2019-2020上海西南模范中学数学中考试卷附答案
2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷试题及答案(9月份)
2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷(9月份)一.选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.(4分)已知233m a b =- ,1124n b a =+ ,那么4m n -等于()A .823a b -B .443a b -C .423a b- D .843a b-2.(4分)如果点D 、E 分别在ABC ∆的边AB 和AC 上,那么不能判定//DE BC 的比例式是()A .::AD DB AE EC =B .::BD AB CE AC =C .::DE BC AD AB=D .::AB AC AD AE=3.如图,已知123////l l l ,3AB =,2BC =,1CD =,那么下列式子中不成立的是()A .:5:1EC CG =B .:1:1EF FG =C .:3:2EF FC =D .:3:5EF EG =4.(4分)下列命题中错误的是()A .相似三角形的周长比等于对应中线的比B .相似三角形对应高的比等于相似比C .相似三角形的面积比等于相似比D .相似三角形对应角平分线的比等于相似比5.(4分)如图,ABC ∆中,点D 在AB 上,点E 在AC 上,若ADE C ∠=∠,则下列等式成立的是()A .AD AEAB AC=B .AE ADBC BD=C .DE AEBC AB=D .DE ADBC AB=6.如图,在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =.点P 是边AC 上一动点,过点P 作//PQ AB 交BC 于点Q ,D 为线段PQ 的中点,当BD 平分ABC ∠时,AP 的长度为()A .813B .1513C .2513D .3213二.填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)在比例尺为1:20000的地图上,相距4厘米的两地A 、B 的实际距离为米.8.(4分)已知23a b =,则232a b a b-=+.9.(4分)已知点P 是线段AB 的黄金分割点,AP BP >,若4AB =,则BP =.10.(4分)在ABC ∆中,经过重心G 作线段//DE BC 交AB 于D ,交AC 于E ,则:DE BC =.11.(4分)D 、E 是ABC ∆的AB 、AC 边上的点,//DE BC ,2AD =,3DB =, 5.5AC =,则AE =.12.(4分)已知ABC ∆∽△111A B C ,且相似比1123AB A B =,ABC ∆的面积为8,那么△111A B C 的面积为.13.(4分)在ABC ∆中,90ACB ∠=︒,CD AB ⊥,垂足为D .若2,3ACD CBDS AD CD S ∆∆==则.14.(4分)点E 是ABCD 边AD 上一点,且:3:2AE ED =,CE 交BD 于点O ,则BOBD=.15.(4分)已知ABC ∆中,4AB AC ==,2BC =,把ABC ∆绕点C 旋转,使点B 落在边AB 上的点E ,则AE =.16.(4分)如图,已知ABC ∆中,60BAC ∠=︒,高BE 、CF 交于点D ,则AEFABCS S ∆∆=.17.(4分)如图,ABC ∆中,4AB AC ==,6BC =,点E 、F 在边BC 上,且EAF C ∠=∠,则BF CE =.18.(4分)如图,在ABC ∆中,90C ∠=︒,5AB =,3BC =,点D 、E 分别在AC 、AB 上,且AD BE =.联结DE ,点A 关于直线DE 的对称点为1A ,联结1A E .若1A E 与ABC ∆的其中一条边垂直,则BE 的长为.三.解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上]19.(10分)如图,已知梯形ABCD 中,//AB DC ,AOB ∆的面积等于9,AOD ∆的面积等于6,7AB =,求CD 的长.20.(10分)如图,AD 是ABC ∆中BC 边上的中线,点E 是AD 的中点,BA a = ,BC b = ,(1)试用向量a,b 表示向量:AE .(2)在原图上作出BD 在AE 和AC方向上的分向量.21.(10分)如图(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC ,BC 表示铁夹的两个面,O 点是轴,OD AC ⊥于D .已知15AD mm =,24DC mm =,10OD mm =.已知文件夹是轴对称图形,试利用图(2),求图(1)中A ,B 两点的距26=).22.(10分)已知,如图在矩形ABCD 中,AE BD ⊥于点E ,作EP EC ⊥,交AD 于点P .求证:(1)AEP DEC ∆∆∽;(2)BE AB AE AP = .23.(12分)如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,90ABC ADE ∠=∠=︒,CD 与BE 、AE 分别交于点P 、M .求证:(1)BAE CAD ∆∆∽;(2)22CB CP CM = .24.(12分)如图,一次函数(0)y kx b k =+≠的图象与x 轴,y 轴分别交于(9,0)A -、(0,6)B ,过点(2,0)C 作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数(0)y kx b k =+≠的解析式;(2)求直线l 的解析式;(3)若CBE ∆与ABO ∆相似,求点E 的坐标.25.(14分)如图,ABC ∆中,5AB AC ==,6BC =,点D 、E 分别是边AB 、AC 上的动点(点D 、E 不与ABC ∆的顶点重合),AD 和BE 交于点F ,且AFE ABC ∠=∠.(1)求证:ABD BCE ∆∆∽;(2)设AE x =,AD FD y = ,求y 关于x 的函数关系式,并直接写出x 的取值范围;(3)当AEF ∆是等腰三角形时,求DF 的长度.2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一.选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.(4分)已知233m a b =- ,1124n b a =+ ,那么4m n -等于()A .823a b -B .443a b -C .423a b- D .843a b-【解答】解: 233m a b =- ,1124n b a =+,∴211284(3)4()32232433m n a b b a a b b a a b -=--+=---=-.故选:A .2.(4分)如果点D 、E 分别在ABC ∆的边AB 和AC 上,那么不能判定//DE BC 的比例式是()A .::AD DB AE EC =B .::BD AB CE AC =C .::DE BC AD AB=D .::AB AC AD AE=【解答】解:A 、::AD DB AE EC = ,//DE BC ∴,故本选项能判定//DE BC ;B 、::BD AB CE AC = ,//DE BC ∴,故本选项能判定//DE BC ;C 、由::DE BC AD AB =,不能判定//DE BC ;故本选项不能判定//DE BC ;D 、::AB AC AD AE = ,::AB AD AC AE ∴=,//DE BC ∴,故本选项能判定//DE BC .故选:C .3.如图,已知123////l l l ,3AB =,2BC =,1CD =,那么下列式子中不成立的是()A .:5:1EC CG =B .:1:1EF FG =C .:3:2EF FC =D .:3:5EF EG =【解答】解:123////l l l ,::5:1EC CG AC CD ∴==,所以A 选项成立;::3:31:1EF FG AB BD ===,所以B 选项成立;::3:2EF FC AB BC ==,所以C 选项成立;::3:61:2EF EG AB AD ===,所以D 选项不成立.故选:D .4.(4分)下列命题中错误的是()A .相似三角形的周长比等于对应中线的比B .相似三角形对应高的比等于相似比C .相似三角形的面积比等于相似比D .相似三角形对应角平分线的比等于相似比【解答】解:A 、相似三角形的周长比与对应中线的比等于相似比,故本选项正确;B 、相似三角形对应高的比等于相似比,故本选项正确;C 、相似三角形的面积比等于相似比的平方,故本选项错误;D 、似三角形对应角平分线的比等于相似比,故本选项正确.故选:C .5.(4分)如图,ABC ∆中,点D 在AB 上,点E 在AC 上,若ADE C ∠=∠,则下列等式成立的是()A .AD AEAB AC=B .AE ADBC BD=C .DE AEBC AB=D .DE ADBC AB=【解答】解:ADE C ∠=∠ ,A A ∠=∠,ADE ACB ∴∆∆∽,:::AD AC AE AB DE BC ∴==,故选:C .6.(4分)如图,在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =.点P 是边AC 上一动点,过点P作//PQ AB交BC于点Q,D为线段PQ的中点,当BD平分ABC∠时,AP的长度为()A.813B.1513C.2513D.3213【解答】解:90C∠=︒,5AB=,4BC=,223AC AB BC∴-=,//PQ AB,ABD BDQ∴∠=∠,又ABD QBD∠=∠,QBD BDQ∴∠=∠,QB QD∴=,2QP QB∴=,//PQ AB,CPQ CAB∴∆∆∽,∴CP CQ PQCA CB AB==,即42345CP QB QB-==,解得,2413CP=,1513AP CA CP∴=-=,故选:B.二.填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)在比例尺为1:20000的地图上,相距4厘米的两地A、B的实际距离为800米.【解答】解:设AB的实际距离为xcm,比例尺为1:20000,4:1:20000x∴=,80000800x cm m∴==.故答案为800.8.(4分)已知23a b =,则232a b a b-=+112.【解答】解:设2a k =,3b k =,则2431326612a b k k a b k k --==++.故答案为:112.9.(4分)已知点P 是线段AB 的黄金分割点,AP BP >,若4AB =,则BP =6-【解答】解: 点P 是线段AB 的黄金分割点,AP BP >,2AP ∴==,42)6BP AB AP ∴=-=-=-,故答案为:6-.10.(4分)在ABC ∆中,经过重心G 作线段//DE BC 交AB 于D ,交AC 于E ,则:DE BC =2:3.【解答】解:连接AG 并延长到BC 边上一点F ,在ABC ∆中,经过重心G 作线段//DE BC 交AB 于D ,交AC 于E ,ADE ABC ∴∆∆∽,AGE AFC ∆∆∽,∴AG AE AF AC =,AE DEAC BC =,∴DE AGBC AF =,2AG GF = ,∴23DE AG BC AF ==故答案为:2:3.11.(4分)D 、E 是ABC ∆的AB 、AC 边上的点,//DE BC ,2AD =,3DB =, 5.5AC =,则AE =2.2.【解答】解://DE BC ,::AD DB AE EC ∴=,即2:3:(5.5)AE AE =-,2.2AE ∴=.故答案为2.2.12.(4分)已知ABC ∆∽△111A B C ,且相似比1123AB A B =,ABC ∆的面积为8,那么△111A B C 的面积为18.【解答】解:ABC ∆ ∽△111A B C ,211112:(:)ABC A B C S S AB A B ∆∴= ,即1118:4:9A B C S = ,解得11118A B C S = .故答案为:18.13.(4分)在ABC ∆中,90ACB ∠=︒,CD AB ⊥,垂足为D .若2,3ACD CBDS AD CD S ∆∆==则49.【解答】解:90ACB ∠=︒ ,CD AB ⊥,90CDA CDB ∴∠=∠=︒,90A ACD ACD BCD ∠+∠=∠+∠=︒ ,A BCD ∴∠=∠,ACD CBD ∴∆∆∽,∴2224((39ACD CBD S AD S CD ∆∆===,故答案为:49.14.(4分)点E 是ABCD 边AD 上一点,且:3:2AE ED =,CE 交BD 于点O ,则BOBD=57.【解答】解::3:2AE ED = ,:2:5DE AD ∴=,四边形ABCD 是平行四边形,:2:5DE BC ∴=,四边形ABCD 是平行四边形,//AD BC ∴,DEF BCF ∴∆∆∽,::2:5DE BC OD OB ∴==.∴57BO BD =,故答案为:57.15.(4分)已知ABC ∆中,4AB AC ==,2BC =,把ABC ∆绕点C 旋转,使点B 落在边AB 上的点E ,则AE =3.【解答】解:如图,作AH BC ⊥于H ,CF AB ⊥于F .AB AC = ,AH BC ⊥,1BH CH ∴==,cos BH BF B AB BC ∠== ,∴142BF =,12BF ∴=,CB CE = ,CF BE ⊥,12BF EF ∴==,413AE AB BE ∴=-=-=,故答案为3.16.(4分)如图,已知ABC ∆中,60BAC ∠=︒,高BE 、CF 交于点D ,则AEF ABC S S ∆∆=14.【解答】解:AB CF ⊥ ,BE AC ⊥,90AEB AFC ∴∠=∠=︒,A A ∠=∠ ,ABE ACF ∴∆∆∽,∴AE AB AF AC =,∴AE AF AB AC=,ABC AEF ∴∆∆∽;在Rt ABE ∆中,60BAC ∠=︒ ,30ABE ∴∠=︒,∴12AE AB =,∴14AEF ABC S S ∆∆=,故答案为:14.17.(4分)如图,ABC ∆中,4AB AC ==,6BC =,点E 、F 在边BC 上,且EAF C ∠=∠,则BF CE = 16.【解答】证明:AEC B BAE EAF BAE BAF ∠=∠+∠=∠+∠=∠ ,又AB AC = ,B C ∴∠=∠,ABF ECA ∴∆∆∽,∴AB BF CE AC=,2BF EC AB AC AB ∴== 4AB = ,16BF CE ∴= .故答案为:16.18.(4分)如图,在ABC ∆中,90C ∠=︒,5AB =,3BC =,点D 、E 分别在AC 、AB 上,且AD BE =.联结DE ,点A 关于直线DE 的对称点为1A ,联结1A E .若1A E 与ABC ∆的其中一条边垂直,则BE 的长为53或52或2512.【解答】解:设BE AD x ==,则5AE x =-,90C ∠=︒ ,5AB =,3BC =,4AC ∴=,分三种情况:①1A E AC ⊥时,连接1A D ,如图1所示:则1//A E BC ,由轴对称的性质得:15A E AE x ==-,1A D AD x ==,1DA E BAC ∠=∠,1//A E BC ,AEF ABC ∴∆∆∽,∴EF AE BC AB =,即535EF x -=,3(5)5EF x ∴=-,在Rt △1A DF 中,1A D x =,1cos cos DA E BAC ∠=∠,∴11A F AC A D AB=,即145A F x =,解得:145A F x =,15A E AE x ==- ,∴34(5)555x x x -+=-,解得:53x =;②1A E BC ⊥时,连接1A D ,如图2所示:则1//A E AC ,1A ED ADE ∴∠=∠,由轴对称的性质得:15A E AE x ==-,1A D AD x ==,1A DE ADE ∠=∠,11A DE A ED ∴∠=∠,11A E A D x ∴==,5x x ∴-=,解得:52x =;③1A E AB ⊥时,连接1A D ,作1DP A E ⊥于P ,如图3所示:则//DP AB ,由轴对称的性质得:15A E AE x ==-,1A D AD x ==,1DA E BAC ∠=∠,1sin sin DA E BAC ∴∠=∠,∴1DP BC A D AB=,即35DP x =,解得:35DP x =,//DP AB ,BAC PDF ∴∠=∠,1//A E BC ,cos cos BAC PDF ∴∠=∠,即AC DP AB DF=,3455x DF =,解得:34DF x =,又cos AE AC BAC AF AB ∠== ,∴545x AF -=,5(5)4AF x ∴=-,∴35(5)44x x x +=-,解得:2512x =;综上所述,若1A E 与ABC ∆的其中一条边垂直,则BE 的长为53或52或2512;故答案为:53或52或2512.三.解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上]19.(10分)如图,已知梯形ABCD 中,//AB DC ,AOB ∆的面积等于9,AOD ∆的面积等于6,7AB =,求CD 的长.【解答】解://AB DC ,∴CD DO AB BO=,⋯(3分)AOB ∆ 的面积等于9,AOD ∆的面积等于6,∴23DO BO =,(3分)∴23CD DO AB BO ==,7AB = ,143CD ∴=.20.(10分)如图,AD 是ABC ∆中BC 边上的中线,点E 是AD 的中点,BA a = ,BC b = ,(1)试用向量a ,b 表示向量:AE 1142b a - .(2)在原图上作出BD 在AE 和AC 方向上的分向量.【解答】解:(1) AD AB BD =+ ,BD DC =, 12AD a b =-+ ,12AE AD =,∴1142AE b a =- ,故答案为1142b a - .(2)如图,出BD 在AE 和AC 方向上的分向量分别为BM ,BN .21.(10分)如图(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC ,BC 表示铁夹的两个面,O 点是轴,OD AC ⊥于D .已知15AD mm =,24DC mm =,10OD mm =.已知文件夹是轴对称图形,试利用图(2),求图(1)中A ,B 两点的距离(:26)=.【解答】解:如图,连接AB ,与CO 的延长线交于点E ,夹子是轴对称图形,对称轴是CE ,A 、B 为一组对称点,CE AB ∴⊥,AE EB =.在Rt AEC ∆、Rt ODC ∆中,90AEC ODC ∠=∠=︒ ,OCD ∠是公共角,Rt AEC Rt ODC ∴∆∆∽,∴AE OD AC OC=.又26OC ===,39101526AC OD AE OC ⨯∴=== ,230()AB AE mm ∴==.22.(10分)已知,如图在矩形ABCD中,AE BD⊥于点E,作EP EC⊥,交AD于点P.求证:(1)AEP DEC∆∆∽;(2)BE AB AE AP=.【解答】证明:(1)AE BD⊥,PE EC⊥,90AED PEC∴∠=∠=︒,AEP DEC∴∠=∠,90EAD ADE∠+∠=︒,90ADE CDE∠+∠=︒,EAP EDC∴∠=∠,AEP DEC∴∆∆∽;(2)AEP DEC∆∆∽∴AP AE CD ED=,//AB CD,ABE EDC ∴∠=∠,又EAP EDC∠=∠,又AEB AED∠=∠,AEP BEA∴∆∆∽,∴BE AE AE ED=,∴BE APAE CD=,BE CD AE AP∴=,又AB CD=,BE AB AE AP ∴= .23.(12分)如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,90ABC ADE ∠=∠=︒,CD 与BE 、AE 分别交于点P 、M .求证:(1)BAE CAD ∆∆∽;(2)22CB CP CM = .【解答】(1)证明: 等腰Rt ABC ∆和等腰Rt ADE ∆,90ABC ADE ∠=∠=︒,AC ∴=,AD =,45BAC CAD ∠=∠=︒∴AC AD AB AE=BAC EAD∠=∠ BAE CAD∴∠=∠BAE CAD∴∆∆∽(2)BAE CAD ∆∆ ∽,BEA CDA ∴∠=∠,PME AMD∠=∠ PME AMD∴∆∆∽∴PM ME AM MD=,且PMA DME ∠=∠,PMA EMD ∴∆∆∽,90APD AED ∴∠=∠=︒,18090CAE BAC EAD ∠=︒-∠-∠=︒ ,且ACP ACM ∠=∠,CAP CMA ∴∆∆∽,∴AC CM CP AC=,2AC CP CM ∴= ,AC =22CB CP CM∴= 24.(12分)如图,一次函数(0)y kx b k =+≠的图象与x 轴,y 轴分别交于(9,0)A -、(0,6)B ,过点(2,0)C 作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数(0)y kx b k =+≠的解析式;(2)求直线l 的解析式;(3)若CBE ∆与ABO ∆相似,求点E的坐标.【解答】解:(1) 一次函数(0)y kx b k =+≠的图象与x 轴,y 轴分别交于(9,0)A -,(0,6)B 两点,∴906k b b -+=⎧⎨=⎩,解得,236k b ⎧=⎪⎨⎪=⎩,∴一次函数y kx b =+的表达式为263y x =+;(2)如图1,直线l 与y 轴的交点为D ,BC l ⊥ ,90BCD BOC ∴∠=︒=∠,OBC OCB OCD OCB ∴∠+∠=∠+∠,OBC OCD ∴∠=∠,BOC COD ∠=∠ ,OBC OCD ∴∆∆∽,∴OB OC OC OD=,(0,6)B ,(2,0)C ,6OB ∴=,2OC =,∴622OD=,23OD ∴=,2(0,3D ∴-,(2,0)C ,设直线l 的函数解析式为y mx n =+,2320n m n ⎧=-⎪⎨⎪+=⎩,得1323m n ⎧=⎪⎪⎨⎪=-⎪⎩∴直线l 的解析式为1233y x =-;(3)CBE ∆ 与ABO ∆相似,∴当1CBE OAB ∆∆∽时,则1CE BCOB AO =,点(9,0)A -、(0,6)B ,点(2,0)C ,9OA ∴=,6OB =,2OC =,90BOD ∠=︒,BC ∴==∴169CE =,解得,13CE =,设点的1E 坐标为12(,33a a -,则22212(2)()33a a =-+-且0a >,解得,6a =,∴点1E 坐标为4(6,3;当2CBE OBA ∆∆∽时,则2CE BCOA BO =,点(9,0)A -、(0,6)B ,点(2,0)C ,9OA ∴=,6OB =,2OC =,90BOD ∠=︒ ,BC ∴==∴296CE =,解得,2CE =,设点的2E 坐标为12(,)33c c -,则22212(2)()33c c =-+-且0c >,解得,11c =,则点2E 坐标为(11,3);由上可得,E 点坐标为4(6,)3或(11,3).25.(14分)如图,ABC ∆中,5AB AC ==,6BC =,点D 、E 分别是边AB 、AC 上的动点(点D 、E 不与ABC ∆的顶点重合),AD 和BE 交于点F ,且AFE ABC ∠=∠.(1)求证:ABD BCE ∆∆∽;(2)设AE x =,AD FD y = ,求y 关于x 的函数关系式,并直接写出x 的取值范围;(3)当AEF ∆是等腰三角形时,求DF 的长度.【解答】(1)证明:AFE ABC ∠=∠ ,AFE ABF BAF ∠=∠+∠,ABC ABF CBE ∠=∠+∠,BAD CBE ∴∠=∠,AB AC = ,ABD C ∴∠=∠,ABD BCE ∴∆∆∽.(2)解:BDF ADB ∠=∠ ,DBF BAD ∠=∠,BDF ADB ∴∆∆∽,∴BD DF AD BD=,2BD DF AD ∴= ,ABD BCE ∆∆ ∽,∴DB AB EC BC =,∴556BD x =-,5(5)6BD x ∴=-,2225(5)36y AD DF BD x ∴===- ∴225250625(05)36x x y x -+=<<.(3)解:①如图1中,当AE EF =时,AE EF = ,AFE EAF ∴∠=∠,AFE ABC C ∠=∠=∠ ,DCA ABC EAF ∴∆∆∽∽,∴556DC =,256AD DC ∴==,同法可得65AF x =,2511666BD ∴=-=,2BD DF DA = ,∴12125366DF = ,121150DF ∴=.②如图2中,当FA FE =时,作AH BC ⊥于H .FA FE = ,FAE FEA ∴∠=∠,ABD BCE ∆∠ ∽,ADB BEC ∴∠=∠,ADC FEA ∴∠=∠,CDA CAD ∴∠=∠,5CD CA ∴==,AB AC = ,AH BC ⊥,3BH CH ∴==,4AH ∴==,532DH ∴=-=,AD ===1BD = ,2BD DF AD = ,1DF ∴= ,10综上所述,121150DF =.。
2019-2020上海市中考数学试卷(及答案)
2019-2020上海市中考数学试卷(及答案)一、选择题1.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm2.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差3.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°6.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣57.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A .12B .24C .123D .163 8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q9.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒ 10.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C .D .11.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .1812.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.16.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 17.计算:82-=_______________.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 24.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A 在甲组的概率是多少?,都在甲组的概率是多少?(2)A B25.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.2.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.3.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.4.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.5.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.7.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=23×8=163.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.8.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.9.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】m n,解:直线//∴∠+∠∠+∠=+︒,ABC BAC21180∠,9030∠=︒,ABC=︒BAC∠=︒,140︒︒︒,︒︒=∴∠=---218030904020故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.10.A解析:A【解析】【分析】【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.11.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2解析:20112【解析】【分析】 分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m 由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛解析:11 x【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙; (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4;令y 甲=y 乙,即15x+7=16x+3,解得:x=4;令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型. 22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16.利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1625.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.。
上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)
【19题答案】
【答案】A
【分析】将方程解的条件化为函数的取值,从而求出m的取值范围.
【详解】∵方程x2+(m+2)x+m+5=0的一个根大于1,另一个根小于1,
令f(x)=x2+(m+2)x+m+5,
则f(1)=1+m+2+m+5<0,
解得,m<-4.
故选A.
【点睛】本题考查了函数与方程之间的互相转化,属于基础题.
4.当 _____时,函数 是正比例函数,且 的值随 的值增大而减小.
【4题答案】
【答案】0
【分析】根据正比例函数的意义,可得答案.
【详解】∵函数 是正比例函数,
∴ ,
解得, , ,
∵y的值随x的值增大而减小,
∴m-2<0,即m<2
∴m=0,
故答案为0.
【点睛】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.
【答案】C
【分析】先提取公因式4后,观察方程4(x2+2x- ),可以令x2+2x- =0,用配方法解得两根x1、x2,则 =4(x2+2x- )=(x-x1)(x-x2).
【详解】 =4(x2+2x- )
令x2+2x- =0,则x2+2x=
∴x2+2x+1= +1,即(x+1)2=
解得, , ,
∴ =4
【点睛】本题考查了一元二次方程的解的定义:就是能够使方程左右两边相等的未知数的值,此题应特别注意一元二次方程的二次项系数不得为零.
10.关于 的代数式 是一个完全平方式,则 _____.
2019-2020上海中考数学试卷及参考答案(2套)
D.甲的成绩的中位数比乙大
5.下列命题中,假命题是(
)
A.矩形的对角线相等
B.矩形对角线交点到四个顶点的距离相等
C.矩形的对角线互相平分
D.矩形对角线交点到四条边的距离相等
6.已知⊙ A 与⊙ B 外切,⊙ C与⊙ A、⊙B 都内切,且 AB=5,AC=6,BC=7,那么⊙的
半径长是(
)
A.11
B. 10
(2)解:延长 AD 交 BC于点 F.
∵AE=AB,∴∠ ABE=∠ E.
∵BE平分∠ ABC,∴∠ ABE=∠ CBE,∴∠ CBE=∠ E.
∴AE∥ BC. ∴∠ AFB=∠ FAE=90°, BF BD
AE DE
又∵ BD∶DE=2∶3 ∴ cos∠ABC= BF BD
AE DE
(3)解:△ ABC与△ ADE相似,且∠ DAE=90°,
S△ ABC
2019 年上海市初中毕业统一学业考试
数学试卷
考生注意:
1. 本试卷共 25 题.
2. 试卷满分 150 分, 考试时间 100 分钟 .
3. 答题时 , 考生务必按答题要求在答题纸规定的位置上作答 , 在草稿纸、本试卷上答题一律无效 .
4. 除第一、二大题外 , 其余各题如无特殊说明 , 都必须在答题纸的相应位置上写出证明或计算的主要步骤
C. 9
D.8
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7.计算:(2a2) 2=
ቤተ መጻሕፍቲ ባይዱ
。
8.已知 f(x)= x2-1,那么 f(- 1)=
。
9.如果一个正方形的面积是 3,那么它的边长是=
。
10.如果关于 x 的方程 x2-x+m=0 没有实数根,那么实数 m的取值范围是=
2019-2020学年上海市徐汇区西南模范中学七年级(上)期中数学试卷(含详解)
11.(2 分)计算:
=
.
【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.
【解答】解:原式=[ ﹣
]•
=
•
=.
故答案为: .
【点评】此题主要考查了分式的混合运算,正确掌握相关运算法则是解题关键.
12.(2 分)若关于 x 的方程
有增根,则 m= ±7 .
【分析】将已知方程化为 m=2x2﹣25,由方程有增根可得 x=3 或 x=4,代入即可求 m 的值.
【点评】考查十字相乘法的应用,多项式乘法的计算方法是十字相乘法的理论依据.
9.(2 分)如果单项式
与
的和仍是单项式,那么 mn= 12 .
【分析】根据题意得到两单项式为同类项,利用同类项定义求出 m 与 n 的值即可.所含 字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【解答】解:∵单项式
9.(2 分)如果单项式
与
的和仍是单项式,那么 mn=
.
10.(2 分)若 9x2﹣3(m﹣5)x+16 是完全平方式,则 m=
.
11.(2 分)计算:
=
.
12.(2 分)若关于 x 的方程
有增根,则 m=
.
13.(2 分)某油箱中有油 20 升,油从管道中均匀流出,100 分钟可以流尽,当流出时间为
第 7页(共 18页)
零,需同时具备两个条件:(1)分子为 0;(2)分母不为 0.这两个条件缺一不可. 7.(2 分)计算:(﹣a+2b﹣c)2= a2﹣4ab+2ac+4b2﹣4bc+c2 .
【分析】根据完全平方公式解答即可. 【解答】解:(﹣a+2b﹣c)2 =[﹣a+(2b﹣c)]2 =(﹣a)2﹣2a(2b﹣c)+(2b﹣c)2 =a2﹣4ab+2ac+4b2﹣4bc+c2. 故答案为:a2﹣4ab+2ac+4b2﹣4bc+c2. 【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.(a±b)2=a2± 2ab+b2. 8.(2 分)因式分解:15x2+13xy﹣44y2= (3x﹣4y)(5x+11y) . 【分析】利用十字相乘法,分别对二次项系数,常数项进行因数分解,交叉乘加,检验 是否得中项的系数,从而确定适当的“十字”进行因式分解. 【解答】解:利用十字相乘法,如图, 将二次项系数、常数项分别分解,交叉乘加验中项,得出答案, 15x2+13xy﹣44y2=(3x﹣4y)(5x+11y). 故答案为:(3x﹣4y)(5x+11y).
上海市徐汇区西南模范中学2019-2020学年八年级上学期期中数学试卷-(有解析)
上海市徐汇区西南模范中学2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共6小题,共分)1.关于x的一元二次方程kk2+kk+1=0是一元二次方程的条件是()A. k≠0B. k≠3C. k≠−2且k≠3D. k≠−22.一元二次方程(k−1)2−2=0的根是()A. k=√2B. k1=−1,k2=3C. k=−√2D. k1=1+√2,k2=1−√23.下列函数中,y随x的增大而减小的函数个数是()4.(1)k=2k+8(2)k=1k (3)k=−2k2+8(k>1)(4)k=−4k(5)k=3k(k>0)A. 1B. 2C. 3D. 45.点P到△kkk的三个顶点的距离相等,则点P是△kkk()的交点.A. 三条高B. 三条角平分线C. 三条中线D. 三边的垂直平分线6.如图,在△kkk中,∠k=36°,kk=kk,AB的垂直平分线OD交AB于点O,交AC于点D,连接kk.则下列结论:①∠k=2∠k;②kk平分∠kkk;③kk=kk;④kk=kk.正确的有()A. 1个B. 2个C. 3个D. 4个7.如图,在△kkk中,∠kkk的平分线与BC的垂直平分线交于点P,连接CP,若∠k=75°,∠kkk=12°,则∠kkk的度数为()A. 12°B. 31°C. 53°D. 75°二、填空题(本大题共12小题,共分)8.函数k=√2k−1的定义域是______.9.方程k2+2k=1的解是______.10.方程k2−3k=0的根是_________.11.因式分解:9−k2=.12.已知一次函数k=(−3k+1)k+k的图象经过第一、二、三象限,不经过第四象限,则a的取值范围是________.的图像上,则k1、k2、k3的大小关13.若点(−2,k1),(−1,k2),(1,k3)在反比例函数k=k2+1k系为(用“<”连接).14.命题“如果k=k,那么3k=3k”的逆命题是.15.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么方程是______.16.如图,分别以线段BC的两个端点为圆心、适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点D和E;作直线DE交BC于点F;在直线DE上任取一点k(点A不与点F重合),连接AB、kk.若kk=9kk,∠k=60°,则CF的长为______cm.17.如图,在△kkk中,∠k=90°,BD平分∠kkk,交AC于点D,kk=14kk,且CD:kk=2:5,则点D到AB的距离为______ cm.18.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为__________.19.20.21.如图所示,在△kkk中,AD平分∠kkk,BE是高线,∠kkk=50°,∠kkk=20°,则∠kkk的度数为_______.22.24.三、解答题(本大题共10小题,共分)25.解方程:3k2−1=2k+2.26.27.28.29.30.31.32.用配方法解方程2k2−5k+2=0.33.34.35.36.37.38.39.解方程:k2−k−3=0.40.41.42.43.44.45.46.请按要求尺规作图,不要求写作法,保留作图痕迹47.(1)在图中,用尺规作∠kkk的平分线;48.49.51.(2)在图中,用尺规作线段AB的垂直平分线.52.53.54.55.56.57.58.59.60.k2+(2k+1)k+k2−2=0有实数根,求k的取值范围.61.62.63.64.65.66.67.小明从家骑自行车出发,沿一条直线到相距2000m的邮局办事,小明出发的同时,他的爸爸以80k/kkk的速度从邮局沿同一条道路步行回家,小明在邮局停留4min后沿原路以原速返回,恰好比爸爸早5分钟到家.图中折线OABC和线段EF分别是表示他们与家的距离sm与小明从家出发后的时间t min之间的函数关系的图象.68.(1)求小明爸爸回家用时间及小明从家到邮局的时间;69.(2)小明从家出发,经过多长时间在返回途中追上爸爸这时他们距离家多远70.已知:如图,△kkk的边BC的垂直平分线DE分别与AB、BC交于点D、k.求证:kk>kk.71.72.“WJ一号”水稻种子,当年种植,当年收割,当年出水稻产量,(以后每年要出产量还需重要新种植),某村2017、2018、2019年连续尝试种植了此水稻种子.2018年和2019年种植面积都比上年减少相同的数量,若2019年平均每公顷水稻产量比2018年增加的百分数是2018年比2017年增加的百分数的1.25倍,2019年比2017年种植面积减少的百分数与2019年水稻总产量比2017年增加的百分数相同,都等于2018年比上年平均每公顷水稻产量增加的百分数.73.(1)求2019年平均每公顷水稻产量比2018年增加的百分数;74.(2)求2018年这种水稻总产量比上年增加的百分数.75.76.77.78.79.80.81.如图,在平面直角坐标系中,一次函数k=k+k的图象经过点k(0,1),与反比例函数k=k(k>0)的图象交于k(k,2).k82.(1)求k和b的值;(2)在双曲线k=k(k>0)上是否存在点C,使得△kkk为等腰直角三角形?若存在,求出k点C坐标;若不存在,请说明理由.83.(1)如图1,在等边△kkk中,点M是BC边上的任意一点(不含端点B,k),连结AM,以AM为边作等边△kkk,并连结kk.求证:kk=kk+kk.84.(2)【类比探究】85.如图2,在等边△kkk中,若点M是BC延长线上的任意一点(不含端点k),其它条件不变,则kk=kk+kk是否还成立?若成立,请说明理由;若不成立,请写出AB,CN,CM三者之间的数量关系,并给予证明.86.-------- 答案与解析 --------1.答案:A解析:解:由关于x的一元二次方程kk2+kk+1=0,得k≠0.故选:A.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.答案:D解析:【分析】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.利用直接开平方法即可解答.【解答】解:∵(k−1)2=2,∴k−1=±√2,即k=1±√2,∴k1=1+√2,k2=1−√2.3.答案:C解析:本题考查了一次函数的图象,反比例函数的图象,二次函数的图象,熟练掌握各函数的图象与性质是解题的关键.根据一次函数的图象,反比例函数的图象,二次函数的图象的性质判断即可.解:(1)k=2k+8,k=2>0,y随x的增大而增大,不符合题意;(2)k=1,k=1>0,在每一象限内,y随x的增大而减小,不符合题意;k(3)k=−2k2+8(k>1),y随x的增大而减小,符合题意;(4)k=−4k,k=−4<0,y随x的增大而减小,符合题意;(k>0),y随x的增大而减小,符合题意;(5)k=3k所以有三个函数都是y随x的增大而减小.故选C.4.答案:D解析:此题考查了线段垂直平分线的性质,掌握线段垂直平分线的性质是关键,根据点P到△kkk的三个顶点的距离相等,即可得到点P是△kkk三边的垂直平分线的交点.解:∵点P到△kkk的三个顶点的距离相等,∴点P是△kkk三边的垂直平分线的交点,故选D.5.答案:C解析:本题主要考查了等腰三角形性质,线段垂直平分线性质的应用,主要考查学生的推理能力.求出∠k的度数即可判断①;求出∠kkk和∠kkk的度数,求出∠kkk的度数,即可判断②;根据等腰三角形的判定即可判断③;根据角平分线的性质以及直角三角形斜边长大于直角边长,则可判断④.解:∵∠k=36°,kk=kk,∴∠k=∠kkk=72°,∴∠k=2∠k,①正确;∵kk是AB的垂直平分线,∴kk=kk,∴∠k=∠kkk=36°,∴∠kkk=72°−36°=36°=∠kkk,∴kk是∠kkk的角平分线,②正确;∵∠kkk=36°,∠k=72°,∴∠kkk=72°,∴∠kkk=∠kkk,∴kk=kk=kk,③正确.∵kk是AB垂直平分线,∴kk⊥kk,作kk⊥kk于E,则kk=kk<kk,④错误;则①②③正确,故选C.6.答案:B解析:本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段的垂直平分线的性质得到kk=kk,得到∠kkk=∠kkk,根据角平分线的定义、三角形内角和定理列式计算即可.解:设线段BC的垂直平分线与BC交于点E∵kk是∠kkk的平分线,∴∠kkk=∠kkk,∵kk是线段BC的垂直平分线,∴kk=kk,∴∠kkk=∠kkk,∴∠kkk=∠kkk=∠kkk,∴∠kkk+∠kkk+∠kkk+12°+75°=180°,解得,∠kkk=31°,故选:B.7.答案:k≥12解析:解:根据题意得:2k−1≥0,解得:k≥1.2.故答案为k≥12根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围.本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.答案:k1=−1+√2,k2=−1−√2解析:解:k2+2k+1=2,(k+1)2=2,k+1=±√2,所以k1=−1+√2,k2=−1−√2.故答案为k1=−1+√2,k2=−1−√2.利用配方法得到(k+1)2=2,然后利用直接开平方法解方程.本题考查了解一元二次方程−配方法:将一元二次方程配成(k+k)2=k的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.答案:k1=0,k2=3解析:本题主要考查了一元二次方程的解法,解一元二次方程的关键是降次,将二次降为1次,常用的方法有,直接开平方法,配方法,因式分解法,公式法,解答此题可利用因式分解法解答即可.解:k2−3k=0,k(k−3)=0,∴k1=0,k2=3,故答案为k1=0,k2=3.10.答案:(3+k)(3−k)解析:此题考查了公式法进行因式分解,熟练掌握因式分解的方法是解本题的关键.原式利用平方差公式分解即可.解:9−k2=(3+k)(3−k).故答案为(3+k)(3−k).11.答案:0<k<13解析:本题考查的是一次函数的图象与系数的关系,熟知一次函数k=kk+k(k≠0)中,当k>0,k>0时函数图象经过第一、二、三象限是解答此题的关键.根据一次函数的性质列出关于a的不等式,求出a的取值范围即可.解:∵一次函数k=(−3k+1)k+k的图象经过第一、二、三象限,∴{−3k+1>0,k>0解得:0<k<1.3故答案为0<k<1.312.答案:k2<k1<k3解析:本题主要考查对反比例函数的性质,反比例函数的图象,反比例函数图象上点的坐标特征等知识点的理解和掌握,能熟练地运用反比例函数的性质、图象上点的坐标特征进行说理是解此题的关键.关键k2+1>0,得到反比例函数的图象在第一、三象限,在每个象限内,y随x的增大而减小,求出0>k1>k2,根据k3>0,即可得到选项.解:因为k2+1>0,所以反比例函数的图像在一三象限,在每个象限内,y随x的增大而减小,∵−2<−1<1,可得k2<k1<k3.13.答案:如果3k=3k,那么k=k解析:本题考查逆命题,掌握逆命题的概念是解题关键.将命题的题设和结论互换,即可得到逆命题.解:命题“如果k=k,那么3k=3k”的逆命题是“如果3k=3k,那么k=k”.故答案为如果3k=3k,那么k=k.14.答案:50+50(1+k)+50(1+k)2=196解析:解:∵七月份生产零件50万个,设该厂八九月份平均每月的增长率为x,∴八月份的产量为50(1+k)万个,九月份的产量为50(1+k)2万个,∴50+50(1+k)+50(1+k)2=196,故答案为:50+50(1+k)+50(1+k)2=196.根据7月份的表示出8月和九月的产量即可列出方程.本题考查了由实际问题抽象出一元二次方程,解题的关键是能分别将8、9月份的产量表示出来,难度不大.15.答案:4.5解析:解:∵kk垂直平分线段BC,∴kk=kk,kk=kk,∴∠k=∠k=60°,∵kk=9kk,∠kkk=90°,=4.5(kk),∴kk=kk⋅kkk60°=9×12故答案为4.5.首先证明kk=kk,kk=kk,在kk△kkk中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:4解析:解:如图,过点D作kk⊥kk于E,∵∠k=90°,BD平分∠kkk,∴kk=kk,∵kk=14kk,CD:kk=2:5,×14=4kk,∴kk=22+5∴kk=4kk,即点D到AB的距离为4cm.故答案为:4.过点D作kk⊥kk于E,根据角平分线上的点到角的两边距离相等可得kk=kk,再根据比例求出CD即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.答案:38°解析:本题主要考查的是线段的垂直平分线的性质,等腰三角形的性质.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.设∠k的度数为x,根据线段的垂直平分线的性质得到kk=kk,用x表示出∠kkk、∠k的度数,根据三角形内角和定理列式计算即可.解:设∠k的度数为x,∵kk是AB的垂直平分线,∴kk=kk,∴∠kkk=∠k=k,∵kk=kk,∴∠kkk=∠k=33°+k,∴33°+k+33°+k+k=180°,解得k =38°. 故答案为38°.18.答案:85°解析:此题考查三角形的内角和定理和角平分线的性质.解答此题的关键是首先根据角平分线的性质和已知条件∠kkk =50°,求出∠kkk =25°,然后根据三角形的内角和定理通过180°−∠kkk −∠kkk 求出∠k 的度数,最后在△kkk 中,根据三角形的内角和定理通过180°−∠kkk −∠k 即可求出∠kkk 的度数.解:∵在△kkk 中,AD 平分∠kkk ,∠kkk =50°, ∴∠kkk =25°,∵在△kkk 中,BE 是高线,∠kkk =20°,∴∠k =180°−∠kkk −∠kkk =180°−90°−20°=70°,在△kkk 中,∠kkk =180°−∠kkk −∠k =180°−70°−25°=85°. 故答案为85°.19.答案:解:3k 2−2k −3=0,△=(−2)2−4×3×(−3)=40,k =2±2√102×3=1±√103, 所以k 1=1+√103,k 2=1−√103. 解析:先把方程化为一般式,然后利用求根公式解方程. 本题考查了解一元二次方程−公式法:利用求根公式解方程.20.答案:解:常数项移到右边,二次项系数化为1得,k 2−52k =−1,配方得,(k −54)2=−1+2516,∴k −54=±√916=±34, ∴k 1=2,k 2=12.解析:此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,变形后开方即可求出解.21.答案:解:k 2−k −3=0,∵k =1,k =−1,k =−3,k =k 2−4kk =(−1)2−4×1×(−3)=13>0,∴方程有两个不等的实数根, ∴k =1±√132, 则k 1=1−√132,k 2=1+√132. 解析:此题考查了解一元二次方程−公式法,利用此方法解方程时首先将方程化为一般形式,找出二次项系数a ,一次项系数b 及常数项c ,当k 2−4kk ≥0时,代入求根公式来求解.找出方程中二次项系数a ,一次项系数b 及常数项c ,计算出根的判别式,由根的判别式大于0,得到方程有解,将a ,b 及c 的值代入求根公式即可求出原方程的解.22.答案:解:(1)如图,CP 即是∠kkk 的平分线,;(2)如图,直线MN 即是线段AB 的垂直平分线,.解析:本题主要考查角平分线及线段垂直平分线的基本作图;掌握基本作图的作法是解决本题的关键.(1)①以点C 为圆心,以任意长为半径画弧,两弧交∠kkk 两边于点M ,N ;②分别以点M ,N 为圆心,以大于12kk 的长度为半径画弧,两弧交于点P ; ③作射线CP ,则CP 即是∠kkk 的平分线;(2)已知线段AB ,分别以A 、B 为圆心,以大于kk2长为半径,在线段两侧分别作弧,两弧交于M 、N两点,过两点作直线MN ,则直线MN 为线段AB 的垂直平分线.23.答案:解:∵一元二次方程k 2+(2k +1)k +k 2−2=0有实数根,∴△≥0,即(2k +1)2−4(k 2−2)≥0, 解得k ≥−94.解析:由于一元二次方程k 2+(2k +1)k +k 2−2=0存在实数根,令△≥0即可求得k 的取值范围;本题考查了一元二次方程根与判别式的关系,难度适中,熟练掌握根的判别式是解题的关键.24.答案:解:(1)由题意可得,小明爸爸回家用时间是:2000÷80=25(kkk ), 小明从家到邮局的时间是:(25−5−4)÷2=8(kkk ),答:小明爸爸回家用时间是25min ,小明从家到邮局的时间是8min ; (2)设小明返回家中在图象对应的点是点C ,如右图所示,由(1)可知,点k (0,2000),点k (25,0),点k (12,2000),点k (20,0), 设过点E 、F 的函数解析式为k =kk +k , {k =200025k +k =0,得{k =−80k =2000,即过点E 、F 的函数解析式为k =−80k +2000, 设过点B 、C 的函数解析式为k =kk +k , {12k +k =200020k +k =0,得{k =−250k =5000,即过点B 、C 的函数解析式为k =−250k +5000, 令{k =−80k +2000k =−250k +5000,得{k =1000017k =30017,答:小明从家出发,经过30017kkk在返回途中追上爸爸,这时他们距离家1000017k.解析:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.(1)根据题意和函数图象中的数据可以分别求得小明爸爸回家用时间及小明从家到邮局的时间;(2)根据题意和(1)中的计算结果可以分别求得EF和BC对应的函数解析式,从而可以解答本题.25.答案:解:连接CD,∵kk垂直平分BC,∴kk=kk,在△kkk中,kk+kk>kk,∴kk+kk>kk,即kk>kk.解析:连接DC,则可知kk=kk,在△kkk中,kk+kk>kk,即kk+kk>kk,可得出结论.本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.26.答案:解:(1)设2017年平均每公顷水稻产量为a千克,2017年种植面积为b公顷,2018年比上半年平均每公顷产量增加的百分数为y,根据题意,可得:k(1+k)(1+1.25k)⋅k(1−k)=kk(1+k),∵k是正数,∴(1+1.25k)(1−k)=1,解得:k=0.2或k=0(舍去),则1.25k=0.25,答:2019年平均每公顷水稻产量比2018年增加的百分数为25%;(2)∵k+0.8k2=0.9k,∴1.2k×0.9k−kkkk×100%=8%,答:2018年这种水稻总产量比上年增加的百分数为8%.解析:本题主要考查一元二次方程的应用,理解题意理清3个年份中平均每公顷水稻产量和种植面积是解题的关键.(1)设2017年平均每公顷水稻产量为a千克,2017年种植面积为b公顷,2018年比上年平均每公顷产量增加的百分数为y,根据2019年水稻的总产量列方程求解可得;(2)根据(2018年总产量−2017年总产量)÷2017年的总产量,列式计算可得.27.答案:解:(1)将k(0,1)代入k=k+k中得,0+k=1∴k=1将k(k,2)代入k=k+1中得,k+1=2∴k=1∴k(1,2)将k(1,2)代入k=k中得,k=1×2=2k∴k=2,k=1;(2)∵k(0,1),k(1,2),∴kk=√2,由(1)知,k=1,∴直线AB的解析式为k=k+1,分情况讨论:△kkk是等腰直角三角形①当∠kkk=90°时,kk=kk,∴直线AC的解析式为k=−k+1,设k(k,−k+1),∴kk=√k2+k2=√2,∴k=±1,∴k为(−1,2)或(1,0),中判断出都不在双曲线上.将点C代入k=2k②当∠kkk=90°时,同①的方法得,C为(2,1)或(0,3),将点C坐标代入k=2k中得,判断出点k(2,1)在双曲线上,③当∠kkk=90°时,∵k(0,1),k(1,2),易知,C为(1,1)或(0,2),将点C代入k=2k中判断出都不在双曲线上,∴k(2,1).解析:此题是反比例函数综合题,主要考查了待定系数法,两点间的距离公式,等腰直角三角形的性质,用分类讨论的思想解决问题是解本题的关键.(1)将点A坐标代入直线k=k+k中求出b,进而求出点B坐标,最后代入反比例函数解析式中,求出k;(2)先求出AB的长,再分三种情况,利用等腰直角三角形的性质求出点C的坐标,判断即可得出结论.28.答案:(1)证明:∵△kkk是等边三角形,∴kk=kk=kk,∠kkk=∠k=∠kkk=60°,∵△kkk是等边三角形,∴kk=kk=kk,∠kkk=∠kkk=∠kkk=60°,∴∠kkk−∠kkk=∠kkk−∠kkk,即∠kkk=∠kkk,在△kkk和△kkk中,{kk=kk∠kkk=∠kkk kk=kk,∴△kkk≌△kkk(kkk)∴kk=kk,∴kk=kk=kk+kk=kk+kk;(2)解:kk=kk+kk不成立,kk=kk−kk,由(1)可知,∠kkk=∠kkk∴∠kkk+∠kkk=∠kkk+∠kkk,即∠kkk=∠kkk,在△kkk和△kkk中,{kk=kk∠kkk=∠kkk kk=kk,∴△kkk≌△kkk(kkk)∴kk=kk,∴kk=kk=kk−kk=kk−kk.解析:(1)根据等边三角形的性质得到kk=kk=kk,∠kkk=∠k=∠kkk=60°,kk=kk=kk,∠kkk=∠kkk=∠kkk=60°,证明△kkk≌△kkk,根据全等三角形的性质、结合图形证明结论;(2)仿照(1)的证明过程解答即可.本题考查的是等边三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2019-2020学年上海市徐汇区西南模范中学七年级(上)期中数学试卷
2019-2020学年上海市徐汇区西南模范中学七年级(上)期中数学试卷一、选择题(本大题共4题,每题3分,共12分)1.(3分)下列说法正确的是()A.,π,0,22都是单项式B.单项式ab的系数,次数都是1C.没有加减运算的都是单项式D.(﹣x n+1)÷(﹣x)n=﹣x2.(3分)下列各式中是最简分式的是()A.B.C.D.3.(3分)下列因式分解正确的是()A.x4﹣4x2+16=(x2﹣4)2B.3x2﹣9y+3=(x2﹣3y)C.x2n﹣x n=x n(x+1)(x﹣1)D.4x2+8ax+4a2=4(x+a)24.(3分)若关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,则m+n=()A.﹣4B.﹣5C.﹣6D.6二、填空题(本大题共14题,每题2分,满分28分)5.(2分)下列各式中,最简分式有个.①②③④⑤⑥6.(2分)当x=时,分式的值为0.7.(2分)计算:(﹣a+2b﹣c)2=.8.(2分)因式分解:15x2+13xy﹣44y2=.9.(2分)如果单项式与的和仍是单项式,那么mn=.10.(2分)若9x2﹣3(m﹣5)x+16是完全平方式,则m=.11.(2分)计算:=.12.(2分)若关于x的方程有增根,则m=.13.(2分)某油箱中有油20升,油从管道中均匀流出,100分钟可以流尽,当流出时间为t分钟时,油箱中剩余油量为:.14.(2分)若x2+4x+8y+y2+20=0,则x﹣y=.15.(2分)甲乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4),乙看错了a,分解结果为(x+1)(x+9),则2a+b=.16.(2分)已知x2+ax+1=0,=14,则a=.17.(2分)当整数x=时,分式的值为正整数.18.(2分)已知分式方程的解为正数,则m的取值范围为.三、计算题(本大题共4题,每题4分,满分16分)19.(4分)(x﹣3y)(x﹣y)﹣(﹣x﹣y)220.(4分)21.(4分)解方程:22.(4分)解方程四、因式分解(本大题共4题,每题4分,满分16分)23.(16分)因式分解(1)9(a+2b)2﹣4(a﹣b)2(2)a5+5a3﹣6a(3)x4﹣4﹣x2+4x(4)(a2﹣3a﹣3)(a2﹣3a+1)﹣5五、简答题(本大题共4题,27、28、29每题6分,30题10分,满分28分)24.(6分)先化简,再求值:,其中x=2.25.(6分)在徐汇区开展“创建全国文明城区”期间,某工程队承担了某小区900米长的污水管道改造任务,工程队在改造完180米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用30天完成了任务,问引进新设备后工程队每天改造管道多少米?26.(6分)如图,点P是线段AB的中点,Q为线段PB上一点,分别以AQ、AP、PQ、QB为一边作正方形,其面积对应地记作S ACDQ,S AEFP,S PGHQ,S QIJB,设AP=m,QB=n,(1)用含有m,n的代数式表示正方形ACDQ的面积S ACDQ.(2)S ACDQ+S QIJB与S AEFP+S PGHQ具有怎样的数量关系?并说明理由.27.(10分)已知,如图,四边形ABCD是梯形,AB、CD相互平行,在AB上有两点E和F,此时四边形DCFE 恰好是正方形,已知CD=a,AD=a+ab2,BC=a+2ab2,(单位:米)其中a>0,1<b2<4,现有甲乙两只妈蚁,甲蚂蚁从A点出发,沿着A﹣D﹣C﹣F﹣A的路线行走,乙蚂蚁从B点出发,沿着B﹣C﹣D﹣E﹣B的路线行走,甲乙同时出发,各自走回A和B点时停止.甲的速度是(米/秒),乙的速度是(米/秒).(1)用含a、b的代数式表示:①甲走到点C时,用时秒;②当甲走到点C时,乙走了米;③当甲走到点C时,此时乙在点M处,△AMC的面积是平方米;④当甲走到点C时,已经和乙相遇一次,它们从出发到这一次相遇,用时秒.(2)它们还会有第二次相遇吗?如果有,请求出两只蚂蚁从出发到第二次相遇所用的时间.如果没有,简要说明理由.2019-2020学年上海市徐汇区西南模范中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共4题,每题3分,共12分)1.【解答】解:就没有加减运算,但不是单项式;故C不正确;单项式ab的系数,次数都是2,故B不正确;当n为奇数时,(﹣x n+1)÷(﹣x)n=x,当n为偶数时,(﹣x n+1)÷(﹣x)n=﹣x;故D不正确;故选:A.2.【解答】解:A、该分式的分子分母中含有公因式(x﹣5),不是最简分式,故本选项不符合题意;B、该分式符合最简分式的定义,故本选项符合题意;C、该分式的分子分母中含有公因式(a﹣b),不是最简分式,故本选项不符合题意;D、该分式的分子分母中含有公因数4,不是最简分式,故本选项不符合题意.故选:B.3.【解答】解:A、原式不能分解,不符合题意;B、原式=3(x2﹣3y+1),不符合题意;C、原式=x n(x n﹣1),不符合题意;D、原式=4(x2+2ax+a2)=4(x+a)2,符合题意,故选:D.4.【解答】解:2x2+mx+5y﹣2nx2﹣y+5x+7=(2﹣2n)x2+(m+5)x+4y+7,∵关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,∴2﹣2n=0,解得n=1,m+5=0,解得m=﹣5,则m+n=﹣5+1=﹣4.故选:A.二、填空题(本大题共14题,每题2分,满分28分)5.【解答】解:②的分子、分母中含有公因数2,不是最简分式,不符合题意;④的分子、分母中含有公因式(5+2a),不是最简分式,不符合题意;⑥的分子、分母中含有公因式(2y+5),不是最简分式,不符合题意;③、⑤不是分式,不符合题意;①符合最简分式的定义,符合题意.故答案是:1.6.【解答】解:依题意,得x2﹣1=0,且x2﹣2x+1≠0,∴(x﹣1)(x+1)=0且(x﹣1)2≠0,解得,x=﹣1.故答案是:﹣1.7.【解答】解:(﹣a+2b﹣c)2=[﹣a+(2b﹣c)]2=(﹣a)2﹣2a(2b﹣c)+(2b﹣c)2=a2﹣4ab+2ac+4b2﹣4bc+c2.故答案为:a2﹣4ab+2ac+4b2﹣4bc+c2.8.【解答】解:利用十字相乘法,如图,将二次项系数、常数项分别分解,交叉乘加验中项,得出答案,15x2+13xy﹣44y2=(3x﹣4y)(5x+11y).故答案为:(3x﹣4y)(5x+11y).9.【解答】解:∵单项式与的和仍是单项式,∴m﹣1=3,2n=n+3,解得m=4,n=3.∴mn=4×3=12.故答案为:1210.【解答】解:∵9x2﹣3(m﹣5)x+16是完全平方式,∴3(m﹣5)=±(2×3×4),解得m=13或﹣3.故选:13或﹣3.11.【解答】解:原式=[﹣]•=•=.故答案为:.12.【解答】解:+==,∴m=2x2﹣25,∵方程有增根,∴x=3或x=4,∴m=﹣7或m=7,故答案为±7.13.【解答】解:∵100分钟可流完20升油,∴1分钟可流油20÷100=升,∴t分流的油量为t,∴箱中剩余油量为:20﹣t.故答案为20﹣t.14.【解答】解:由x2+4x+8y+y2+20=0得(x+2)2+(y+4)2=0,∴x+2=0,y+4=0,解得x=﹣2,y=﹣4,∴x﹣y=4;故答案为:4.15.【解答】解:∵分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4),∴a=6,乙看错了a,分解结果为(x+1)(x+9),∴b=9,∴2a+b=12+9=21.故答案为21.16.【解答】解:∵x2+ax+1=0,∴x+a+=0,则(x+)2=a2,∴x2++2=a2,∵=14,∴a2=16,∴a=±4.故答案为:±4.17.【解答】解:=,要使的值是正整数,则分母x﹣1必须是2的约数,即x﹣1=1或2,则x=2或3,故答案为:2或318.【解答】解:﹣==,∴m=﹣2x+5,∴x=﹣,∵分式方程的解为正数,∴m﹣5<0,∴m<5,又∵x≠2,x≠3,∴m≠1,m≠﹣1,∴m的范围是m<5且m≠±1,故答案为m<5且m≠±1.三、计算题(本大题共4题,每题4分,满分16分)19.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).20.【解答】解:原式=6xy2•()•=21.【解答】解:去分母得:1﹣x﹣1﹣x=1﹣x2+x2+1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.22.【解答】解:去分母得:x2+4﹣x=3x+6+x2+2x,解得:x=﹣,经检验x=﹣是分式方程的解.四、因式分解(本大题共4题,每题4分,满分16分)23.【解答】解:(1)9(a+2b)2﹣4(a﹣b)2=[3(a+2b)+2(a﹣b)][3(a+2b)﹣2(a﹣b)]=(5a+4b)(a+8b);(2)a5+5a3﹣6a=a(a4+5a2﹣6)=a(a2+6)(a2﹣1)=a(a2+6)(a+1)(a﹣1);(3)x4﹣4﹣x2+4x=x4﹣(x﹣2)2=(x2+x﹣2)(x2﹣x+2)=(x+2)(x﹣1)(x2﹣x+2);(4)(a2﹣3a﹣3)(a2﹣3a+1)﹣5=(a2﹣3a)2﹣2(a2﹣3a)﹣8=(a2﹣3a﹣4)(a2﹣3a+2)=(a﹣4)(a+1)(a﹣2)(a﹣1).五、简答题(本大题共4题,27、28、29每题6分,30题10分,满分28分)24.【解答】解:原式=x+•=x+•=x+=,当x=2时,原式=.25.【解答】解:设原来每天改造管道x米,由题意得:+=30,解得:x=26,经检验:x=26是原分式方程的解,答:引进新设备前工程队每天改造管道26米.26.【解答】解:(1)∵点P是线段AB的中点,∴AP=BP,分别以AQ、AP、PQ、QB为一边作正方形,设AP=m,QB=n,∴PQ=GH=CE=m﹣n,∴AC=DC=m+m﹣n=2m﹣n,∴正方形ACDQ的面积S ACDQ=(2m﹣n)2=4m2﹣4mn+n2.(2)S ACDQ+S QIJB=2(S AEFP+S PGHQ),理由如下:∵S ACDQ+S QIJB=(2m﹣n)2+n2=4m2﹣4mn+2n2=2(2m2﹣2mn+n2),S AEFP+S PGHQ=m2+(m﹣n)2=2m2﹣2mn+n2∴S ACDQ+S QIJB=2(S AEFP+S PGHQ).27.【解答】解:(1)①甲走到点C时,用时:=(12+6b2)秒;故答案为:(12+6b2);②a(12+6b2)=3a+则当甲走到点C时,乙走了(3a+)米;故答案为:(3a+);③CM=BM﹣BC=(3a+)﹣(a+2ab2)=2a﹣ab2,∴△AMC的面积===a2﹣a2b2,则当甲走到点C时,此时乙在点M处,△AMC的面积是(a2﹣a2b2)平方米;故答案为:(a2﹣a2b2);④设这一次相遇,用时t秒,根据题意得:at+at=a+ab2+a+a+2ab2,t=,故答案为:;(2)假设还有第二次相遇,设第二次x秒时相遇,则此时一定相遇在EF上,根据题意得:ax+ax=a+ab2+3a+2a+a+2ab2,x=,答:两只蚂蚁从出发到第二次相遇所用的时间是秒.。
2019-2020年中考数学试题及答案解析中考题考题考卷真题试题试卷沪教版
2019-2020年中考数学试题及答案解析中考题考题考卷真题试题试卷沪教版一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( )A.3B.-3C.31 D.31- 1. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3. 解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2. (2012安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形. 解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2012安徽,3,4分)计算32)2(x -的结果是( ) A.52x - B. 68x - C.62x - D.58x - 3. 解析:根据积的乘方和幂的运算法则可得. 解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义. 4. (2012安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m 4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 故选D .点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,得分 评卷人三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5. (2012安徽,5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元5. 解析:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a , 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a , 解答:A .点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.6. (2012安徽,6,4分)化简xxx x -+-112的结果是( ) A.x +1 B. x -1 C.—x D. x6. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:x x x x x x x x x x x =--=--=---=1)1(11122 故选D . 点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式.7. (2012安徽,7,4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边 形与其内部小正方形的边长都为a ,则阴影部分的面积为( ) A.22a B. 32a C. 42a D.52a7. 解析:图案中间的阴影部分是正方形,面积是a 2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算. 解答:解:222242121a a a =⨯⨯+故选A . 点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.8. (2012安徽,8,4分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.32 8. 解析:第1个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一个打电话给甲的概率是31. 解答: 故选B .9. (2012安徽,9,4分)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )9. 解析:利用AB 与⊙O 相切,△BAP 是直角三角形,把直角三角形的直角边表示出来,从而用x 表示出三角形的面积,根据函数解析式确定函数的图象. 解答:解:∵AB 与⊙O 相切,∴∠BAP=90°, OP=x ,AP=2-x,∠BPA=60°,所以AB=)2(3x -,所以△APB 的面积2)2(23x y -=,(0≤x ≤2)故选D . 点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值. 10. (2012安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或17210. 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C .点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A 或B ;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.二、填空题(本大题共4小题,每小题5分,满分20分)11. (2012安徽,11,5分)2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.11. 解析:科学记数法形式:a ×10n (1≤|a |<10,n 为整数)中n 的值是易错点,由于378 000有6位,所以可以确定n =6﹣1=5,所以378 000=3.78×105 答案: 3.78×105 12. (2012安徽,12,5分)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362=甲S ,252=乙S ,162=丙S ,则数据波动最小的一组是___________________.12. 解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小.丙组方差最小,波动最小. 答案:丙组13. (2012安徽,13,5分)如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=_______________°.13. 解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D ;又因为四边形OABC 是平行四边形,所以∠B=∠AOC ;圆内接四边形对角互补,∠B+∠D=180°,所以∠D= 60°,连接OD ,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°. 答案:60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合.14. (2012安徽,14,5分)如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_________________(把所有正确结得分 评卷人论的序号都填在横线上).14. 解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于 ④这一选项容易漏选.三、(本大题共2小题,每小题8分,满分16分)15. (2012安徽,15,8分)计算:)2()1)(3(-+-+a a a a15. 解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式=a 2-a+3a -3+a 2-2a =2a 2-3 16. (2012安徽,16,8分)解方程:1222+=-x x x16. 解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法.先将方程整理一下,可以考虑用配方法或公式法.解:原方程化为:x 2-4x=1配方,得x 2-4x+4=1+4 整理,得(x -2)2=5∴x -2=5±,即521+=x ,522-=x .四、(本大题共2小题,每小题8分,满分16分)17. (2012安徽,17,8分)在由m ×n (m ×n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:mnm n +f1 2 3 2 1 3 4 3 2 3 5 4 2 4 7 3 5 7猜想:当m 、n 互质时,在m ×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是______________________________(不需要证明); 解:(2)当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立, 17:解析:(1)通过题中所给网格图形,先计算出2×5,3×4,对角线所穿过的小正方形个数f ,再对照表中数值归纳f 与m 、n 的关系式.(2)根据题意,画出当m 、n 不互质时,结论不成立的反例即可. 解:(1)如表:f=m+n-1(2)当m 、n 不互质时,上述结论不成立,如图2× 42×418. (2012安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC 全等且A 与A1是对应点;m n m n f 1 2 3 2 1 3 4 32 3 5 4 2 4 7 6 3 5 7 6(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:18.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出AB、AD、BD的长度,再计算角度.解:(1)答案不唯一,如图,平移即可2(2)作图如上,∵AB=10,AD=10,BD=5∴AB2+AD2=BD2 新课标一网∴△ABD是直角三角形,AD可以看作由AB绕A点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大.五、(本大题共2小题,每小题10分,满分20分)2,求19. (2012安徽,19,10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=3C45°30°ABAB 的长, 解:19. 解析:本题在一个三角形中已知两个角和一边,求三角形的边.不是直角三角形,要利用三角函数必须构筑直角三角形,过点C 作CD ⊥AB 于D,利用构造的两个直角三角形来解答. 解:过点C 作CD ⊥AB 于D,在Rt △ACD 中,∠A=30°,AC=32 ∴CD=AC ×sinA=32×0.5=3,AD=AC ×cosA=32×23=3, 在Rt △BCD 中,∠B=45°,则BD=CD=3, ∴AB=AD+BD=3+3点评:解直角三角形中,除了直角外,还知道两个元素(至少有一个是边),就能求出其余的边和角. 一般三角形中,知道三个元素(至少有一个是边),就能求出其余的边和角. 这时将三角形转化为直角三角形时,注意尽量不要破坏所给条件.20. (2012安徽,20,10分)九(1)班同学为了解2011年某小区家庭月均用水情况,随月均用水量x (t) 频数(户) 频率05x <≤ 6 0.12510x <≤ 0.241015x <≤ 16 0.321520x <≤ 10 0.20 2025x <≤ 4 2530x <≤ 2 0.04 请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比; 解:(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户? 解:20. 本题考查了数据的统计中的频数分布表和不完整的频数分布直方图.所有的频数和就是样本容量,所有频率和等于1,且有n数据总数频数频率=,(1)数据总数5012.06===频率频数 ,50×0.24=12,4÷50=0.08, (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪第20题图 月用水量(t)(3)用样本来估计总体,根据抽取的样本超过20吨的家庭数,来估计该小区的情况.. 解:(1)统计中的频数分布表和不完整的频数分布直方图,补充如下 (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪ (3)1000×(0.04+0.08)=120(户)六、(本题满分12分)21. (2012安徽,21,12分)甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。
2019-2020上海市数学中考试卷含答案
2019-2020上海市数学中考试卷含答案一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.3.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是25.-2的相反数是()A.2B.12C.-12D.不存在6.下列命题中,真命题的是()A .对角线互相垂直的四边形是菱形B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形7.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .8.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .92 9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内的图象大致为( )A .B .C .D . 10.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠12.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 15.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.13≈1.73).17.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.分解因式:2x2﹣18=_____.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 24.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.25.材料:解形如(x+a )4+(x+b )4=c 的一元四次方程时,可以先求常数a 和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.8.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.9.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故 解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.17.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 20.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x +3)(x ﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.(1)证明见解析;(2)BH =. 【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB 是⊙O 的直径,点C 是的中点,∴∠AOC =90°,∵OA =OB ,CD =AC ,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC ∥BD ,∴△OCE ∽△BFE ,∴, ∵OB =2,∴OC =OB =2,AB =4,, ∴, ∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5,∵S △ABF =AB•BF =AF•BH ,∴AB•BF =AF•BH ,∴4×3=5BH , ∴BH =.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a b m n +=+,∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 24.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)25.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.。
2019-2020学年上海市西南模范中学七年级(上)第一次月考数学试卷
2019-2020 学年上海市西南模范中学七年级(上)第一次月考数学试卷一、选择题(本大题共 4 小题,共12.0 分)1.下列说法正确的是A.单项式的系数是B.C.和都是单项式D.2. 下列各式,等于的是单项式 ab 的系数、次数都是1单项式的系数是A. B. C. D.3.下列分解因式正确的是A.B.C.D.4.可以被 10 和 20 之间某两个整数整除,则这两个数是A. 17,15B. 17,16C.15, 16D. 13,14二、填空题(本大题共15 小题,共30.0 分)5.x 与 y 的平方和的倒数,用代数式表示为______.6.两个单项式与是同类项,那么______ .7.计算:______.8.计算:______.9.计算:______.10.计算:______.11.计算:______.12.如果的乘积中,不含有项和项,则______.13.因式分解:______.14.已知,则______.15.若是关于 x 的完全平方式,则______.16.已知,,则______.17.若,则______.18.若,那么代数式______ .19.把四张形状、大小完全相同的小长方形卡片如图不重叠地放在一个底面为长方形长为 a,宽为的盒子底部如图,盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是______.三、计算题(本大题共 1 小题,共 4.0 分)20.四、解答题(本大题共10 小题,共 54.0 分)21.22.23.24.25.26.27.28.先化简,再求值:,其中,.29.阅读以下材料,根据阅读材料提供的方法解决问题【阅读材料】对于多项式,我们把代入多项式,发现能使多项式的值为 0,由此可以断定多项式中有因式,注:把代入多项式,能使多项式值为0,则多项式一定含有因式,于是我们可以把多项式写成:,分别求出 m、n 后代入,就可以把多项式因式分解.【解决问题】求式子中m、 n 的值;以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式.30.如图,有一个边长为 a 的大正方形和两个边长为 b 的小正方形,分别将他们按照图和图的形式摆放,用含有 a、b 的代数式分别表示阴影面积:____________,______.若,,求的值;若,,,求出图中的阴影部分面积.答案和解析1.【答案】D【解析】解:A、单项式的系数是,故此选项错误;B、单项式ab 的系数是1、次数是2,故此选项错误;C、是单项式,不是单项式,故此选项错误;D 、单项式的系数是,正确.故选: D.直接利用单项式的定义以及单项式的次数与系数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.2.【答案】B【解析】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D 、,故本选项不符合题意;故选: B.根据幂的乘方和整式的乘法求出每个式子的值,再判断即可.本题考查了幂的乘方和积的乘方,整式的乘法等知识点,能求出每个式子的值是解此题的关键.3.【答案】B【解析】解:A、原式先考虑与 n 大小,再考虑提取的公因式,不符合题意;B、原式,符合题意;C、原式不能分解,不符合题意;D 、原式,不符合题意,故选: B.各项分解因式,即可作出判断.此题考查了因式分解提公因式法,熟练掌握提取公因式的方法是解本题的关键.4.【答案】A【解析】【分析】本题考查因式分解的应用,解题的关键是熟练运用平方差公式.先对原式进行因式分解,然后即可求出这两个整数.【解答】解:原式故选 A.5.【答案】【解析】解:x 与 y 的平方和的倒数,用代数式表示为:,故答案为:.根据题意,可以用x、 y 的代数式表示出x 与 y 的平方和的倒数.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.【答案】3【解析】解:单项式与是同类项,,,解得,..故答案为: 3本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m 和 n 的值,再代入所求式子计算即可.本题考查同类项的定义,关键要注意同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.7.【答案】【解析】解:原式.故答案为:.直接去括号进而合并同类项进而得出答案.此题主要考查了整式的加减,正确合并同类项是解题关键.8.【答案】【解析】解:原式,故答案为:.先根据积的乘方进行计算,再求出即可.本题考查了积的乘方和幂的乘方,能灵活运用积的乘方进行变形是解此题的关键,注意:.9.【答案】【解析】解:原式.故答案为:.直接利用单项式乘以多项式运算法则得出答案.此题主要考查了单项式乘以多项式运算,正确掌握相关运算法则是解题关键.10.【答案】【解析】解:原式故答案为:根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.【答案】【解析】解:原式.故答案为:.根据平方差公式和完全平方公式计算.本题考查整式的计算,熟练掌握乘法公式是解题的关键.12.【答案】【解析】解:,因为多项式不含有项和项,所以,解得,所以.故答案为.先利用多项式乘以多项式法则展开,再合并,然后令含有项和项的系数为0 得到关于 a、 b 的方程组,再解方程组求出a、b 的值,最后计算ab 的值.本题考查了多项式乘以多项式:多项式与多项式相乘时,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.13.【答案】【解析】解:原式.故答案为.先分组得到原式,然后利用提公因式分解因式.本题考查了因式分解分组分解:分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.14.【答案】【解析】解:,,解得.故答案为:把相关幂以及81 写出底数是 3 的幂,再根据同底数幂的乘法法则列方程解答即可.本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.15.【答案】9或【解析】解:是关于 x 的完全平方式,,解得:或,故答案为: 9 或利用完全平方公式的结构特征判断即可求出k 的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【答案】【解析】解:原式,当,时,原式,故答案为:原式提取公因式,再利用完全平方公式变形,把已知等式代入计算即可求出值.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解方法是解本题的关键.17.【答案】【解析】解:,,,,,故答案为:.把原式配方,然后根据非负数的性质即可得到结论.本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.18.【答案】【解析】解:,,,.故答案为.先利用已知条件得到,利用整体代入得到原式,利用多项式乘多项式得到原式,变形得到原式,然后利用整体代入的方法计算.本题考查了多项式乘以多项式:多项式与多项式相乘时,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.也考查了整体代入的方法.19.【答案】4b【解析】解:设小长方形卡片的长为x,宽为 y,根据题意得:,则图中两块阴影部分周长和是.故答案为: 4b.根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:.【解析】先根据平方差公式化简,再根据完全平方公式计算即可.本题主要考查了多项式的乘法,熟记平方差公式与完全平方公式是解答本题的关键.21.【答案】解:原式.【解析】直接去括号进而合并同类项进而得出答案.此题主要考查了整式的加减,正确合并同类项是解题关键.22.【答案】解:原式.【解析】直接利用积的乘方运算法则化简再结合整式的混合运算法则计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.23.【答案】解:原式.【解析】原式利用平方差公式分解即可.此题考查了因式分解运用公式法,熟练掌握平方差公式是解本题的关键.24.【答案】解:原式.【解析】原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解方法是解本题的关键.25.【答案】解:原式.【解析】先分组得到原式,然后利用提公因式分解因式.本题考查了因式分解分组分解:分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.26.【答案】解:原式.【解析】原式提取公因式,再利用完全平方公式分解即可.此题考查了因式分解运用公式法,熟练掌握完全平方公式是解本题的关键.27.【答案】解:原式.【解析】原式整理后,利用十字相乘法分解即可.此题考查了因式分解十字相乘法,熟练掌握十字相乘的方法是解本题的关键.28.【答案】解:原式,当,时,原式.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.29.【答案】解:在等式中,分别令,,即可求出:,;把代入,得其值为0,则多项式可分解为的形式,用上述方法可求得:,,所以.【解析】根据,得出有关m, n 的方程求出即可;由把代入,得其值为0,则多项式可分解为的形式,进而将多项式分解得出答案.本题主要考查了因式分解的运用,根据已知获取正确的信息,是近几年中考中热点题型,同学们应熟练掌握获取正确信息的方法.30.【答案】【解析】解:由题意得:故答案为:,,.把,代入上式:答:的值是.阴影部分面积:,,不合题意,舍去把代入,解得把代入答:图中的阴影部分面积是24.按照题目准确写出图、图中阴影部分图形的边长,再求面积;化简整理,使其能用和ab的代数式来表示即可;构造以 a 为宽,为长的矩形,使用割补法求出图中阴影部分的面积即可.本题考查完全平方公式的几何背景和应用.理解完全平方公式的几何背景,灵活应用完全平方公式是解决这类题目的关键.第11 页,共 11页。
2019-2020学年上海市徐汇区西南模范中学八年级上学期期中考试数学试卷(含详解)
西南模范中学2019学年第一学期初二期中考试数学试卷一、选择题(本大题共6题,每题2分,满分12分)1.在下列方程中,一元二次方程的个数是()①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣5x=0.A.1个B.2个C.3个D.4个2.方程()2411x-=的根为()A.121 4x x== B.121 2x x== C.10x=,21 2x= D.11 2x=-,20x=3.已知函数y=kx中,y随x的增大而减小,那么它和函数kyx=在同一平面直角坐标系内的大致图像可能是()A. B. C. D.4.到△ABC的三边距离相等的点是△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点5.下列说法错误的是().A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线B.到点P距离等于1cm的点的轨迹是以点P为圆心,半径长为1cm的圆C.到直线l距离等于2cm的点的轨迹是两条平行于l且与l的距离等于2cm的直线D.等腰三角形ABC的底边BC固定,顶点A的轨迹是线段BC的垂直平分线6.如图,△ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∠BAC =70°,则∠EAN 的度数为()A.35°B.40°C.50°D.55°二、填空题(本大题共12题,每题2分,满分24分)7.函数y =的定义域是_____________.8.方程2690y y -+=的解为___________;9.方程()1x x x -=的根是___________;10.在实数范围内因式分解:2234x xy y +-=___________;11.已知正比例函数()34y k x =+的图像经过第一、三象限,则k 的取值范围是___________;12.已知()111,P x y 、()222,P x y 两点都在反比例函数2y x=的图象上,且120x x <<,则1y ______2y (选填“>”或“<”.13.命题“平行于同一条直线的两直线平行”的逆命题是______________________________;14.某企业生产某种产品,今年产量为200件,计划通过技术革新,三年(包括今年)的产量达到1400件,若明后两年的产量平均增长率相同为x ,可以得到方程___________;15.如图,在ABC ∆中,分别以点A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于M ,N ,作直线MN ,交BC 于点D ,连接AD .如果5BC =,2CD =,那么AD =___________;16.如图,已知在ABC 中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE 的面积等于___________.17.如图,在ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF ,24ABD ︒∠=.若DF CD =为等腰三角形,则A ∠的度数为___________;18.如图,在Rt ABC ∆中,9030ACB CAB ∠=︒∠=︒,,ACB ∠的平分线与ABC ∠的外角平分线交于点E ,则AEB ∠的度数为___________.三、简答题、(本大题4题,每题5分,满分20分)19.解方程x 2﹣4x+1=0.20.用配方法解方程:2220x x --=21.解分式方程:22x1x 4x 2+=--.22.已知:∠O 、点A 及线段a (如图),求作:点P ,使点P 到∠O 的两边的距离相等,且PA=a .(要求尺规作图,保留作图痕迹,不写作法).四、解答题(本大题共4题,每题6分,满分24分)23.已知关于x的一元二次方程()2m x mx--+=有两个不相等的实数根.求m2110的范围;24.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示(1)妈妈从家出发_____分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟_____米,小婷家离学校的距离为_____米.25.如图,点A,B,C,D在同一条直线上,AB=DC,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择二个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知、如图,点A,B,C,D在同一条直线上,.求证、.证明、.26.某果园有100棵桃树,一棵桃树平均结1000个桃子, 现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个, 如果要使产量增加15.2%,那么应多种多少棵桃树?五、综合题(本大题共2题,每题10分,满分20分)27.在平面直角坐标系xoy 中(如图),点()4,1A -为直线y kx =和双曲线my x=的一个交点,(1)求k 、m 的值;(2)若点()5,0B -,在直线y kx =上有一点P ,使得2ABP ABO S S ∆∆=,请求出点P 的坐标;(3)在双曲线是否存在点M ,使得45AOM ︒∠=,若存在,请求出点M 的坐标;若不存在请说明理由.28.如图,等边ABE ∆,点D 为射线AE 上一点,延长BE 至点C ,使得EC AD =,联结CD 并延长交射线AB 于点F .(1)当点D 在边AE 上时,如图1,若ED AD =,则_____CFA DBC ︒∠-∠=(2)当点D 在边AE 上时,如图2,若ED AD ≠,则(1)的结论还成立吗?若成立,请证明;若不成立,写出CFA ∠与DBC ∠的数量关系并证明.(3)当点D 在边AE 的延长线上时,则(1)的结论还成立吗?若成立,请证明;若不成立,写出CFA ∠与DBC ∠的数量关系并证明.西南模范中学2019学年第一学期初二期中考试数学试卷一、选择题(本大题共6题,每题2分,满分12分)1.在下列方程中,一元二次方程的个数是()①3x 2+7=0;②ax 2+bx+c=0;③(x ﹣2)(x+5)=x 2﹣1;④3x 2﹣5x=0.A.1个 B.2个C.3个D.4个【答案】A【详解】试卷分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:①3x 2+7=0,是一元二次方程,故本小题正确;②ax 2+bx+c=0,a≠0时是一元二次方程,故本小题错误;③(x ﹣2)(x+5)=x 2﹣1,整理后不是一元二次方程,故本小题错误;④3x 2﹣=0,是分式方程,不是一元二次方程,故本小题错误.故选A .考点:一元二次方程的定义.2.方程()2411x -=的根为()A.1214x x ==B.1212x x ==C.10x =,212x =D.112x =-,20x =【答案】C【分析】两边直接开平方法求解可得.【详解】∵(4x-1)2=1,∴4x-1=1或4x-1=-1,解得:10x =,212x =,故选C .【点睛】此题考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.已知函数y =kx 中,y 随x 的增大而减小,那么它和函数ky x=在同一平面直角坐标系内的大致图像可能是()A. B. C. D.【答案】D【分析】根据正比例函数的增减性判断出k <0,再由函数的性质即可判定图形所过象限.【详解】解:∵y=kx 中,y 随x 的增大而减小,∴k <0,∴y kx =的图像经过二四象限,ky x=的图像经过二四象限,故选D.【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数增减性与系数的关系是解题关键.4.到△ABC 的三边距离相等的点是△ABC 的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点【答案】B【分析】到三角形三边都相等的点应该在三角形三个内角的角平分线上,可得出答案.【详解】解:设这个点为点P ,∵点P 到AB 、AC 两边的距离相等,∴点P 在∠BAC 的平分线上,同理可得点P 在∠ABC 、∠ACB 的平分线上,∴点P 为三个内角的角平分线的交点,故选:B .【点睛】本题主要考查了角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.5.下列说法错误的是().A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线B.到点P 距离等于1cm 的点的轨迹是以点P 为圆心,半径长为1cm 的圆C.到直线l 距离等于2cm 的点的轨迹是两条平行于l 且与l 的距离等于2cm 的直线D.等腰三角形ABC 的底边BC 固定,顶点A 的轨迹是线段BC 的垂直平分线【答案】D【分析】根据角平分线的性质、圆的轨迹、平行线和等腰三角形的性质结合图形进行解答即可.【详解】A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线,故该选项正确,B.到点P 距离等于1cm 的点的轨迹是以点P 为圆心,半径长为1cm 的圆,故该选项正确,C.到直线l 距离等于2cm 的点的轨迹是两条平行于l 且与l 的距离等于2cm 的直线,故该选项正确;D.等腰△ABC 的底边BC 固定,顶点A 的轨迹是线段BC 的垂直平分线(BC 的中点除外),故该选项错误,故选D .【点睛】本题考查的是点的轨迹,掌握角平分线的性质、圆的轨迹、平行线和线段垂直平分线的性质是解题的关键.6.如图,△ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∠BAC =70°,则∠EAN 的度数为()A.35°B.40°C.50°D.55°【答案】B【分析】由三角形内角和180°解得110B C ∠+∠=︒,根据线段垂直平分线的性质,解得EA EB NA NC ∴==,,进而根据等边对等角性质,解得EAB B NAC C ∠=∠∠=∠,,最后根据角的和差计算EAN ∠的度数即可.【详解】70BAC ∠=︒ ,18070110B C ∴∠+∠=︒-︒=︒,AB Q 的垂直平分线交BC 于点E ,AC 的垂直平分线交BC 于点N ,EA EB NA NC ∴==,,EAB B NAC C ∴∠=∠∠=∠,,BAC BAE NAC EAN B C EAN ∴∠=∠+∠-∠=∠+∠-∠,1107040EAN B C BAC ∴∠=∠+∠-∠=︒-︒=︒,故选:B .【点睛】本题考查线段垂直平分线的性质、等边对等角、三角形内角和180°等性质,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题(本大题共12题,每题2分,满分24分)7.函数y =的定义域是_____________.【答案】32x ≥【详解】解:2x -3≥0,解得:x ≥32.故答案为x ≥32.8.方程2690y y -+=的解为___________;【答案】3【分析】利用完全平方公式y 的值,即可解答.【详解】解2690y y -+=()2-30y =y=3故答案为3.【点睛】此题考查完全平方公式,解题关键是掌握运算公式.9.方程()1x x x -=的根是___________;【答案】x 1=2,x 2=0.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x (x-1)=x ,x (x-1)-x=0,x (x-1-1)=0,x-1-1=0,x=0,x 1=2,x 2=0.故答案为x 1=2,x 2=0.【点睛】此题考查解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解题的关键.10.在实数范围内因式分解:2234x xy y +-=___________;【答案】3272-7+-33x y x ⎛⎫⎛⎫-+- ⎪⎪ ⎪⎪⎝⎭⎝⎭.【分析】首先求出3x 2+4xy-y 2=0的根,进而分解因式得出即可.【详解】当3x 2+4xy-y 2=0,解得:x 1=2272-733y x y --=,,故原式=3x 2+4xy-y 2=3x y x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】此题考查分解因式,求出方程的根是解题关键.11.已知正比例函数()34y k x =+的图像经过第一、三象限,则k 的取值范围是___________;【答案】k >-43.【分析】先根据正比例函数的图象经过第一、三象限列出关于k 的不等式,求出k 的取值范围即可.【详解】∵比例函数y=(3k+4)x 的图象经过第一、三象限,∴3k+4>0,∴k >-43.故答案为k >-43.【点睛】此题考查一次函数的性质,解题关键在于掌握一次函数y=kx+b (k≠0),当k >0时函数图象经过一、三象限.12.已知()111,P x y 、()222,P x y 两点都在反比例函数2y x=的图象上,且120x x <<,则1y ______2y (选填“>”或“<”.【答案】>【分析】根据一次函数的系数k 的值可知,x <0时,y 的值随着x 的增加而减小,再结合x 1<x 2<0,即可得出结论.【详解】解:在反比例函数2y x=中k=2>0,∴x <0时,y 的值随着x 的增加而减小,∵x 1<x 2<0,∴y 1>y 2.故答案为:>.【点睛】本题考查了反比例函数的性质,解题的关键是得出x <0时,y 的值随着x 的增加而减小,本题属于基础题,难度不大.13.命题“平行于同一条直线的两直线平行”的逆命题是______________________________;【答案】如果两条直线平行,那么它们平行于同一条直线.【分析】把一个命题的条件和结论互换就得到它的逆命题.命题“平行于同一直线的两直线平行”的条件是“两条直线平行于同一直线”结论是“两条直线平行”,故命题“平行于同一直线的两直线平行”的逆命题是如果两条直线平行,那么它们平行于同一条直线.【详解】命题“平行于同一直线的两直线平行”的逆命题是:如果两条直线平行,那么它们平行于同一条直线.故答案为如果两条直线平行,那么它们平行于同一条直线.【点睛】此题考查命题与定理,解题关键在于掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.某企业生产某种产品,今年产量为200件,计划通过技术革新,三年(包括今年)的产量达到1400件,若明后两年的产量平均增长率相同为x ,可以得到方程___________;【答案】200+200(1+x )+200(1+x )2=1400.【分析】根据题意:设这个百分数为x ,根据第一年的产量+第二年的产量+第三年的产量=1400,由此列出方程解答即可.【详解】设这个百分数为x ,由题意得200+200(1+x )+200(1+x )2=1400.故答案为200+200(1+x )+200(1+x )2=1400.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.15.如图,在ABC ∆中,分别以点A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于M ,N ,作直线MN ,交BC 于点D ,连接AD .如果5BC =,2CD =,那么AD =___________;【答案】3【分析】直接利用基本作图方法得出MN 垂直平分AB ,进而得出答案.【详解】由作图步骤可得:MN 垂直平分AB ,则AD=BD ,∵BC=5,CD=2,∴BD=AD=BC-CD=5-2=3.故答案为3.【点睛】此题考查基本作图,正确得出MN 垂直平分AB 是解题关键.16.如图,已知在ABC 中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE 的面积等于___________.【答案】5【分析】过E 作EF BC ⊥于点F ,由角平分线的性质可求得EF DE =,则可求得BCE ∆的面积.【详解】解:过E 作EF BC ⊥于点F ,CD 是AB 边上的高,BE 平分ABC ∠,2EF DE ∴==,11·52522BCE S BC EF ∆∴==⨯⨯=,故答案为:5.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.17.如图,在ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF ,24ABD ︒∠=.若DF CD =为等腰三角形,则A ∠的度数为___________;【答案】60°.【分析】根据角平分线的性质可得∠DBC =∠ABD ,再根据线段垂直平分线的性质可得BF =CF ,进而可得∠FCB =24°,然后可算出∠ACB 的度数,再根据三角形内角和定理即可解答.【详解】∵BD 平分∠ABC ,∴∠DBC =∠ABD ,∵BD 平分ABC ∠,24ABD ︒∠=∴∠ABC =48°,∵BC 的中垂线交BC 于点E ,∴BF =CF ,∴∠FCB =∠FBC =24°,∴∠BFE =90°-24°=66°,∴∠DFC =180°-66°-66°=48°,∵DFC ∆为等腰三角形,∴∠DFC =∠DCF =48°,∴∠ACB =∠DFC +∠FCB =48°+24°=72°,∴∠A =180°-∠ACB -∠ABC =60°.故答案为60°.【点睛】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.18.如图,在Rt ABC ∆中,9030ACB CAB ∠=︒∠=︒,,ACB ∠的平分线与ABC ∠的外角平分线交于点E ,则AEB ∠的度数为___________.【答案】45°.【分析】首先求得AE也是∠CAB的外角的平分线,根据平角的定义和角平分线的定义求得∠EAB,∠EBA的度数,最后根据三角形的内角和定理即可求得∠AEB.【详解】过点E作EM⊥AC于M,作EN⊥AB于N,EF⊥BC于F,∵E是∠ACB的平分线与∠ABF的平分线的交点,∴EM=EF,EN=EF,∴EM=EN,∴AE是∠CAB的外角的平分线.∵在Rt△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,∠BAE=1502=75°,∵EB是∠ABC的外角的平分线,∴∠ABE=60°,∴∠AEB=180°-60°-75°=45°.故答案为45°.【点睛】此题考查角平分线的定义和性质,求得AE是∠A的外角的平分线,是解题关键.三、简答题、(本大题4题,每题5分,满分20分)19.解方程x2﹣4x+1=0.【答案】323【分析】根据完全平方公式和配方法解出方程即可.【详解】解:移项得,x2﹣4x=﹣1,配方得,x2﹣4x+4=﹣1+4,∴(x﹣2)2=3,∴x ﹣∴x 1,x 2=2-.20.用配方法解方程:2220x x --=【答案】x 1x 2;【分析】先变形方程得到x 2-2x+1=3,然后利用配方法求解;【详解】x 2-2x+1=3,(x-1)2=3,,所以x 1x 2【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.21.解分式方程:22x 1x 4x 2+=--.【答案】x 3=-【分析】首先进行去分母,将分式方程转化为整式方程,然后求出方程的解,最后需要对方程的解进行检验,看是否能使原分式的分母为零.【详解】解:去分母得:()22x x 2x 4++=-,去括号得:222x 2x x 4++=-,解得:x 3=-.经检验得,x 3=-是原分式方程的根,∴原分式方程的解为x 3=-.22.已知:∠O 、点A 及线段a (如图),求作:点P ,使点P 到∠O 的两边的距离相等,且PA=a .(要求尺规作图,保留作图痕迹,不写作法).【答案】答案见解析.【分析】先利用尺规作图作出∠O 的平分线,再以点A 为圆心,线段a 的长度为半径画弧,与角平分线的交点即为所求.【详解】解:如图所示,点P 1和点P 2即为所求.【点睛】考查作图-复杂作图,解题的关键是熟练掌握角平分线的尺规作图和角平分线的性质.四、解答题(本大题共4题,每题6分,满分24分)23.已知关于x的一元二次方程()22110m x --+=有两个不相等的实数根.求m 的范围;【答案】0≤m <1且m ≠12;【分析】由方程根的性质,根据根的判别式可得到关于m 的不等式,可求得m 的取值范围;【详解】∵方程()22110m x --+=有两个不相等的实数根,∴△>0且2m-1≠0且m≥0即()2-4(2m-1)>0且m≠12且m≥0,解得0≤m <1且m≠12;【点睛】此题考查二次根式的性质及根的判别式,利用根的判别式求得m 的取值范围是的关键.24.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y 与小婷打完电话后步行的时间x 之间的函数关系如图所示(1)妈妈从家出发_____分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟_____米,小婷家离学校的距离为_____米.【答案】①.8②.60③.2100【分析】由当8x =时,0y =,可得出妈妈从家出发8分钟后与小婷相遇;利用速度=路程÷时间结合小婷的速度,可求出小婷和妈妈相遇后,妈妈回家的速度为60米/分;根据路程1600=+小婷步行的速度()2318⨯-,即可得出小婷家离学校的距离.【详解】()1当8x =时,0y =,故妈妈从家出发8分钟后与小婷相遇,()2当0x =时,1400y =,∴相遇后18810-=分钟小婷和妈妈的距离为1600米,()160018810060(÷--=米/分),∴相遇后妈妈回家的平均速度是每分钟60米;()160023181002100(+-⨯=米),∴小婷家离学校的距离为2100米.故答案为8;60;2100.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.如图,点A ,B ,C ,D 在同一条直线上,AB=DC ,在四个论断“EA=ED ,EF ⊥AD ,AB=DC ,FB=FC”中选择二个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知、如图,点A ,B ,C ,D 在同一条直线上,.求证、.证明、.【答案】见解析【分析】已知:EA=ED,EF⊥AD,AB=DC,求证FB=FC.想办法证明EF是线段BC的垂直平分线即可.(答案不唯一)【详解】已知:如图,EA=ED,EF⊥AD,AB=DC,求证FB=FC.理由:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.故答案为EA=ED,EF⊥AD,AB=DC;FB=FC;延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.【点睛】此题考查等腰三角形的判定和性质,线段的垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.26.某果园有100棵桃树,一棵桃树平均结1000个桃子, 现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个, 如果要使产量增加15.2%,那么应多种多少棵桃树?【答案】应多种20棵桃树【分析】每多种一棵桃树,每棵桃树的产量就会减少2个,所以多种x 棵树每棵桃树的产量就会减少2x 个(即是平均产1000-2x 个),桃树的总共有100+x 棵,所以总产量是(100+x )(1000-2x )个.要使产量增加15.2%,达到100×1000×(1+15.2%)个.【详解】解:设应多种x 棵桃树,则由题意可得:(100+x )(1000−2x )=100×1000×(1+15.2%)整理,得:x 2−400x +7600=0即(x −20)(x −380)=0解得:x 1=20,x 2=380因为所种桃树要少于原有桃树,所以x =380不符合题意,应舍去,取x =20,答:应多种20棵桃树.【点睛】本题考查了一元二次方程的应用,根据题意得出关系式是解题的关键.五、综合题(本大题共2题,每题10分,满分20分)27.在平面直角坐标系xoy 中(如图),点()4,1A -为直线y kx =和双曲线m y x =的一个交点,(1)求k 、m 的值;(2)若点()5,0B -,在直线y kx =上有一点P ,使得2ABP ABO S S ∆∆=,请求出点P 的坐标;(3)在双曲线是否存在点M ,使得45AOM ︒∠=,若存在,请求出点M 的坐标;若不存在请说明理由.【答案】(1)k=-14,m=-4;(2)点P 的坐标为(4,-1)或(-12,3);(3)M (,3).【分析】(1)利用待定系数法即可解决问题.(2)如图1中,设直线y=-14x 与反比例函数y=-4x 的另一个交点为C (4,-1).由对称性可知:OA=OC ,推出当点P 与C 重合时,S △ABP =2S △ABO ,此时P (4,-1).当点P 在OA 的延长线上时,P′A=AC 时,S △ABP =2S △ABO ,再利用中点坐标公式求解即可.(3)如图2中,将OA 绕点O 顺时针旋转90°得到OA′,则A′(1.4),取AA′的中点D ,作直线OD 在第二象限交反比例函数于M .此时∠AOM=45°,求出直线OD 的解析式,再构建方程组确定点M 的坐标.【详解】(1)∵点A (-4,1)在直线y=kx 和双曲线y=m x的图象上,∴k=-14,m=-4.(2)如图1中,设直线y=-14x 与反比例函数y=-4x 的另一个交点为C (4,-1).由对称性可知:OA=OC ,∴当点P 与C 重合时,S △ABP =2S △ABO ,此时P (4,-1).当点P 在OA 的延长线上时,P′A=AC 时,S △ABP =2S △ABO ,此时P′(-12,3),综上所述,满足条件的点P 的坐标为(4,-1)或(-12,3).(3)如图2中,将OA 绕点O 顺时针旋转90°得到OA′,则A′(1.4),取AA′的中点D ,作直线OD 在第二象限交反比例函数于M .此时∠AOM=45°,∵D (-3522,),∴直线OD 的解析式为y=-53x ,由534y x y x ⎧-⎪⎪⎨⎪-⎪⎩==,解得1552153x y ⎧-⎪⎪⎨⎪⎪⎩==或2155215-3x y ⎧⎪⎪⎨⎪⎪⎩==,∵点M 在第二象限,∴M (215,2153).【点睛】此题考查反比例函数综合题,一次函数的性质,反比例函数的性质,待定系数法等知识,解题的关键是学会用转化的思想思考问题.28.如图,等边ABE ∆,点D 为射线AE 上一点,延长BE 至点C ,使得EC AD =,联结CD 并延长交射线AB 于点F .(1)当点D 在边AE 上时,如图1,若ED AD =,则_____CFA DBC ︒∠-∠=(2)当点D 在边AE 上时,如图2,若ED AD ≠,则(1)的结论还成立吗?若成立,请证明;若不成立,写出CFA ∠与DBC ∠的数量关系并证明.(3)当点D 在边AE 的延长线上时,则(1)的结论还成立吗?若成立,请证明;若不成立,写出CFA ∠与DBC ∠的数量关系并证明.【答案】(1)60°;(2)见解析;(3)∠CFA+∠DBC=60°,理由见解析.【分析】(1)由等边三角形的性质可得BD⊥AE,∠DBE=∠DBA=30°,AB=AE,可求∠CFA=∠ABC+∠ECD=90°,即可求解;(2)如图2,过点C作CH∥AB交AE的延长线于H,可证△CHE是等边三角形,可得CH=CE=HE=AD,通过证明△BAD≌△DHC,可得∠DBF=∠HDC,由外角性质可求解;(3)如图3,过点C作CH∥AB交AE的延长线于H,可证△CHE是等边三角形,可得CH=CE=HE=AD,通过证明△BAD≌△DHC,可得∠DBF=∠HDC,由外角性质可求解;【详解】(1)∵△ABE是等边三角形,ED=AD,∴BD⊥AE,∠DBE=∠DBA=30°,AB=AE,∵EC=AD,∠BEA=60°,∴∠ECF=30°,∴∠CFA=∠ABC+∠ECD=90°,∴∠CFA-∠DBC=90°-30°=60°,故答案为60°;(2)如图2,过点C作CH∥AB交AE的延长线于H,∵CH∥AB,∴∠H=∠EAB=60°,∠HCE=∠EBA=60°,∴△CHE是等边三角形,∴CH=CE=HE,∵EC=AD,∴HE=CH=AD,∴HE+DE=AD+DE,∴HD=AE=AB,∵HD=AB,AD=CH,∠H=∠BAD=60°,∴△BAD≌△DHC(SAS)∴∠DBF=∠HDC,∵∠CFA=∠CBF+∠BCF=∠CBD+∠DBF+∠BCF,∴∠CFA-∠DBC=∠DBF+∠BCF=∠HDC+∠BCF=∠BEA=60°;(3)如图3,过点C作CH∥AB交AE的延长线于H,∵CH∥AB,∴∠HCD=∠CFA,∠H=∠EAB=60°,∠HCE=∠EBA=60°,∴△CHE是等边三角形,∴CH=CE=HE,∵EC=AD,∴HE=CH=AD,∴HE-DE=AD-DE,∴HD=AE=AB,∵HD=AB,AD=CH,∠H=∠BAD=60°,∴△BAD≌△DHC,(SAS)∴∠DBA=∠HDC,∠HCD=∠BDA,∴∠BDA=∠CFA,∵∠AEB=∠ADB+∠DBC=60°,∴∠CFA+∠DBC=60°.【点睛】此题考查三角形综合题,全等三角形的判定和性质,等边三角形的性质,平行线的性质,添加恰当辅助线构造全等三角形是解题的关键.。
西南模范中学2019-2020学年第一学期七年级月考数学试卷(学生)
精锐教育七年级数学第一学期阶段测试复习卷一、计算(每题1分)1.()2232b a --=_______________2.()3222-+--x x x =_________________3.()()m n n m 3223---=_______________4.22)1(--b a =_______________5.b a b a 22328÷=_______________6.()2c b a -+-=_______________7.()()254-a a a ÷-÷=_______________8.()()35a b b a -÷-=_______________9.()()34103109⨯÷⨯=_______________ 10.()ab ab b a 242123-÷⎪⎭⎫ ⎝⎛-=______________ 二.填空(每空2分)11.计算:223131⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-y x y x =_______________ 12.分解因式:22xy y x +-=_____________13. 如果()2242188+=-++x k x x ,那么k=_______________14. 已知8,4==n m a a ,那么n m a 43-=_______________15. 已知单项式m b a 32与213b a n --的和为单项式,则这两个单项式的积是__________16. 利用乘法公式计算:-20.3×19.7=__________17. 如果023=+-c b a ,则c b a 3927⨯÷=_____________18. 计算:()22225212ab b a a b ab a --⎪⎭⎫ ⎝⎛+-=_____________ 19. 计算:322432143⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-b a c b a =_____________ 20. 如果05=--b a ,且a 、b 互为倒数,则()2b a +=_____________21.若16)1(2+--a k a 是完全平方式,则常数k =__________22.计算()()d cx b ax ++所得的结果为12662--x x ,则bc ad +=_____________,bd ac -=_____________23. 计算:201020102011201120112010⨯-⨯=_____________24.当20103,735=-++=cx bx ax x ,则当3,735-++-=cx bx ax x =_____________ 三、选择题(每题3分)25.下列计算中正确的是( )【A 】623632x x x =⋅【B 】422x x x =+【C 】()222y x y x +=+【D 】()m m m x x x =÷2326.下列从左到右是因式分解的是( )【A 】()32322-+=-+x x x x【B 】()b a ab ab b a -=-233622【C 】()mn m n m m 2222--=+-【D 】nc b a m nc mb ma ++=++)(27.把x x x 481223-+-因式分解正确的是( )【A 】()x x x 2342--【B 】()1-2342x x x +-【C 】()24622+--x x x【D 】()12342+--x x x28. 已知012=--a a ,则代数式201523+-a a 的值是()【A 】2015【B 】2016【C 】2017【D 】2018四.计算题(每题5分) 29. ()()52353364)31(3x a x a ax x a ÷-⋅÷30. ()()()()()b a a b b a b a b a -+-++-+2225231. ()()()()222233161212-+----x x x x32. ()()()2233223z y x z x y z y x ++-+--+33. ()()()()()[]()2421822122422-÷----++-x x x x x x34. ()()()()2235322534323a a a a a a -÷⎥⎦⎤⎢⎣⎡-+-÷-五.简答题(每题6分)35.先化简再求值:()()()()()1212442222-+---++-a a a a a a a ,其中21-=a36.已知4=+b a ,2=ab ,求下列各式的值(1)22ab b a + (2)22b a +37.有些大数值的问题可以用字母代替数字来解决,请阅读下列材料并回答问题 若123456786123456789⨯=x ,123456787123456788⨯=y ,比较x 与y 的大小 解:设a =123456788,那么()()()a a a a y a a a a x -=-=--=-+=221,221 因为()()02222<-=----=-a a a a y x所以x<y请回答下列问题计算23345.0345.1345.169.2345.0345.1⨯--⨯⨯。
上海市西南模范中学2019-2020学年八年级(下)期中数学试卷(含解析)
上海市西南模范中学2019-2020学年八年级(下)期中数学试卷一、选择题(本大题共4小题,共12.0分)1.下列命题中正确的有()A. 长度相等的弧是等弧B. 相等的圆心角所对的弦相等C. 等边三角形的外心与内心重合D. 任意三点可以确定一个圆2.平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是菱形,那么这个条件是()A. AB=ACB. AC=BDC. AC⊥BDD. AB⊥BD3.在平面直角坐标系中,点B,C的坐标分别为B(−√6,−√6),C(√6,√6).任意一点A都满足|AB−AC|=2√3.作∠BAC的内角平分线AE,过点B作AE的垂线交AE于点F,已知当点A在平面内运动时,点F与坐标原点O的距离为()A. √6B. √3C. √2D. 14.如图1,在矩形ABCD中,AB=1,BC=√3.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若x=α,图中某点到点M的距离为y,表示y15∘与x的函数关系的图象如图2所示,则这个点为图1中的()A. 点AB. 点BC. 点CD. 点D二、填空题(本大题共14小题,共28.0分)5.在平面直角坐标系xOy中,平行四边形的三个顶点O(0,0),A(3,0),B(3,2),则其第四个顶点C的坐标是______ .6.计算:3(2a⃗+b⃗ )−(a−b⃗ )=______ .7.在矩形ABCD中,对角线AC、BD相交于O,AC=2AB,则∠AOB的度数为______.8.如图,在四边形ABCD中,∠B=∠D=90°,分别以四边向外作正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______ .9.正多边形一个内角为135度,则这个多边形是正______边形.这个多边形的内角和是______度.10.如图在平面直角坐标系中,点A、B的坐标分别为(−4,0)、(−1,0).点P是抛物线y=(x−2)2+1上一点,设点P的横坐标为m,当0≤m≤3时,△PAB的面积S的变化范围为______.11.如图,∠AOB=60°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=8,当△PMN周长取最小值时,△OMN的面积为______.12.如图,有一张长为7宽为5的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为______(结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明裁剪的过程.13.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=2,则BF的长为______.14.如图,在平面直角坐标系中,A(0,1),B(4,0),以AB为斜边作等腰Rt△ABC,则C点坐标为______.15.如图,正方形ABCD中,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,当AF的最大值是2时,正方形ABCD的边长为______.16.如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,∠BAD=40°,则∠OED的度数为______.17.从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是______.18.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的BC.若AB=10,则EF的长是______.中点,延长BC到点F,使CF=12三、计算题(本大题共1小题,共6.0分)19.解方程或方程(1);(2)(3)(4)四、解答题(本大题共6小题,共54.0分)20. (1)分解因式:m 2(x −y)+4n 2(y −x);(2)解方程:2x x 2−4=1x−2.21. 如图,已知:△ABC 中,点D 、E 分别在AB 、AC 上,AB =9,AC =6,AD =2,AE =3.(1)求DEBC 的值;(2)设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,求DE ⃗⃗⃗⃗⃗⃗ (用含a ⃗ 、b ⃗ 的式子表示).22.某高粱种植户去年收获高粱若干千克,按市场价卖出后收入16000元,为了落实国家的惠农政策,决定从今年起对农民粮食实行保护价收购,该种植户今年收获的高粱比去年多200千克,按保护价卖出后比去年多收入5120元,已知保护价是市场价的1.2倍,问保护价和市场价分别是多少?23.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,(1)求证:△BFD≌△CDE;(2)求∠A的度数.24.如图所示,四边形ABCD中,∠A=90°,AB=AD=4,CD=2,BC=6.求∠ADC的度数.25.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是______;结论2:DM、MN的位置关系是______;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案与解析】1.答案:C解析:解:A、等弧必须同圆中长度相等的弧,是假命题,不符合题意.B、在等圆中相等的圆心角所对的弦相等,是假命题,不符合题意;C、等边三角形的外心与内心重合,是真命题,符合题意;D、不在同一直线上任意三点确定一个圆,是假命题,不符合题意;故选:C.根据圆,弧,弦等概念眼睛等边三角形的性质判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.2.答案:C解析:解:A、平行四边形ABCD中,AB=AC,不能推出平行四边形ABCD是菱形,故选项A不符合题意;B、∵平行四边形ABCD中,AC=BD,∴平行四边形ABCD是矩形,不一定是菱形,故选项B不符合题意;C、∵平行四边形ABCD中,AC⊥BD,∴平行四边形ABCD是菱形,故选项C符合题意;D、平行四边形ABCD中,AB⊥BD,不能推出平行四边形ABCD是菱形,故选项D不符合题意;故选:C.由菱形的判定和矩形的判定分别对各个选项进行判断,即可得出结论.此题主要考查了菱形的判定、矩形的判定、平行四边形的性质,熟练掌握菱形的判定定理和矩形的判定定理是解题的关键.3.答案:B解析:解:如图:过C作CD⊥AF,垂足为M,交AB于D,∵AF平分∠BAC,且AM是DC边上的高,∴△DAC是等腰三角形,∴AD=AC,∴BD=AB−AC=2√3,即BD长为定值,过M作MN//BD于N,则四边形MNBD是个平行四边形,∴MN=BD,∵MN//BD,DM=MC,∴MN平分线段BC,∴MN与BC交于O,∵∠MCO=∠NBO,∠MOC=∠NOB,OC=OB,∴△MOC≌△NOB(ASA),∴OM=ON,在△MNF中,无论F怎么变化,有两个条件不变:①MN的长为定值,②∠MFN=90°,因此如果作△MNF的外接圆,那么F点总在以MN为直径的圆上运动,因此F点的运动轨迹应该是个圆.∴圆的直径为MN,且MN=BD,BD=AB−AC=2√3,∴OF=1MN=√3.2故选:B.本题给出了角平分线,给出了两条线段的定值差,因此可通过构建等腰三角形作出这个等值差进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选:C.
7.D
解析:D
【解析】
【分析】
【详解】
解:A、a+a2不能再进行计算,故错误;
B、(3a)2=9a2,故错误;
C、a6÷a2=a4,故错误;
D、a·a3=a4,正确;
故选:D.
【点睛】
A.2个B.3个C.4个D.5个
5.已知 ,则A=( )
A. B. C. D.x2﹣1
6.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是( )
①x=1是二次方程ax2+bx+c=0的一个实数根;
②二次函数y=ax2+bx+c的开口向下;
③二次函数y=ax2+bx+c的对称轴在y轴的左侧;
等级
成绩(s)
频数(人数)
A
90<s≤100
4
B
80<s≤90
x
C
70<s≤80
16
D
s≤70
6
根据以上信息,解答以下问题:
(1)表中的x=;
(2)扇形统计图中m=,n=,C等级对应的扇形的圆心角为度;
(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
故选D.
【点睛】
此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
11.B
解析:B
【解析】
分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.
详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
5.B
解析:B
【解析】
【分析】
由题意可知A= ,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.
【分析】
根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.
【详解】
解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),
∴b=3,
令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x= ,
∴点B( ,0).
观察函数图象,发现:
本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.
8.C
解析:C
【解析】
【分析】
按照题中所述,进行实际操作,答案就会很直观地呈现.
【详解】
解:将图形 按三次对折的方式展开,依次为:
.
故选:C.
【点睛】
本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;
该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;
该组数据的平均数是 不是30,所以选项D不正确.
故选B.
点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.
12.A
解析:A
【详解】
解:A= = =
故选B.
【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
6.C
解析:C
【解析】
试题分析:当x=1时,a+b+c=0,因此可知二次方程ax2+bx+c=0的一个实数根,故①正确;根据a>b>c,且a+b+c=0,可知a>0,函数的开口向上,故②不正确;
根据二次函数的对称轴为x=- ,可知无法判断对称轴的位置,故③不正确;
3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为( )
A.x> B.x< C.x>3D.x<3
4.如图,在矩形ABCD中,AD= AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
【解析】
分析:在图形左侧添加正方形网格,分别延长AB、AC,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.
详解:如图所示,
由图形可知, , , ,
∴tan∠BAC= .
25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:
(1)写出A,C两点的坐标;
(2)画出△ABC关于原点O的中心对称图形△A1B1C1;
(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.
【参考答案】***试卷处理标记,请不要删除
④不等式4a+2b+c>0一定成立.
A.①②B.①③C.①④D.③④
7.下列运算正确的是( )
A. B. C. D.
8.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()
A. B. C. D.
9.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()
A. B. C. D.
10.均匀的向一个容器内注水,在注水过程中,水面高度 与时间 的函数关系如图所示,则该容器是下列中的()
22.先化简,再求值: ,其中 .
23.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE= AB,
∵AD= AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED= (180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
9.B
解析:B
【解析】
试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.
考点:简单组合体的三视图.
10.D
解析:D
【解析】
【分析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解. Nhomakorabea【详解】
根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;
2019-2020上海西南模范中学数学中考试卷附答案
一、选择题
1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )
A. B. C. D.
2.如图,矩形ABCD的顶点A和对称中心均在反比例函数y= (k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()
A.12B.4C.3D.6
∴∠AED=∠CED,故①正确;
∵∠AHB= (180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
A. B. C. D.
二、填空题
13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.
14.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.
15.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
当x< 时,一次函数图象在x轴上方,
∴不等式﹣2x+b>0的解集为x< .
故选:B.
【点睛】
本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.
4.C
解析:C
【解析】
【分析】
【详解】
试题分析:∵在矩形ABCD中,AE平分∠BAD,