教育统计学

合集下载

教育统计学

教育统计学

第一章绪论一、什么是教育统计学1.什么是统计学统计学是研究统计原理和方法的科学。

它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。

统计学的分为数理统计学和应用统计学两类。

2.什么是教育统计学教育统计学是运用数理统计的原理和方法研究教育问题的一门应用科学。

教育统计学的主要任务是研究如何搜集、整理、分析由教育调查和教育实验等途径所获得的数字资料,并以此为依据,进行科学推断,从而揭示蕴含在教育现象中的客观规律。

3.统计学和教育统计学的内容(1)描述统计对已获得的数据进行整理、概括,显现其分布特征的统计方法,称为描述统计。

包括归组、编表、绘图等数据整理工作和计算各种特征量反映其分布特征。

(2)推断统计根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上对总体分布特征进行估计、推测,这种统计方法称为推断统计。

包括总体参数估计和假设检验两部分。

(3)实验设计实验者为了揭示实验中自变量与因变量的关系,在实验之前所制订的实验计划,称为实验设计。

包括抽样设计、样本容量计算、确定实验对照形式、实现实验组和对照组的等组化、安排实验因素、控制无关因素以及用什么统计方法处理及分析实验结果等等。

(4)三者的关系描述统计是推断统计的基础,推断统计通过样本信息估计、推测总体,从已知情况估计、推测未知情况。

良好的实验设计才能使我们获得真实的有价值的数据,对这样的数据进行统计处理才能得出正确的结论。

二、统计学中的几个基本概念与符号1.随机变量(1)随机现象与随机事件:随机现象具有以下三个特征:一次试验有多种可能结果,其所有可能结果是已知的;试验之前不能预料哪一种结果会出现;在相同的条件下可以重复试验。

随机现象的每一种结果叫做一个随机事件。

(2)随机变量:这些随机事件在一次试验中,可能出现,也可能不出现,而在大量重复试验中,它们的发生却具有一定的规律性。

我们把能表示随机现象各种结果的变量称为随机变量。

教育统计学

教育统计学

教育统计学教育统计学教育统计学是一门关注教育数据的学科,旨在收集、整理、分析和解释教育数据,以推动教育决策和政策制定的科学领域。

通过研究教育现象,教育统计学为教育实践和政策制定提供了重要的数据和信息支持。

本文将从教育统计学的意义、数据收集、数据分析和数据应用等方面进行讨论。

一、教育统计学的意义教育统计学的意义在于帮助人们更好地了解教育现象和教育问题,通过收集和分析数据来推动教育决策和政策制定。

教育统计学可以为教育规划、教育政策和教育评估提供有力的证据,帮助决策者更有效地分配资源和改进教育质量。

教育统计学可以帮助我们回答一系列与教育有关的问题,例如:1.教育资源如何分配?通过收集和分析教育数据,可以了解不同地区或不同学校的教育资源分配情况,并据此提供政策建议,以提高教育资源的合理化配置。

2.学生的教育表现如何?通过收集和分析学生的学业成绩、出勤率、学科选择等数据,可以了解学生在教育过程中的表现情况,以及他们在不同学科和不同年级之间的差异。

此外,还可以了解学生的兴趣爱好和课外活动情况,以设计更加个性化和有针对性的教育方案。

3.教育政策的效果如何?通过收集和分析教育政策实施后的数据,可以评估政策的效果,并据此调整政策,以更好地达到政策目标。

二、数据收集数据收集是教育统计学的一个重要环节。

教育数据的收集包括定期的和非定期的数据收集,定量的和定性的数据收集,以及公开的和非公开的数据收集。

以下是一些常见的教育数据来源:1.学校报告学校通常会报告各种数据,例如与学生有关的数据(如学生出勤率、成绩、教师评级等)和与学校有关的数据(如预算、教师人数和课程安排等)。

2.教育部门和机构的数据教育部门和机构负责收集和发行各种教育数据,例如统计教育机构数量、师资力量、学生人数、预算和保障工作等。

3.检测和评估机构的数据检测和评估机构专门负责评估学生和学校的表现,以及测量学生的学习成果和能力等。

三、数据分析数据分析是教育统计学的另一个重要环节。

教育统计学定义

教育统计学定义

教育统计学定义教育统计学是一门研究教育现象的数量特征和规律的学科,它运用数理统计方法对教育数据进行分析和研究,旨在为教育决策提供科学依据。

教育统计学广泛应用于各级各类教育机构、政府部门、社会组织等领域,为教育管理、政策制定、评估和研究提供重要支持。

一、教育统计学的概念和背景1. 教育统计学的概念2. 教育统计学的发展历程3. 教育统计学的研究内容二、教育数据的收集与处理1. 教育数据来源及其特点2. 教育数据收集方法3. 教育数据处理方法三、统计分析在教育中的应用1. 描述性统计分析在教育中的应用2. 探索性因子分析在教育中的应用3. 方差分析在教育中的应用四、国内外主要教育统计指标及其解释1. 国内外主要基础教育指标及其解释2. 国内外主要高等教育指标及其解释3. 教育经费指标及其解释五、教育统计学的应用与挑战1. 教育决策中的应用2. 教育评估中的应用3. 教育研究中的应用4. 教育统计学面临的挑战六、结论一、教育统计学的概念和背景1.教育统计学的概念教育统计学是一门研究教育现象的数量特征和规律的学科。

它通过运用数理统计方法对教育数据进行分析和研究,从而为教育管理、政策制定、评估和研究提供科学依据。

简单来说,教育统计学就是将数理统计方法运用到教育领域,对各种与教育相关的数据进行收集、整理、分析和解释。

2.教育统计学的发展历程早在19世纪初期,就有人开始使用数理方法对各种社会现象进行分析和研究。

但是,直到20世纪初期,才出现了专门研究社会现象数量特征和规律的学科——统计学。

随着教育事业的发展,人们开始意识到教育数据的重要性,并逐渐将统计学方法运用到教育领域,从而形成了教育统计学。

20世纪50年代后期,随着电子计算机技术的发展,人们可以更加方便地处理大量数据,这进一步推动了教育统计学的发展。

现在,教育统计学已经成为一门独立的学科,并广泛应用于各级各类教育机构、政府部门、社会组织等领域。

3.教育统计学的研究内容教育统计学主要研究以下内容:(1)教育数据的收集和处理方法;(2)教育数据的描述性分析方法;(3)探索性因子分析方法;(4)方差分析方法;(5)教育指标体系及其解释;(6)教育决策、评估和研究中应用数理统计方法。

教育统计学基础知识(史上最全最完整)

教育统计学基础知识(史上最全最完整)

教育统计学基础知识(史上最全最完整)什么是教育统计学?教育统计学是一门研究教育领域中数据收集、分析和解释的学科。

它利用统计学方法来帮助教育工作者了解和评估教育系统中的各种现象和趋势。

教育统计学可以提供决策制定和政策改进的依据,以促进教育的发展和进步。

教育统计学的基本概念样本和总体- 样本是从总体中选择出来的一部分,用于代表整个总体。

通过对样本进行研究,我们可以对总体的特征和趋势进行推断。

样本是从总体中选择出来的一部分,用于代表整个总体。

通过对样本进行研究,我们可以对总体的特征和趋势进行推断。

- 总体是我们感兴趣的全部个体或事物的集合。

例如,如果我们对一所学校的学生做研究,那么学校中的所有学生就是总体。

总体是我们感兴趣的全部个体或事物的集合。

例如,如果我们对一所学校的学生做研究,那么学校中的所有学生就是总体。

频数和频率- 频数表示某个特定数值在数据集中出现的次数。

频数表示某个特定数值在数据集中出现的次数。

- 频率指的是某个特定数值在数据集中出现的相对次数。

频率可以用绝对频数除以总体大小得到。

频率指的是某个特定数值在数据集中出现的相对次数。

频率可以用绝对频数除以总体大小得到。

中心趋势测量- 平均数是一组数据的总和除以数据的个数。

它是衡量数据的中心趋势的一种指标。

平均数是一组数据的总和除以数据的个数。

它是衡量数据的中心趋势的一种指标。

- 中位数是将数据集按大小排列后,位于中间位置的值。

它也是衡量数据中心趋势的一种指标。

中位数是将数据集按大小排列后,位于中间位置的值。

它也是衡量数据中心趋势的一种指标。

- 众数是指数据集中出现次数最多的值。

它也可以作为衡量数据中心趋势的指标。

众数是指数据集中出现次数最多的值。

它也可以作为衡量数据中心趋势的指标。

变异性测量- 范围是一组数据中最大值和最小值之间的差异。

范围是一组数据中最大值和最小值之间的差异。

- 标准差是一组数据与其平均数之间差异的平均值。

它是衡量数据变异性的一种指标。

教育统计学_第一章 绪论

教育统计学_第一章 绪论
变量的取值在理论上可以划分为任意小的计算 单位。测量得来的数据,一般都是连续变量, 连续变量的变化是无限增加的,例如,重量, 可以用吨,千克,毫克,微克,以至于更细微 的单位进行计算,只要测量工具许可。
六、教育统计学的基础知识
基础知识六:统计误差
误差是测得值与真值之间的差值。 测得值=真值+误差 统计误差归纳起来可分为两类:测量误差与抽
四、学习教育统计学的注意事项
几个问题
畏难情绪 重点注意使用条件 多做练习
五、教育统计学的研究内容
教育统计学
描述统计 推断统计 实验设计
1、描述统计
对已获得的数据进行整理、概括,显现其 分布特征的统计方法,称为描述统计。
目的是将大量零散的、杂乱无序的数字资 料进行整理、归纳、简缩、概括,使事物 的全貌及其分布特征清晰、明确地显现出 来。
六、教育统计学的基础知识
抽签法:先将总体各个体编上号,这些号 码无大小意义,仅是各个体的代号,每一 个体都要有一个号码。将每一号码写到纸 签上或卡片上,充分混合,任意抽取,抽 到预定的数目为止。
六、教育统计学的基础知识
随机数码法:在总体数目较大时,抽签法 不方便,用随机数码表,将各个体先编上 号,从《随机数码表》中任何一个地方开 始,向任何一个方向选取。教育研究中一 般采用不可重复抽样。
二、什么是教育统计学
教育研究数据的特点
研究数据和结果多以数字形式呈现 数据具有随机性和变异性 数据具有规律性 目标是通过部分数据来推测总体特征
三、学习教育统计学的意义
学习心理与教育专业的诸课程需要统计学 知识。
从事心理与教育工作的实践需要统计学知 识。
进行心理教育科学研究需要统计学知识。 科学的思维需要统计学知识。

教育学专业的教育教育统计学

教育学专业的教育教育统计学

教育学专业的教育教育统计学教育学专业中的教育统计学是一门研究教育数据的学科,通过收集、整理、分析和解释教育数据来揭示教育现象和问题的规律性。

教育统计学的应用范围广泛,可以用于评估教育政策的效果、研究学生学业发展的轨迹、分析学校的教育成果等。

本文将介绍教育统计学的基本概念、主要方法和应用领域。

一、教育统计学的基本概念教育统计学是统计学在教育领域的应用,它关注的是教育过程中的各种数据和变量。

教育统计学研究的对象包括学生、学校、教师、家庭以及教育相关的政策和实践等。

教育统计学的基本概念包括以下几个方面:1. 教育数据:教育数据是指在教育活动中收集到的信息或指标,如学生的考试成绩、学校的师生比例、教师的教学经验等。

教育数据可以是定性的,如教师对学生的评价;也可以是定量的,如学生的年龄、学费的数额等。

2. 教育变量:教育变量是指在教育数据中所包含的可以变化的因素,如学生的性别、学校的规模、教师的资格等。

教育变量可以是分类变量,如学生的年级;也可以是连续变量,如学生的身高。

3. 教育指标:教育指标是对教育现象或问题进行度量和描述的量化指标,如学生的平均分数、学校的毕业率等。

教育指标可以用于比较不同群体、不同地区或者不同时间段之间的教育差异。

二、教育统计学的主要方法教育统计学通过采用各种数据分析方法来对教育数据进行处理和解释,以便于揭示教育现象和问题的本质。

教育统计学的主要方法包括以下几个方面:1. 描述统计分析:描述统计分析是对教育数据进行总结和概括的方法,包括计算平均数、中位数、标准差等统计指标,绘制频数分布表、条形图、折线图等图表以及计算相关系数、回归方程等。

2. 推断统计分析:推断统计分析是通过对样本数据进行统计推断来对总体进行推断的方法。

它可以用来估计总体参数、检验两个或多个总体之间的差异、进行因果推断等。

3. 多元统计分析:多元统计分析是通过考虑多个因素之间的相互关系来解释教育现象和问题的方法。

它包括因子分析、聚类分析、判别分析等多种方法,可以帮助我们发现变量之间的主成分、不同群体之间的差异等。

教育统计学

教育统计学

教育统计学简介教育统计学是研究教育数据和信息的统计方法和技巧的学科。

它通过收集、整理、分析和解释教育数据,为教育决策提供科学依据。

教育统计学广泛应用于教育政策研究、教育评估、教育管理和教育改革等领域。

本文将介绍教育统计学的基本概念、常用方法和应用实例。

基本概念总体与样本在教育统计学中,总体是指研究对象的全部个体,而样本是从总体中抽取出来的一部分个体。

样本的数据用于对总体的特征和规律进行推断。

为了保证抽样的有效性,教育统计学中常采用随机抽样的方法,确保样本能够代表总体。

量化与测量教育数据主要以数量形式存在,需要进行测量和量化才能进行统计分析。

常用的教育测量方法有问卷调查、观察法、测试和实验等。

测量结果以变量的形式表示,常见的教育变量有学生的年龄、成绩、出勤率等。

描述统计与推断统计教育统计学既关注对数据的描述,又关注通过样本对总体进行推断。

描述统计通过计算中心趋势和离散程度等指标,对数据进行总体描绘。

推断统计则基于样本数据,利用概率分布和假设检验等方法,推断总体的特征和规律。

常用方法频数分析频数分析是分析分类变量的方法,通过计算每一类别的频数和频率,描述和探索变量的分布情况。

常见的频数分析方法有直方图、条形图和饼图等。

中心趋势与离散程度中心趋势指标用于描述数据的集中程度,常用的指标有平均数、中位数和众数等。

离散程度指标用于描述数据的分散程度,常用的指标有方差、标准差和极差等。

相关分析相关分析用于研究变量之间的关系,常用的方法有皮尔逊相关系数和斯皮尔曼相关系数等。

相关分析可以帮助研究者理解变量之间的关联程度,为制定教育政策和改进教学提供依据。

回归分析回归分析是一种用于研究因果关系的统计方法,它可以探索自变量与因变量之间的关系,并预测因变量的取值。

教育统计学中常用的回归方法有线性回归、逻辑回归和多元回归等。

假设检验假设检验是教育统计学中常用的推断统计方法,用于检验关于总体参数的假设是否成立。

常用的假设检验方法有t检验和方差分析等。

教育统计学

教育统计学

教育统计学:教育统计学是搜集、整理、分析教育领域统计数据的方法科学,它是从定量的角度来揭示教育现象的特征和规律。

它属于应用学科。

教育统计学的内容:1、描述统计。

主要研究搜集、整理数据的方法,以及一些统计量的计算。

2、推断统计。

主要研究如何从局部数据情况来估计整体情况。

3、实验设计。

主要研究如何选择实验对象,安排实验步骤,操纵实验变量,控制无关变量,搜集实验结果,分析实验结论。

变量:是指在数量上或性质上有变化的量。

因变量:被影响的因素。

自变量:影响因素。

常量:数值是恒定的。

总体:就是所要研究对象的全体。

个体:是组成总体的基本单位。

样本:是由总体中一部分个体所组成的,它对总体具有一定的代表性。

样本容量:样本中个体的数目。

统计量:根据数本数据而计算出的量称为统计量。

参数:反映总体特征的量称为参数。

误差:是指实测值与真值的绝对差距。

系统误差:是由某种固定原因造成的误差。

随机误差:由某种难以控制的原因造成的误差。

(这种误差是偶然性的。

)什么是数据?数据是反映客观事物数量特征的数字。

数据的特点:1、变异性(又叫波动性)是指由观察或测量获得的数据总是有变化的,不同的。

原因有:①由事物的动态性所造成的。

②由事物之间的差异性所造成的。

③由测量技术不完善所造成的。

2、规律性。

是指由观察或测量获得的数据,尽量是变化的不同的,但经过整理之后还是要反映出一定规律的。

数据的种类:1、从数据的来源分:(1)计数数据。

就是点计事物个数所获得的数据。

这类数据一般都是整数。

(2)测量数据。

利用测量工具所获得的数据。

这类数据有整数,有小数。

2、从数据是否连续分:(1)间断性数据。

在任意两个数值之间只能包含有限个数的数据。

(2)连续性数据。

在任意两个数值之间可以包含无限多个数的数据。

3、从数据的运算性质分:(1)比率数据。

这类数据有相等单位,也有绝对零点,它能够加减乘除。

(2)等距数据。

这类数据有相等单位,但零点是相对的。

它只能加减,不能乘除。

教育统计学

教育统计学

第一章:概述一、教育统计学的含义(一)什么是统计学A统计学是研究随机现象的数量规律性的一门数学分支。

自然界中有两类现象:a.确定现象b.随机现象。

随机现象的规律性可用概率论来描述,起源于(法)帕斯卡对赌博现象的研究。

B数理统计学:以概率论为基础C应用统计学:是数理统计学理论在各个学科领域中的应用。

(二)什么是教育统计学探讨如何将统计学的原理和方法应用于研究教育现象中数量关系的科学。

根据不同功能可划分为:1.统计设计:研究如何科学全面地搜集统计数据以确保统计结论的可靠性。

如:如何进行随机抽样,如何设计实验等。

2.描述统计:研究如何对搜集到的统计数据进行分析整理,以显示数量关系,如:计算数据的集中度、离散度等。

3.推断统计:研究如何利用样本数据来推测和判断未知的总体特征,如总体参数估计、假设检验等。

二、几个基本概念(一)变量与变量值A变量:可以定量并能取不同数值的事物的某种特征。

B变量值:变量具体的数值如考试的分数、智力水平C变量的类型:①类别变量:只是用数字来代表事物或对事物进行分类,数字没有任何数值意义。

不能做量化分析,无大小意义,只表明类别。

如性别男1 女2②顺序变量:表明类别的大小或某种属性的多少。

主要用于分等论级和分类。

仅表示等级,不表示某种属性的真正量和绝对值。

无参照点(没有绝对零度)和相等单位。

如:五点评分:ABCDE③等距变量:存在大小关系,无绝对零点,但存在相对零点。

可进行数学运算、有相等单位。

如IQ④比率变量:有相等单位和绝对零点,可以知道事物之间的某种特点上相差多少及他们之间的倍数关系。

如长度(二)总体与样本A总体:具有某种特征的个体总和例如大学生、中学生、女性、男性,包括有限总体和无限总体。

总体的量化特征称为总体参数。

如总体平均数B样本:从总体中抽取的观察对象。

样本容量(>30称为大样本,<30称为小样本),样本的量化特征称为样本统计量,如样本平均数。

(研究分布关系越大越好;研究事物关系越小越好)第二章:原始数据的整理一、次数分布表(一)分类1.简单次数分布表:又称简单频叔分布表,根据不同组别数据出现频数编制而成。

教育学的教育统计学学

教育学的教育统计学学

教育学的教育统计学学教育学是研究教育的思想、理论、方法和实践的学科。

而教育统计学则是教育学中的一个分支学科,主要研究教育领域中的数据收集、分析和解释。

教育统计学不仅可以帮助教育工作者更好地了解教育现象,还可以为决策者提供科学依据,从而改善教育系统的运作。

本文将从教育统计学的定义、应用领域以及在教育改革中的作用等方面进行探讨。

一、教育统计学的定义教育统计学可以简单地理解为运用统计学原理和方法研究教育问题的学科。

它主要侧重于教育领域的数据分析,以获取有关教育活动和教育成果的信息。

教育统计学运用概率论、数理统计和数学模型等工具,帮助研究者从大量的数据中获取有关教育现象的信息,并通过分析结果为教育实践和政策制定提供决策依据。

二、教育统计学的应用领域教育统计学广泛应用于教育领域的各个方面,包括教育政策制定、教学评估与改进、学生评价和教育经济等。

首先,教育统计学可以用于教育政策的制定和实施过程中。

通过运用统计模型和数据分析方法,政策制定者可以了解不同政策的效果和影响,从而做出科学的决策。

其次,教育统计学可以帮助学校和教育机构进行教学评估与改进。

通过收集、分析学生的学习数据和教育资源利用情况,教育机构可以发现问题并提出改进建议。

此外,教育统计学在学生评价和教育经济领域也发挥着重要的作用,可以提供客观的数据来评估学生的学习成绩以及教育资源的使用效率。

三、教育统计学在教育改革中的作用教育统计学在教育改革中扮演着重要的角色。

通过对大量的教育数据进行分析,教育统计学可以揭示教育现象的规律和趋势,为教育改革提供科学依据。

例如,在教师培训方面,教育统计学可以用于评估不同培训模式和方法的效果,以提高教师培训的质量。

在学校管理和领导方面,教育统计学可以帮助校长和管理者了解学校的整体情况,发现问题并采取相应的措施。

在课程设计和教学方法改革方面,教育统计学可以分析学生的学习情况和教学资源的利用情况,提供有效的建议和方案。

总之,教育统计学作为教育学的一个分支,对于教育领域的发展和改革具有重要意义。

教育学专业的教育学科教育统计学

教育学专业的教育学科教育统计学

教育学专业的教育学科教育统计学教育学专业是培养教育工作者和教育管理人才的专业学科。

在教育学专业中,教育统计学是一门重要的学科,它研究教育现象的数量化和统计分析方法,以及应用这些方法来支持教育政策制定和实践改进。

本文将介绍教育统计学在教育学专业中的地位和作用。

一、教育统计学的定义和特点教育统计学是研究教育现象的数量化和统计分析方法的学科。

它通过收集、整理和分析教育数据,得出教育现象的客观规律,并提供基于数据的决策支持和政策建议。

教育统计学与其他统计学分支相比,有其特有的特点和应用场景。

教育统计学的特点之一是数据来源广泛。

教育数据可以来自教育机构的统计报表、学生的学业档案、教师的教学评价等多个渠道,这些数据涵盖了教育的各个方面。

因此,教育统计学需要综合运用各种数据收集和分析方法,以获得准确、全面的数据信息。

另一个特点是数据分析方法多样。

教育统计学使用多种统计分析方法,如描述统计、推断统计、多元统计等,来对教育数据进行分析和解读。

不同的方法适用于不同的研究问题和数据类型,教育统计学的研究者需要根据具体情况选择合适的方法。

二、教育统计学的研究对象和内容教育统计学的研究对象是教育现象的数量化表达和统计分析。

它关注教育的各个方面,包括学生的学习成绩、教师的教学水平、教育投入和产出等。

教育统计学的研究内容主要包括以下几个方面:1. 教育数据的收集和整理。

教育统计学需要从各种数据源中收集教育数据,并进行整理和清洗,以确保数据的准确性和完整性。

数据的有效收集和整理是教育统计学研究的基础。

2. 教育数据的描述和分析。

教育统计学使用各种统计指标和图表,对教育数据进行描述和分析。

通过对教育数据的统计描述,可以得到教育现象的基本特征和变化趋势。

3. 教育数据的推断和预测。

教育统计学通过对样本数据的推断,可以对整个教育群体的特征和规律进行推断。

此外,教育统计学还可以利用历史数据和趋势分析方法,对未来的教育发展进行预测和规划。

教育统计学定义

教育统计学定义

教育统计学定义一、引言统计学是一门研究收集、测量、分析和解释数据的科学,而教育统计学则是应用统计学原理和方法来研究教育领域的数据的学科。

教育统计学旨在帮助教育工作者、政策制定者和研究者更好地理解和运用教育数据,以促进教育体系的发展和改进。

二、教育统计学的目的教育统计学的主要目的是收集、分析和解释与教育相关的数据,以提供对教育系统和教育政策的合理评估。

通过教育统计学的研究,可以帮助教育工作者了解学生的学习情况、教学方法的有效性、教育政策的成效等方面的信息。

三、教育统计学的应用领域3.1 教育政策制定教育统计学可以帮助决策者了解教育政策的实施情况和效果。

通过收集和分析学生的学习数据、教师的教学数据以及学校的管理数据,可以评估教育政策对学生学习成果和教育质量的影响,从而为教育政策制定提供科学的依据。

3.2 教师培训与绩效评估教育统计学可以用于评估教师培训项目的效果,并对教师的教学绩效进行评估。

通过收集和分析教师的教学数据以及学生的学习数据,可以了解教师的教学能力和教学效果,从而为教师培训和提高教师绩效提供依据。

3.3 学生评估与教育质量评估教育统计学可以用于学生的学习评估和教育质量的评估。

通过收集和分析学生的学习数据,可以了解学生的学习水平和学习进度,从而为学生的个性化教育提供依据。

同时,通过收集和分析学校的管理数据,可以评估学校教育的质量,为教育政策的制定和学校改进提供参考。

四、教育统计学方法教育统计学使用多种统计学方法来分析教育数据。

常用的教育统计学方法包括描述统计、推断统计、回归分析、因子分析、聚类分析等。

这些方法可以帮助研究者从大量的教育数据中提取有意义的信息,并进行科学的数据解释和推断。

五、教育统计学的挑战与发展方向5.1 数据质量问题教育统计学在面临大规模数据的同时,也面临着数据质量问题。

教育数据的质量对于教育统计学的研究和应用至关重要,需要采取有效的数据收集和数据清洗方法,确保数据的准确性和完整性。

教育统计学

教育统计学

教育统计学1. 简介教育统计学是一门学科,研究的是关于教育领域的统计数据的收集、分析和解释。

通过应用统计学原理和方法,教育统计学可以帮助教育工作者、政策制定者和研究人员更好地理解和改善教育系统中的各个方面。

本文将介绍教育统计学的基本概念、研究领域和应用范围。

2. 概念教育统计学是教育学中一个重要的分支学科,它在教育研究和决策制定中起着重要的作用。

教育统计学的研究对象主要包括学生的学习成绩、教师的教育背景、学校的教学资源等。

通过收集和分析这些统计数据,教育统计学可以得出对教育系统的全面了解,并提供指导决策的依据。

3. 研究领域教育统计学的研究领域很广泛,涵盖了教育系统的各个方面。

以下是几个典型的研究领域:3.1 学生学习成绩评估教育统计学可以通过收集学生的学习成绩数据,分析学生的学习情况和进步情况,评估教育政策对学生学习成绩的影响。

这对于政策制定者来说非常重要,可以帮助他们了解教育政策的有效性,并做出相应的调整。

3.2 教师素质评估教师是教育系统中的关键因素之一,他们的教学水平和素质直接关系到学生的学习效果。

教育统计学可以通过收集教师的教育背景、教学经验等数据,评估教师的素质,为教师培训和选拔提供依据,并促进提高教师的教学能力。

3.3 学校资源配置学校资源的合理配置对于提高教学质量和教育公平性都至关重要。

教育统计学可以通过收集学校的教学资源数据,例如教室面积、设备设施等,评估学校资源的利用情况,发现不合理的地方并提出优化建议。

3.4 教育政策评估教育政策的制定和实施对于教育系统的发展具有重要意义。

教育统计学可以通过收集相关的统计数据,分析教育政策的效果,评估政策的实施情况,并为未来的教育政策制定提供参考意见。

4. 应用范围教育统计学的应用范围非常广泛,涉及到教育系统的各个方面。

以下是几个常见的应用场景:4.1 教育改革教育统计学可以通过分析统计数据来了解当前教育系统的问题和不足之处,为教育改革提供依据。

教育学的教育统计学

教育学的教育统计学

教育学的教育统计学教育学是研究教育现象、规律和方法的学科,而教育统计学则是教育学中的一个重要分支,它应用统计学的理论和方法来研究和分析教育数据,为教育决策和实践提供科学依据。

本文将从教育统计学的概念、研究领域、方法与应用等方面进行探讨。

一、概念与背景教育统计学是教育学与统计学的交叉学科,它将统计学的理论和方法应用于教育领域,通过对教育数据的收集、整理、分析与解释,揭示教育现象的内在规律。

教育统计学旨在通过量化研究方法,提供对教育问题的科学答案,为教育决策与实践提供支持。

教育统计学的发展与应用得益于信息技术的进步和大数据时代的到来。

随着计算机技术和互联网的快速发展,获取和处理大规模的教育数据变得更加容易,这为教育统计学的研究和应用提供了广阔的空间。

同时,信息技术也为教育统计学提供了更多的工具和方法,例如数据挖掘、机器学习等,以更准确地分析教育数据并得出有效结论。

二、研究领域教育统计学涉及的研究领域广泛,包括但不限于以下几个方面:1. 教育资源分配与利用:通过数据分析,评估教育资源的配置情况,探讨资源利用效率,为优化资源分配提供依据。

2. 教育经济学:通过统计方法,研究教育投入与产出的关系,分析教育经济效益,为教育投资决策提供参考。

3. 教育评估与质量监测:通过统计指标和方法,评价教育质量,并监测教育改革与政策的实施效果,为提高教育质量提供数据支持。

4. 教育统计指标与标准的制定:根据教育目标和需求,制定相应的统计指标和标准,为教育政策制定、评价和监测提供统计信息。

5. 教育需求与预测:通过对教育数据的分析与建模,预测未来教育需求,为教育规划和资源配置提供预测依据。

三、方法与应用在教育统计学的研究中,常用的方法包括描述统计、推断统计、回归分析、结构方程模型等,这些方法可以帮助研究者对教育数据进行整理和分析,并从中发现规律和得出结论。

教育统计学的应用范围广泛,既涉及教育管理和决策层面,也涉及教育研究和实践层面。

《教育统计学》课件

《教育统计学》课件

02 教育统计学基础知识
概率论基础
概率
描述随机事件发生的可能性程度。
互斥事件
两个事件不能同时发生。
独立事件
两个事件之间没有相互影响。
必然事件和不可能事件
一个事件一定会发生或一定不会发生。
随机变量与概率分布
连续型随机变量
取值范围为一个区 间。
期望值
描述随机变量的“ 平均值”。
离散型随机变量
取值可以一一列举 出来。
描述性统计方法
总结词
描述性统计方法用于收集、整理、描 述数据,并从数据中提取有意义的信 息。
详细描述
描述性统计方法包括数据的收集、整 理、描述和可视化,例如频数分布表 、直方图、箱线图等,有助于了解数 据的分布特征和规律。
推论性统计方法
总结词
推论性统计方法用于根据样本数据推断总体特征,并评估推断的可靠性和准确 性。
方差分析方法
总结词
方差分析方法用于比较不同组数据的均值是否存在显著差异。
详细描述
方差分析方法包括单因素方差分析、多因素方差分析和协方差分析等,通过比较 不同组数据的均值和变异程度,评估不同组数据之间是否存在显著差异,并进一 步了解数据变异的原因。
04 教育统计软件与应用
Excel在教育统计学中的应用
发展历程
随着数理统计学和计算机技术的发展,教育统计学不断发展和完善,逐渐形成了较为完整 的学科体系。
未来趋势
随着大数据和人工智能技术的应用,教育统计学将更加注重数据挖掘和机器学习等新方法 的探索和应用。同时,教育统计学将更加关注跨学科的整合和应用,与其他学科如心理学 、经济学、社会学等相互渗透,形成更为广泛和深入的研究领域。
根据分析结果,提出教学改进建议, 如调整教学方法、优化课程设置等。

教育统计学

教育统计学

总体
Population.
XN
N
结果 Value
参数 Parameter
样本 Sample
xn
n
统计量 Statistic
统计方法 Stat.
推断统计 Inf.Stat.
描述统计 Des.Stat.
个体 Case
xi
i
数据 Data
计数 Count
14
一、统计数据
数据
来源
经常性资料 :报表
教育调查 专题性资料
(教育与心理统计学)
教育统计学是运用数理统计的原理和方式研究 教育问题的一门应用科学。
它的主要任务是研究如何搜集、整理、分析由 教育调查和教育实验所获得的数字资料,并以此为 依据,进行科学推断,从而揭示蕴含在教育现象中 的客观规律。
8
三、统计学与教育统计学的内容
数理统计学 1.统计学
应用统计学
教育统计学 农业统计学 人口统计学
20
频数分布表制作步骤
例1.小教本011(30名)教育统计学单元考 试成绩58、61、88、74、81、66、70、 93、72、91、66、99、89、98、90、98、 90、64、93、89、100、91、92、97、90、 94、99、92、92、90。
21
58、61、88、74、81、66、70、93、72、91、66、99、89、 98、90、98、90、64、93、89、100、91、92、97、90、
定义1:统计学是研究统计原理和方法的科学。 P1
定义2:统计学是研究如何搜集、整理、分析反映事 物总体信息的数字资料,并以此为依据,对总体特 征进行推断的原理和方法。
研究什么(对象)、怎么做?干什么(目的)

教育学专业教育统计学概论

教育学专业教育统计学概论

教育学专业教育统计学概论教育统计学是教育学专业中的一门重要学科,它通过收集、整理和分析教育数据,以揭示教育现象,支持教育政策制定和评估,并为教育改革和发展提供参考依据。

本文将介绍教育统计学的基本概念、研究方法和应用领域。

一、教育统计学基本概念教育统计学是研究教育数据的收集、整理和分析方法的学科。

它包括了数据的收集与整理、数据分析与解释以及数据呈现等环节。

教育统计学的研究对象主要是教育中的各种现象和问题,如学生的学习成绩、教师的教学水平、教育资源的分配等。

教育统计学的一个重要概念是样本调查。

样本调查是指通过对一部分个体(样本)的调查研究,推断出整体个体(总体)的特征或规律的方法。

样本调查的关键是样本的选择和数据的收集,合理的样本选择和可靠的数据收集方法是确保调查结果准确性的重要保证。

二、教育统计学研究方法教育统计学采用的主要研究方法包括描述统计和推断统计。

1. 描述统计法:描述统计是对教育数据的整理、总结和呈现,通过图表和统计指标来描述教育现象和问题。

常用的描述统计方法有频数分布、平均数、百分比等。

通过描述统计,可以直观地了解数据的分布情况和特征。

2. 推断统计法:推断统计是基于样本调查结果推断总体的特征或规律。

推断统计的核心是参数估计和假设检验。

参数估计是通过样本统计量来估计总体参数的值,假设检验是根据样本数据来检验某个假设是否成立。

通过推断统计,可以从样本中获取对总体的推断结论。

三、教育统计学应用领域教育统计学在教育学专业中有着广泛的应用领域,其中包括教育政策制定、教育评估和教育改革等。

1. 教育政策制定:教育统计学能够提供有效的数据支持,为教育政策的制定与实施提供科学依据。

通过对教育数据的分析,可以了解教育资源的分配情况和教育不平等问题,为政府部门提供决策参考。

2. 教育评估:教育统计学可用于评估教育的目标达成程度和教育质量。

通过对学生的学习成绩、教师的教学质量等数据进行分析,可以评估学校和教育系统的绩效,从而提出改进措施。

教育统计学的基本概念和方法

教育统计学的基本概念和方法

教育统计学的基本概念和方法教育统计学是指应用统计学原理和方法来研究教育领域的数据,通过数据分析和统计技术,揭示教育现象的规律性和趋势,为教育政策制定和决策提供科学依据。

本文将介绍教育统计学的基本概念和方法,帮助读者更好地理解和运用教育统计学。

一、教育统计学的基本概念教育统计学的基本概念包括以下几个方面:1. 数据收集和处理:教育统计学借助调查问卷、实验观测、档案资料等方式收集和处理教育领域的数据,建立数据集,并对数据进行加工和整理。

2. 描述统计学:描述统计学是教育统计学的基本方法之一,它通过统计指标如频数、均值、中位数、标准差等,对教育数据进行整体和个体特征的描述。

3. 推论统计学:推论统计学是教育统计学的另一重要方法,它通过从样本中推断总体特征、进行假设检验和建立置信区间等,对教育现象进行推断。

4. 数据分析:教育统计学运用统计方法和技术,对教育数据进行深入分析,从中发现规律、解决问题和支持决策。

二、教育统计学的基本方法教育统计学的基本方法主要包括以下几个方面:1. 调查研究法:调查研究法是教育统计学中常用的方法之一,通过设计问卷、发放调查并收集数据,获取教育目标、教育资源、教育过程和教育结果等方面的信息。

2. 相关分析:相关分析是教育统计学中常用的方法之一,它用于研究两个或多个变量之间的相关关系,帮助我们了解变量之间的相互影响和相关性。

3. 回归分析:回归分析是教育统计学中常用的方法之一,它用于研究一个或多个自变量对因变量的影响程度和方向,并建立数学模型来预测教育结果。

4. 统计推断:统计推断是教育统计学中常用的方法之一,它通过从样本中推断总体的特征,帮助我们了解未知总体参数,并据此进行教育政策的制定和决策。

5. 多变量分析:多变量分析是教育统计学中常用的方法之一,它用于研究多个变量之间的关系,并寻找变量之间的模式和结构。

三、教育统计学的应用领域教育统计学的应用领域广泛,包括以下几个方面:1. 教育评估:教育统计学可以用于评估教育政策和教育项目的效果,通过收集和分析教育数据,评估教育质量和学生学习成果。

教育统计学

教育统计学

教育统计学▪教育统计与测量教育科学一门分支学科。

它是将统计与测量学原理和方法应用于教育实践和研究领域而形成的一门应用性教育学科。

属于工具性学科,具有基础性地位。

第一节什么是教育学▪一、什么是教育统计学教育统计学是运用数理统计的原理和方法,研究教育问题的一门应用科学。

它的主要任务是研究如何搜集、整理、分析由教育调查和教育试验所获得的数字资料,并以此为依据,进行科学推断,揭示教育现象所蕴含的客观规律。

▪例:我们可以通过调查把握近五年来某地区小学教师学历达标的比例、逐年变化的情况。

通过调查我们也可以了解学校各种设施逐年改善的情况,了解学生的升学率、辍学率等等。

▪教育统计学与教育调查、教育试验的关系:教育调查与教育试验会提出具体的研究任务,解决具体的问题。

而教育统计学主要是对数据进行分析和处理。

如果统计学不与一定的调查和试验联系起来,研究者就不知自己在干什么,说明什么问题。

反过来,调查和试验不与统计联系起来,则它们会是杂乱无章的,这样教育的规律就显示不出来。

▪二、教育统计学的内容从具体应用的角度来分,可以分成:1.描述统计。

就是对已获得的数据进行整理、概括,显现其分布特征的统计方法。

2.推断统计。

根据样本提供的信息,运用概率理论进行分析论证,在一定可靠程度上,对总体分布特征进行估计、推测,这种统计方法称为推断统计。

其内容包括总体参数估计和假设检验两部分。

第二节学习教育统计学的意义▪首先,统计学是教育科学研究的工具。

如教育者对随机因素的处理。

▪其次,是提高专业素养、专业水平的需要。

如可以帮助你阅读大量统计说明的资料,否则就不能理解别人的研究。

▪再次,提高教育实际工作的效率和科学性。

可以帮助了解现有的教育管理,从而在此基础上制定新的计划,提高教育实际工作的效率和科学性。

同时,还可不断发现问题,提出调整的方法和方案,因而能够提高工作效率。

最后,是科学训练的需要。

可以学会科学研究所需的推理和逻辑的能力训练。

第三节统计学中的几个基本概念一、随机变量试验结果数值不是恒定不变的量,我们把它称为变量。

教育统计学基础知识(史上最全最完整)

教育统计学基础知识(史上最全最完整)

教育统计学基础知识(史上最全最完整)教育统计学是一门研究关于教育现象的统计学科,它利用统计方法和技术来收集、分析和解释教育数据,从而推断和判断教育领域中的各种现象和关系。

本文将介绍教育统计学的基础知识,帮助读者了解该领域的核心概念和方法。

1. 教育统计学的重要性教育统计学是教育研究中必不可少的一部分,它可以帮助研究者进行数据收集、数据分析和结果解释。

教育统计学的应用领域广泛,包括教育政策制定、教育评估、教学改革等。

通过统计分析,我们可以对教育领域的问题进行量化描述和解释,为决策者提供有力的依据。

2. 教育统计学的基本概念- 总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分个体。

在教育统计学中,我们往往无法调查整个总体,所以需要通过样本来推断总体的情况。

总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分个体。

在教育统计学中,我们往往无法调查整个总体,所以需要通过样本来推断总体的情况。

- 变量与指标:变量是指教育统计研究中需要观察和测量的特征、属性或现象,比如学生成绩、家庭背景等;指标是度量变量的具体方法和工具,比如平均值、标准差等。

变量与指标:变量是指教育统计研究中需要观察和测量的特征、属性或现象,比如学生成绩、家庭背景等;指标是度量变量的具体方法和工具,比如平均值、标准差等。

- 描述统计与推断统计:描述统计是对收集到的数据进行总结和描述,如频数、比例、均值等;推断统计是根据样本的统计结果,推断总体的特征和关系,通过抽样误差估计总体参数。

描述统计与推断统计:描述统计是对收集到的数据进行总结和描述,如频数、比例、均值等;推断统计是根据样本的统计结果,推断总体的特征和关系,通过抽样误差估计总体参数。

3. 教育统计学的常用方法- 抽样方法:在实际调查中,我们通常无法对整个总体进行研究,而是通过合理的抽样方法来选取一部分样本,使得样本代表总体。

常用的抽样方法有随机抽样、系统抽样等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0055《教育统计学》2016年12月期末考试指导一、考试说明(一)说明考试为开卷考试,考试题型为撰写论文,主要考察对四种分析方法的应用分析能力,考试时随机抽取一种方法考核,试卷满分为100分,考试时间90分钟,考试时可携带相关资料。

(二)论文选题及内容要求1、论文选题为教学课件讲授内容中的如下知识点:(1)应用独立样本T检验方法进行数据统计分析的研究。

(字数不限)根据试卷中提供的数据和分析结果,进行讨论:差异与显著性差异的关系。

a. 讨论包括:本题所使用的数据统计分析方法的解释说明、结果分析和解释等2部分。

b. 解释为什么均值差异要分辨显著与不显著,为什么会出现有很大差异却不显著的现象。

(2)应用协方差分析方法进行数据统计分析的研究。

(2000字左右)在问题提出部分需要说明协变量(至少要有1个)的选择理由,采用自己虚拟的数据来阐述研究方法和结论解释。

(3)应用卡方检验统计分析方法进行数据统计分析的研究。

(字数不限)根据试卷提供的数据,分析模拟结果,注重解释所研究问题为什么要选择卡方检验的研究方法,并对统计分析结果做解释和讨论。

(4)应用偏相关分析方法进行数据统计分析的研究(2000字左右)在问题提出部分必须说明中介变量(或称为桥梁变量)的判定与选择理由,采用自己虚拟的数据来阐述研究方法和结论解释。

2、论文结构包括:问题提出,研究意义,实验过程,使用的数据统计分析方法,结论分析等5部分。

3、研究中使用的数据一律采用考生自己虚拟的数据,只注重研究问题的价值和意义,为什么选择这样的研究方法和统计分析结果的解释和讨论。

4、考试采取随机抽题的方式,随机抽取其中的一个选题考试(即一套试卷),考试期间仅允许携带平时个人研究撰写(手写)的资料(不允许电子打印版及手写复印版)、教材(教育统计学和数据统计分析与实践SPSS for Windows),不允许带其他材料。

5、学生将研究论文写在学院的统一考试答题纸上,要求字迹工整。

考试结束后现场密封答题随期末试卷一同寄回学院批改。

二、论文大纲(一)问题提出这部分首先需要阐述研究问题提出的背景,其次是说明研究问题,以及具体研究的问题维度,最好是能结合自己工作的实践确定问题。

例如:(二)研究意义研究问题必须具有明确的意义和研究价值,该部分主要描述通过这项研究,能获得什么样的价值,对什么有意义、有价值,研究的意义应当扎根于社会问题、教育问题或者是国民经济有关的问题。

(三)实验过程这部分内容包括:1. 被试的选取及样本的大小和特征;2. 对被试采用的测试是:问卷、访谈、行为观察还是系统测试;3. 在考题指定的研究方法中,相应的变量(如协变量、中介变量)是什么?有几个?对变量的数值有什么要求?同时一定要说出中介变量(或称为桥梁变量)的判定与选择理由。

例如:(四)使用的数据统计分析方法采用试题中指定的研究方法,说明为什么要使用这种研究方法,描述方法的适用性。

(五)结论分析这部分主要是对研究结果、分析结果的分析与解释讨论。

由于部分试卷中的数据是虚拟的,因此要对实验可能产生的不同结果都需要分析解释。

1. 对于独立样本T检验,两个独立样本的均值差异是否显著,对应的结论是什么?2.对于协方差分析,影响因素的作用显著表示什么结果?不显著又是什么结果?3. 对于偏相关分析,显著性水平sig<=0.05(0.01)怎么解释?显著性水平sig>0.05(0.01)又怎么解释?4. 对于卡方检验,观察值和理论值偏离程度太大,代表什么意义,是否有显著性差异?三、重点内容第六章抽样样本及总体平均数的推断1、对使用独立样本T检验方法的解释说明可以从独立样本T检验方法的特点、适用条件、适用性等方面说明,同时结合具体问题,阐述独立样本T检验方法的应用,并根据问题做出假设。

独立样本是指两个样本之间彼此独立,没有任何关联,两个独立样本各自接受相同的测量,研究者的主要目的是了解两个样本之间是否有显著差异存在。

检验的前提条件是:(1)两个样本应是相互独立的,即从总体中抽取一批样本对从同意总体抽取的另一样本没有任何影响,两组样本个案数目可以不同,个案顺序可以随意调整;(2)样本来自的总体应该服从正态分布。

独立样本T检验的零假设H0为两总体均值之间不存在显著差异。

T检验主要用于检验两个处理平均数差异是否显著。

2、结果分析和解释在题目中会给出对应的数据和分析结果,请结合题目作答。

对结果表格中的数据进行分析,可从df自由度、显著性水平sig、t值之间的比较来说明,重点阐述两个独立样本的均值差异是否显著,对应的结论是什么?例如:又如,假设数据是考生自己虚拟的,需要考虑两种情况:3、解释为什么均值差异要分辨显著与不显著,为什么会出现有很大差异却不显著的现象。

解释回答时可借助实例来分析。

显著性差异就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断原假设是否合理,即判断总体的真实情况与原假设是否存在显著差异。

所谓显著就是指两种或多种处理试验结果之前,本身确实存在差异。

如果不显著,就说明它们之间的差异是由抽样或偶然的因素引起的,不是真正有实际差异存在。

若两个样本来自同一总体,但是二者的样本平均数本身存在一定差异,那么这两个样本的差异则来源于随机抽样造成的随机误差,因而有可能出现有很大差异却不显著的现象。

第八章方差分析方差分析主要用于检验多个处理平均数间差异是否显著。

协方差是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。

协方差是用来度量两个变量之间“协同变异”大小的总体参数,即二个变量相互影响大小的参数,协方差的绝对值越大,二个变量相互影响越大。

协方差分析有两个意义,一是对实验进行统计控制,而是对协方差组分进行估计。

具体的分析结果如下:这是数据的描述性统计分析结果。

这是主要的统计分析结果,一个典型的方差分析表,解释一下:1、表格的第一行“校正模型”是对模型的检验,零假设是“模型中所有的因素对因变量均无影响”(这里包括分组、年龄及他们的交互作用),其P<0.001,拒绝零假设,说明存在对因变量有影响的因素。

2、表格的第二行是回归分析的常数项,通常无实际意义。

3、表格的第三行、第四行是对组和年龄的检验,P均<0.05,有统计学意义,说明分组和年龄对胆固醇的影响均有统计学意义。

4、表格的第五行是对分组和年龄的交互作用的检验,其P=0.935>0.05,说明分组和年龄无交互作用,也就是说,年龄对胆固醇的影响不随分组的不同而不同,这也是协方差分析的基本条件之一。

这里是满足的。

第十章χ2检验卡方检验主要用于由质量形状得来的次数资料的显著性检验等。

1、χ2检验的特点卡方检验是对样本的频数分布所来自的总体分布是否服从某种理论分布或某种假设分布所作的假设检验。

即根据样本的频数分布来推断总体的分布。

它属于自由分布的非参数检验。

它可以处理一个因素分为多种类别,或多种因素各有多种类别的资料。

所以,凡是可以应用比率进行检验的资料,都可以用卡方检验。

检验统计量χ2值反映了实际频数与理论频数的吻合程度。

2、χ2检验的基本思想首先假设H0成立,计算出χ2值,它表示观察值与理论值之间的偏离程度。

根据χ2分布,χ2统计量以及自由度可以确定在H0成立的情况下获得当前统计量及更极端情况的概率P。

如果P很小,说明观察值和理论值偏离程度太大,应当拒绝原假设,表示比较资料之间有显著性差异;否则就不能拒绝原假设,尚不能认为样本所代表的实际情况与理论假设有差别。

3、χ2检验的具体分析例1:例2:结论:χ2=12.857,df=1,双侧P<0.01,按照α=0.05检验水准,可认为两组总体有效率差异显著,即试验组的疗效优于对照组。

第十一章相关分析1、相关系数用来描述两个变量相互之间变化方向及密切程度的数字特征量称为相关系数。

相关系数通常用r表示。

首先,相关系数的数值范围是从-1到+1,其中r=1表示两个变量为完全正相关,R=-1,表示两个变量为完全负相关。

其次,分析相关系数的绝对值。

相关系数的绝对值越接近于1,表明两个变量之间的关系越密切;越接近于0,就表明两个变量之间的关系越不密切。

例如,r=-0.89的相关强度高于r=0.12。

2、偏相关分析偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程。

p值是针对原假设H0:假设两变量无线性相关而言的。

一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,R越大,说明越相关。

R越小,则相关程度越低。

描述性统计量均值标准差N综合得分94.344 3.4460 27 授权渠道得分58.708 1.6749 27 直供渠道得分27.582 2.3207 27相关性控制变量综合得分授权渠道得分直供渠道得分-无-a综合得分相关性 1.000 .550 .610显著性(双侧). .003 .001df 0 25 25 授权渠道得分相关性.550 1.000 .013显著性(双侧).003 . .948df 25 0 25 直供渠道得分相关性.610 .013 1.000显著性(双侧).001 .948 .df 25 25 0直供渠道得分综合得分相关性 1.000 .684显著性(双侧). .000df 0 24 授权渠道得分相关性.684 1.000显著性(双侧).000 .df 24 0a. 单元格包含零阶 (Pearson) 相关。

该数据表格为上下两部分,上半部分输出的是变量两两之间的PEARSON简单相关系数,如综合得分和授权渠道得分的相关系数为0.550,下半部分为排除直供渠道得分的结果,也就是偏相关的分析结果,可以看出综合得分和授权渠道得分的相关系数为0.684,显著性为0.000.因此两者相关性显著相关。

说明:本考试指导只适用于201609学期12月期末考试使用,包括正考和重修。

指导中的章节知识点涵盖考试所有内容,给出的习题为考试类型题,习题答案要点只作为参考,详见课程讲义或课程ppt。

在复习中有任何问题请到课程答疑区咨询。

祝大家考试顺利!。

相关文档
最新文档