵实施初等行变换,将x 2的系数列(1, -1, 2)T 变换成x 6的系数列(0, 0, 1)T ,变换之后重新计算检验数。
变换结果见表2。
1231234123123min 2..210,248,244,0,1,,4.j x x x s t x x x x x x x x x x x j -++-+=-+≤-+-≤≥=123123412351236max 2..210,248,244,0,1,,6.j x x x s t x x x x x x x x x x x x x j -+-+-+=-++=-+-+=≥=检验数σ3=3>0,当前基可行解仍然不是最优解。
继续“换基”,确定2为主元素,即以非基变量x 3置换基变量x 5。
变换结果见表3。
此时,3个非基变量的检验数都小于0,σ1= -9/4,σ5= -3/2,σ5= -7/4,表明已求得最优解:T)0,0,8,5,12,0(=*X 。
去除添加的松弛变量,原问题的最优解为:T )8,5,12,0(=*X ,最小值为-19例2 用大M 法求解下列问题:12312312313min 3..211,243,21,0,1,,3.j x x x s t x x x x x x x x x j +--+≤+-≥-=≥=解 引进松弛变量x 4、、剩余变量x 5和人工变量x 6、x 7,解下列问题:1234567123412356137min 300()..211243210,1,2,,7j x x x x x M x x s t x x x x x x x x x x x x x j +-++++-++=+--+=-+=≥=用单纯形法计算如下:由于σ1<σ2< 0,说明表中基可行解不是最优解,所以确定x 1为换入非基变量;以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量作为换出的基变量。
运筹学单纯形法的例题
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5 =9
x1, x2 , x3 , x4 , x5 ≥0
基是谁? x3,x5 x5的检验数为0
请它出基,逼它取值为0.
13
---精品---
17.10.2020
练习㈡. 单纯形表
两行,几列? 少一列?
填入第一个约束的数据.
14
---精品---
x3
x4
bi
比
00
1 0 77 0 1 9 9/4
000
00
x3
x4
bi
比
00
1 -0.25 4.75
0 0.25 2.25
019
0 -1 17.10.2020
练习㈡用图解法和单纯形法求
如下线性规划问题的最优解:
Max s.t.
4zxxx1=11+4+, x321xxx2+22≤≥≥x2790
可行域在直线 x1+3x2=7之下__
Max z =4 x1+x2+0x3+0x4-Mx5
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5=9
基再是引谁进?一这 理x个1个?, “x“2 人,-”x如工3 ,何变x4处, x5≥ 0
量”1x2 5
---精品---
17.10.2020
练习㈡.用单纯形法
Max z =4x1+x2+0x3+0x4-Mx5
改CB列,__0_换为_4__.
8
---精品---
单纯形法典型例题
科学出版社《运筹学》教材第一章引言第二章线性规划,姜林第三章对偶规划,姜林第四章运输问题,姜林第五章整数规划,姜林第六章非线性规划,姜林第七章动态规划,姜林第八章多目标规划,姜林第九章图与网络分析,熊贵武第十章排队论,熊贵武第十一章库存论,王勇第十二章完全信息博弈,王勇第十三章不完全信息博弈,王勇第十四章决策论与影响图第十五章运筹学模型的计算机求解成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。
问如何选择食品才能在满足营养的前提下使购买食品的费用最小?大米 900 20 300 3 白菜20010 500 2 营养需求量 200055800解:设需猪肉、鸡蛋、大米和白菜各需x1,x2,x3,x4斤。
则热量的需求量为:200020090080010004321≥+++x x x x 蛋白质某工厂要做100套钢架,每套有长3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原料长12.3米,问应如何下料使需用的原材料最省。
解:假设从每根12.3米的原材料上截取3.5米、2.8米和2根2.4米,则每根原材料需浪费1.2米,做100套需浪费材料120米,现采用套裁的方法。
方案 一 二 三 四 五 六 3.5 2.8 2.4 0 0 50 4 01 2 1 1 3 02 0 22 1 1合计 剩余12 0.3 11.2 1.1 11.5 0.811.9 0.4 11.8 0.5 12.2 0.1现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200,,,800500300200400551020605030002009008001000..23614min 43214321432143214321≥≥+++≥+++≥++++++=x x x x x x x x x x x x x x x x t s x x x x zx1、x2、x3、x4、x5、x6非负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学出版社《运筹学》教材
第一章引言
第二章线性规划,姜林
第三章对偶规划,姜林
第四章运输问题,姜林
第五章整数规划,姜林
第六章非线性规划,姜林
第七章动态规划,姜林
第八章多目标规划,姜林
第九章图与网络分析,熊贵武
第十章排队论,熊贵武
第十一章库存论,王勇
第十二章完全信息博弈,王勇
第十三章不完全信息博弈,王勇
第十四章决策论与影响图
第十五章运筹学模型的计算机求解
成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。
问
如何选择食品才能在满足营养的前提下使购买食品的费用最小?
食品名称热量(kcal) 蛋白质(g) 钙(mg)价格(元)猪肉1000 50 400 14
鸡蛋800 60 200 6
大米900 20 300 3 白菜200 10 500 2
营养需求量
2000
55
800
解:设需猪肉、鸡蛋、大米和白菜各需
x1,x2,x3,x4斤。
则热量的需求量为:
2000
20090080010004
3
2
1
x x x x 蛋白质
某工厂要做100套钢架,每套有长 3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原
料长12.3米,问应如何下料使需用的原材料最省。
解:假设从每根
12.3米的原材料上截取 3.5米、2.8米和2根2.4
米,则每根原材料需浪费 1.2米,做100套需浪费材料
120米,现
采用套裁的方法。
方案一二三四五六3.5 2.8 2.4 0 0 5 0 4 0 1 2 1 1 3 0
2 0 2
2 1 1
合计剩余
12
0.3 11.2
1.1
11.5 0.8
11.9 0.4
11.8 0.5
12.2 0.1
现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程:
minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6
约束条件:
x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200
,,,800
50030020040055
102060503000
2009008001000.
.23614min 4
3214
3
2
1
4
32
14
32
14321x x x x x x x x x x x x x x x x t s x x x x z。