实践与探索1--华师大版
七年级数学下册第6章一元一次方程6.3实践与探索第1课时体积和面积问题教案华东师大版
第1课时体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的错误!,求这个长方形的长和宽;(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x厘米,则宽为错误!x厘米.根据题意,得2(x+错误!x)=60,解这个方程,得x=18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x厘米,则宽为(x-4)厘米,根据题意,得2(x+x-4)=60,解这个方程,得x=17,所以S=13×17=221(平方厘米).(3)在(1)的情况下S=12×18=216(平方厘米);在(2)的情况下S=13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x平方厘米?如不能,怎么办?如果直接设长方形的面积为x平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知数的原则又是什么呢?结论:在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大.【例】将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0。
华师大版数学八年级下册1实践与探索课件
提示:读图不认真,x>2时,对应的函数值在x轴下方,即y <0.
【解析】设y=kx+b(k,b为常数,k≠0),
则有
b 2
299, 000k b
解得 235,
k b
-4, 125
299,
∴y= 4 +x299.
125
当x=1 200时,y=
=260.6(g/m3).
×41 200+299
125
答:该山山顶处的空气含氧量约为260.6 g/m3.
【想一想错在哪?】当自变量x满足什么条件时,一次函数 y=-2x+4的值满足y>-2?
3, 2
【解析】选B.∵两条直线y=k1x+b1和y=k2x+b2相交于点A(-
2,3), ∴∴x方=程-2组,y=yy 3就kk12x是x方bb12,程的组解为yy xykk12xx-3的. 2bb,1解2,.
2.如图,以两条直线l1,l2的交点坐标为解的方程组是( )
x-y 1,
x-y -1,
可以是
x-y -1, 2x-y 1.
3.函数y=2x-3的图象上任意一点的坐标都一定满足二元一次 方程________. 【解析】y=2x-3移项,得2x-y-3=0. 答案:2x-y-3=0
4.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交
于点P,则根据图象可得二元一次方程组
y
【思路点拨】由待定系数法分别求出AB,CD的关系式→联立 得方程组即可得两直线的交点坐标. 【自主解答】直线AB过(-3,0),(0,6),由待定系数法得直 线AB的方程为y=2x+6; 直线CD过(0,1),(2,0),由待定系数法得直线CD的方程为 y= 1 x 1, 联所以立直得2 线方A程B组,CyyD的2x交12x点6,1坐,解标得为(xy-2,2.22,).
新华师大版数学九年级上册学案:22.3实践与探索第1课时
22.3 实践与探索第一课时学习目标:1.使学生掌握列方程解应用题中写“关系式”及找相等关系列方程方法;2.使学生理解列方程实质在于会用含未知数的代数式表示题目里的关系式;3.采用对面积的割补、移动的方法,培养学生灵活运用的能力.重点和难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列方程是重点也是难点.学习过程:一、创设情境1.写出本节课的课题:一元二次方程的应用.2.请同学们回忆并回答解一元一次方程应用题的一般步骤:3.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.我们先来解决§22.1的问题1,然后总结一些规律或应注意事项.二、探究归纳例1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.现设长方形绿地宽为x米,不难列出方程:三、实践应用例2如图1,在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为 540米2,道路的宽应为多少?分析此题的相等关系是矩形面积减去道路面积等于540米2.解法1如图2,设道路的宽为x米,则横向的路面面积为______.纵向的路面面积为______.所列的方程是不是32×20-(32x+20x)=540?启发学生思考,务必把这一点弄明白!解法2 利用“图形平行移动”的道理,把纵、横两条路移动一下,使列方程容易些,(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)如图3,设路宽为x米,耕地矩形的长(横向)为______.耕地矩形的宽(纵向)为______.例3 如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.分析设截去正方形的边长为x厘米后,关键在于列出底面(图示虚线部分)长和宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式.解设截去正方形的边长为x厘米,根据题意,得练习:1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的三分之二时较美观,求镶上彩纸条的宽(精确到0.1厘米).2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=,其中重力加速度g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米?四、归纳小结1.列方程解应用题的步骤是:2.面积问题常要用到割、补、运动等技法.例2中,纵、横两条路有一块重叠的面积最容易忽略,解法2采用了运动的办法,是一种灵活解题的能力.总之:在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程的解之后,要注意检验是否符合题意,然后得到原问题的解答. 五、作业1.学校课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽(精确到0.1米).2.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较适合?3.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分面积为100平方米,求原正方形广场的边长(精确到0.1米).4.村里要修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多0.4米,求灌溉渠横截面的上下底长和灌溉渠的深度.。
6.3.1华师大实践与探索(1)
☺市场营销问题☺
成本(进价):卖家进货时所花的费用。 标价:商品在卖出前所标注的价格。 售价:商品售出时,卖家与买家所定的价格。 利润:卖家卖出商品所收的钱除去进货时花费的费用。 折数:卖家在卖货时,给买家让利所给的价格与原价格 的比例。 销售额:卖家卖商品后,所得的收入减去进货时用的钱。 利润率:利润除以成本得出的百分比
解:设最低可以打x折出售此商品。 根据题意,得:
600 x 400 5% 10 400
解这个方程得:x=7 经检验,符合题意 答:最低可以打7折出售此商品。
2、市场鸡蛋按个数计价,一商贩以每个0.24元购进一批 鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每 个0.28元售出,结果获利11.2元,问商贩当初买进多少鸡 蛋?
1 3
2 rh 2 r
/
2
r h
2
几何问题类别 【单个图形问题】解题步骤 审题,明确题目中涉及到的是什么图形,需要我们求什么 判断,根据要求判断其本质是求图形的周长、面积、还是体积 列式,选用公式,并依据公式设出适当的未知数,列式 解答,作答 【图形变换问题】解题步骤 审题,明确题目中涉及的是哪些的互相转换 判断,确定该题是属于求周长、面积还是体积(体积题较多) 分析,找出两个图形转换时,不变的量,并据此列等式 列式,将各自图形的公式转换,并将其带入上步等式中,未知的 条件可设成未知数 解答,作答
解:设商贩当初买进x个鸡蛋 根据题意得:0.28(x-12)-0.24x=11.2 解这个方程得:x=364 答:商贩当初买进364个鸡蛋。
3、个体户小张,把某种商品按标价的九折出售,仍可获 利20%,若按货物的进价为每件24元,求每件的标价是 多少元?
解:设每件商品的标价是x元
福建省泉州市泉港区三川中学华师大版九年级数学上册课件:22.3实践与探索(1) (共8张PPT)
数字与方程
1. 一个两位数,它的十位数字比个位数字小3,而它的个 位数字的平方恰好等于这个两位数.求这个两位数.
解 : 设这两位数的个位数字为x, 根据题意, 得
x 10x 3 x. 2 整理得x 11x 30 0.
2
解得x1 5, x2 6.
x 3 5 3 2, 或x 3 6 3 3.
解 : 设每件衬衫应降价x元, 根据题意, 得 x (40 x)( 20 2 ) 1200. 1 整理得 : x 2 30 x 200 0. 解这个方程, 得 x1 20, x2 10. 20 2 x 60, 或20 2 x 40. 答 : 为了尽快减少库存, 应降价20元.
小结
拓展
回味无穷
zx`x``k
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?
• 2.设:设未知数,语句要完整,有单位(同一)的要注明单位;
• 3.列:列代数式,列方程; • 4.解:解所列的方程
; zx```xk
• 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系:
解 : 根据题意, 得
3t 10t .
2
整理得 :
3t 2 10t 200 0,
解得 :
20 x1 ; x2 10(不合题意, 舍去). 3 20 答 : 行驶200m需要 s (约6.7 s). 3
开启
智慧
增长率与方程
4.某电冰箱厂每个月的产量都比上个月增长的百分数相同。已知 该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了 120000台,求该厂今年产量的月平均增长率为多少?
华师大版九年级数学上册《实践与探索》第1课时课件
到8 200元/m2,假设这两年某市房价的平均增长率为x,根据题意,所
列方程为( C ) A.7 600(1+x%)2=8 200
B.7 600(1-x%)2=8 200
C.7 600(1+x)2=8 200
D.7 600(1-x)2=8 200
9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位
解:(1)设每年市政府投资的增长率为x,依题意得2+2(1+x)+ 2(1+x)2=9.5,解得x=50% (2)8+8(1+50%)+8(1+50%)2=38万平方米,即到2016年底共 建设了38万平方米廉租房
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
(40-2x)(26-x)=144,解得x=2
4.(4分)县化肥厂第一季度生产a吨化肥,以后每季度比上一季度增
产x%,则第三季度生产化肥的吨数为( A.a(1+x)2吨
B) B.a(1+x%)2吨
C.(1+x%)2吨
D.a+a(x%)2吨
5.(4分)为解决群众看病贵的问题,有关部门决定降低药价,对某 种原价为289元的药品进行连续两次降价后为256元,设平均每次降价 的百分率为x,则下面所列方程正确的是( A )
最新2019-2020年华东师大版九年级数学上册《实践与探索》1教学设计~评奖教案
华师大版九年级上册22.3实践与探索教案(2)教学内容:课本P40页~P43页。
教学目标:1、通过具体的实例,体验用一元二次方程解决实际问题的方法;2、通过变式寻找问题的本质;3、形成图形问题的解题经验;教学重点:应用题的分析方法;教学难点:找等量关系;教学准备:课件教学方法:讲授法教学过程一、练习课本P43第5、6题二、学习1、学习问题3:小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折叠成一个无盖的长方体盒子,如图所示。
(1)如果要求长方体的底面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面积的数据要求,那么剪去的正方形边长会发生怎样的变化?折叠成的长方体的侧面积又会发生怎样的变化?折叠成的长方体底81644936251694面积(cm2)剪去的正方形边长(cm)折叠成的长方体侧面积cm2)分析:设剪去的正方形的边长为xcm,则长方体的底面正方形的边长为(10-2x)cm。
长方体的底面积为(10-2x)2cm2;长方体的侧面积为4块相同的长方形,其长为(10-2x)cm,宽为xcm,侧面积为4x(10-2x)cm2.解:(1)设剪去的正方形的边长为xcm,根据题意,得(10-2x)2=81解得:x1=9.5(舍去),x2=0.5答:剪去的正方形的边长为0.5cm.(2)当折叠的长方全底面积为81cm2时,剪去的正方形边长为0.5cm,折叠成的长方体的侧面积为4×0.5×9=18cm2.学生分组计算并填表格。
折叠成的长方体底面积(cm 2)81 64 49 36 25 16 9 4 剪去的正方形边长(cm )0.5 1 1.5 2 2.5 3 3.5 4 折叠成的长方体侧面积cm 2)18 32 42 48 50 48 42 32从表格数据可以看出:当折叠成的长方体底面积变小时,剪去的正方形边长增大,折叠成的长方体的侧面积先变大后变小。
1. 1 实践与探索 课件(华东师大版八年级下)
--------- 函数图象的用法
情境引入
Y(元)
问题一
归纳总结 问题二 题后小结 反馈练习 链接生活
1、乙复印社每月 的承包费是200元。 400
600
甲 乙
课堂小结
课后作业 导航
2、当每月复印 200 800页时,两复印 社的实际收费相 1000 X(页) 600 800 0 200 400 同;收320元。 3、如果每月复印页数在1 200页左右,应选择乙复印社; 800页时,两复印社都行;500页时,应选择甲复印社
试一试,你一定行!
实践与探索(一)
--------- 函数图象的用法
链接生活
情境引入 问题一
想一想
小张准备将平时的零用钱储存起来,他已存有50元,从
归纳总结
问题二 题后小结 反馈练习 链接生活 课堂小结 课后作业 导航
现在起每个月存12元,小王以前没有存过零用钱,听到小张
在存钱,表示也从现在起每个月存22元 。
1、请你在同一平面直角坐标系中分别画出小张和小王存款和
月份之间的函数关系的图象; 2、在图上找一找几个月以后小王的存款和小张的一样多? 至少几个月后小王的存款能超过小张?
比一比,看谁做得又快又准确
实践与探索(一)
--------- 函数图象的用法
链接生活
情境引入 问题一
归纳总结
问题二 题后小结 反馈练习 链接生活 课堂小结 课后作业 导航
解:设从现在开始的月份数为x,则小张的存款数为: y=12x+50;小王的存款数为:• y=22x,画出的图象 如图所示。 y=22x Y(元) 由图象可知:5月份 时,小张的存款与小王 120 y=12x+50 的一样多。 100 小王半年后的存款超过 80 小张(此时小王存款的图象 60 上的点位于小张存款的图 40 象上对应点的上方);至少要 20 5个月后,小王的存款才能超 1 2 3 4 5 X(月) 过小张。
华师大版九年级数学上册《实践与探索》课件(共16张PPT)
答:这个长方形框的框边宽为5cm
2.用一元二次方程解决较简单的增降率问题
知识装备:
1.某商店一月份的利润是500元,如果平 均每月利润的增长率为10﹪.
则二月份的利润是_____元. 50(0110%)
三月份的利润是_____元. 500(110%2)
1.用一元二次方程解决较简单的几何问题 (面积、周长、体积......)
问题1
学校生物小组有一块长32m,宽20m的矩形实验田,
为了管理方便,准备沿平行于两边的方向纵、横各
开辟一条等宽的小道要使种植面积为540m2 ,问道 路的宽为多少m?2
(1)题目中的已知量和未知量分别是什么?
(2)题目中相等关系式什么?
x250不符合题意x, 2符 经合 检题 验
答:小道的宽应2是 米。
归纳:列方程解应用题的一般步骤 第一步:分析题意 (弄清题意和题目中的已知数
、未知数,用字母表示题目中的一个未知数;)
第二步:抓住等量关系 第三步:列出方程 第四步:解这个方程,求出未知数的值;
第五步:检验(检查求得的答数是否符合应用 题的实际意义) 第六步:答
这就是重要的增长率公式.
2、反之,若为两次降低,则
平均降低率公式为 a(1-x)2=b
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
1. 4 实践与探索 课件(华东师大版八年级下)
你能否据此求出V和t的函数关系?
客观分析
分析:将这些数值所 对应的点在坐标系中 描出.我们发现,• 这些 点大致位于一条直线 上,可知V和t近似地 符合一次函数关系.
V(cm 3)
1002.0 1001.5 1001.0 1000.5 1000.0 999.5 999.0 998.5 -40 -30 -20 -10 O
课堂小结:
我们曾采用待定系数法求得一次函数和反比例 函数的关系式.但 • 是现实生活中的数量关系是 错综复杂的,在实践中得到一些变量的对应值, 有时很难精确地判断它们是什么函数,需要我们 根据经验分析,也需要进行近似计算和修正,建 • 立比较接近的函数关系式进行研究.
常用的方法是:把实践或调查中得到的一些变量 的值,通过描点得出函数的近似图象,再根据画 出的图象的特征,猜想相应的函数名称,然后利 用待定系数法求出函数关系式.
探究解决方法
问题情境二
为了研究某合金材料的体积V(cm3)随温 度t(℃)变化的规律,对一个用这种合金制 成的圆球测得相关数据如下:
-40 -20 -10 0 10 20 40 60
t(℃)
V(cm3) 998.3 999.2 999.6 1000 1 000.3 1 000.7 1 001.6 1 002.3
§18.5.3实践与探索
教学目标:
1、会识图并从图像上获取信息 2、能利用一次函数、反比例函数的图像 和性质解决实际问题
自学指导:
快速阅读课本p55—p56(5分钟) 思考: 课本p55“问题3”
小明同学在探索鞋码的两种长度“码” 与“厘米”之间的换算关系时,通 • 过调查 获得下表数据:
(新)华师大版数学九上《22.3实践与探索》课件1
检验:因为 t1=1, t2=3 符合题意.
答:经过1秒或3秒爆竹离地15米。
练习题3 某工厂1月份的产值是50000元,3月份的产值 达到60000元,这两个月的产值平均月增长的百分率 是多少?(精确到0.1%)
分售后解析价的::为零设原 售若平得来 价一均56的 为次降(1降 (5价-1x6-)价百(x21=)百分-倍3x1)分率,的.5率为即,(1为x5-x,6)x(倍根1,-,x则据)即元一题;5次意6第(降,1二-价x)次后2元降的.价零
整理可得 x =±√31.5÷56+1. 检验解:得因即所x以为x12=:=降01x.价.2=7505的,.2百不5x=2符分=21合5率.%7题不5意可. 舍能去大于1,这 问 量与 题 关相同增 中 系?长 的 是率 数 否
解得 x1=0.25 , x2=-3.25 检验:因为 x2=-3.25不符合题意. 舍去.
所以:x1=0.25=25% 答:这两年中获奖人次的平均年增长率为25% 。
小结
谈谈你对本节所探讨的知 识有体会,你能否结合你的 体会编制一道应用题,在小组 内交流 。
作业
1.课本P40练习 。 2.课本P42-43习题1,2,4。
解:设这两个月平均月增长的百分率是x,根据题意, 得5000(1+x)2=6000,
整理可得 x2+15x-36=0.
解得
x1=
52 10
30
5 2 30
,x2= 10
检验:因为x2=
5
2
八年级数学下册 17.5 实践与探索(第1课时)教案 (新版)华东师大版
实践与探索
一、学习目标确定的依据
1、课程标准
探索根据一次函数的图象求二元一次方程组的解,并能从图象上获取信息的能力。
利用数形结合解决实际问题
2、教材分析
本节课是初中数学华师大版八年级下册第17章函数及其图象第五大节:实践与探索问题1,是学生在掌握正比例函数和一次函数性质及图象的基础上,进一步利用函数解决实际问题。
教材通过实例提出问题,通过对问题的观察、分析综合应用函数及其图象解决实际问题。
为学生能够灵活利用函数及其图象解决综合性实际问题奠定基础。
3、中招考点
函数及其图象中的实践与探索是中招的常考题,多与其它几何综合性问题渗透在一起。
4、学情分析
实践与探索问题是学生在掌握函数的性质及图象的基础上进行学习的,学生已经对函数和函数图象有了初步的了解,因此学生对利用函数图象决问题会有较浓厚的兴趣。
二、学习目标
1、能根据一次函数的图象求二元一次方程组的解。
2、会从图象上获取信息,利用数形结合解决实际问题
三、评价任务
学生通过对例题的学习能正确利用数形结合解决实际问题。
四、教学过程
、对于y1=2x-1, y2=4x-2,下列说法:
①两直线平行;②两直线交y轴于同一点;
③两直线交于x轴于同一点;④方程2x-1 =0与
的解相同;⑤当x=1时,y1=y2=1. 其中。
华师大版-数学-九年级上册-实践与探索(1)同步作业(含答案)
实践与探索(1)◆随堂检测1.一商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是( )A 、9%B 、10%C 、11%D 、12%2. 为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( )A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++= 3.为了响应植树造林的号召,某村第一年造林200亩,第一年到第三年共造林728亩,若设它们每年增长率为x ,则应列出的方程是________________________。
4.某酒厂2007年盈利a 万元,以后每年增长率都为x,则2008年的盈利为___________万元,2009年盈利为______________万元,这三年的盈利总额为_____________万元.5.明珠电器城今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份营业额的平均月增长率.◆典例分析某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均月增长率是多少?分析:设平均月增长率为x,则2月份产量是5000(1+x )吨,3月份产量是5000(1+x )2吨. 解答:设平均月增长率为x ,据题意得:5000(1+x )2=7200(1+x )2=1.441+x=±1.2.x 1=0.2,x 2=-2.2(不合题意,舍去).所以x=0.2=20%.点评:注意以下几个问题:(1)为计算简便、直接求得,可以直接设增长率为x .(2)认真审题,弄清基数,增长了,增长到等词语的关系.(3)用直接开平方法做简单,不要将括号打开.◆课下作业●拓展提高1. 为了扩大销售量,某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .2. 某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是_____________.3. 为了使天更蓝水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x += 4.我市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+ 5.一钢铁企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?6. 某省为解决农村饮用水问题,2008年A市在省财政补助的基础上再投入600万元用于农村饮用水的“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元。
华东师大版八年级下册数学1实践与探索课件
从“数”来看
问题:2:看看下面两个问题之间的关系:
(1)解不等式2x-4>0 (2)当x取什么值时,函数y=2x-4的值大于0?
解:(1)解不等式得x>2 (2)就是要使2x-4>0,解得x>2时, 函数y=2x-4的值大于0
讨论:从问题的解决过程中,你 结论:从“数”来看,
能发现它们之间有什么关系?
(3)当x < 1 时,函数值 y 小于3。
3、当x取何值时,函数y=4x-4的
图象在第四象限?
y
y=4x-4
0≤x≤1
01
x
-4
回顾 小结
通过这节课的学习,你有什么收获?
一次函数与一元一次方程、不等式的关系 数形结合的思想在解决问题中的直观性
归纳 小结 一次函数与一元一次方程的关系
从数的角度看:
解:从图像可得:当x>0时 ,
y y=2x-4
图像上的点在x轴上方,这 时y=2x-4的值大于0.
0
2
x
结论:从“形”来看,是同一个问题
-4
归纳 小结 一次函数与一元一次不等式的关系
从数的角度看:
求ax+b>0(a≠0) 的解集
x为何值时 y=ax+b的值大于0
从形的角度看:
求ax+b>0(a≠0) 的解集
17.5 实践与探索
数缺形时少直观, 形少数时难入微, 数形结合百般好, 隔离分家万事休。
——华罗庚
教学目标
知识目标:一次函数与一元一次方程、一元一次不 等式的关系.
过程与方法:通过视察、分析一次函数与一元一次 不等式(或方程)的内在联系.
情感与态度:在探索新知的过程中体会数形结合的思想.
重 点:利用图象解一元一方程、一元一次不等式. 难 点:一次函数与一元一次不等式的关系.
华师版(课件)23.3实践与探索
=
4ac 4a 2
c = a
如果方程x2+px+q=0的两根是 x1 ,x2,那么x1+x2= -P , x 1x 2 = q
Page 20
我能行1
例1、不解方程,求方程两根的和与两根的积: 2 ② 2 x2 4 x 1 0 ① x 3x 1 0
解:① x1 x2 3 ② x1 x2 2 原方程可化为:
(5)已知两个数的和等于 6 ,积等于 2 求这两个数
Page 26
根与系数关系小结
对于一元二次方程 x 2 px q 0 的两根 x1、x
2
有 : x1 x2 p x1 x2 q
1、已知方程的一个根求另一个根及未知数 (也可以用根的定义求解) 2、求关于两根的代数式的值 如:两根的平方和、两根的倒数和等 3、以x1、x2 为根的一元二次方程 x2-(x1+x2)x+x1x2=0,
2
3、又若第二年的增长率为第一年的2倍,那么 第一年的增长率为多少时可以实现市财政净收 入翻一番?
(1 x)(1 2 x) 2
Page 10
试一试
1.某钢铁厂去年1月某种钢产量为5000吨,3月上升到 7200吨,这两个月平均每月增长的百分率是多少?
解:设平均每月增长的百分率为, 2 依题意,得 5000(1 x) 7200 即(1 x)2 1.44, 1 x 1.2 即 解得x1 0.2 x2 2.2 因为 x2 2.2 不合题意 所以只能取 x1 0.2 20%
16
9 3.5
4
0.5 18
1
32
1.5
42
华东师大版七年级数学下册-实践与探索习题
《实践与探索》习题11.一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为( )A.6cm B.7cm C.8cm D.9cm2.要锻造一个直径20cm,高16cm的圆柱形毛坯,应截取直径16cm的圆钢多少厘米?3.制作一个如图所示(图中阴影部分为底与盖,且底的长边是x的2倍,SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来即可,求有盖盒子的高x.4.现有一个长方体水箱,从水箱里面量得它的深是30cm,底面的长是25cm,宽是20cm.水箱里盛有深为a cm(0<a<8)的水,若往水箱里放人棱长为10cm的立方体铁块(未完全没人水中),则此时水深为( )A.43a cm B.54a cmC.(a+2)cm D.5106acm5.—根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8cm、高为1.8 cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了_____cm.6.用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆钢长___ ___cm.7.用一根长为12米的铁丝围成一个长方形.(1)使得该长方形的长比宽多2米,此时长方形的长、宽各为多少米?面积为多少?(2)使得该长方形的长比宽多1.6米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中的长方形面积相比又有什么变化?8.图(1)是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图(2)所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是______cm3.(1) (2)9.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为x cm,则可列方程( )A.x-1=(26-x)+2 B.x-1=(13-x)+2C.x+1=(26-x)-2 D.x+1=(13-x)-2《实践与探索》习题21.“五一”期间,某电器按成本价提髙30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是( )A.x(1+30%)×80%=2080B.x·30%·80%=2080C.2080×30%×80%=xD.x·30%=2080×80%2.太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为( )A.80元B.85元C.90元D.95元3.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价降价20%以96元出售,很快就卖掉了.则这次生意的贏亏情况为( )A.亏4元B.亏24元C.赚6元D.不亏不赚4.随着电子技术的发展,手机价格不断降低,某品牌手机按原价降低m元后,又降低20%,此时售价为n元,则该手机原价为_____元.5.甲仓库存煤200吨,乙仓库存煤70吨,若甲仓库每天运出15吨煤,乙仓库每天运进25吨煤,几天后乙仓库存煤比甲仓库多1倍?设x天后乙仓库存煤比甲仓库存煤多1倍,则有( )A.2×15×=25x B.70+25x-15x=200×2C.2(200-15x)=70+25x D.200-15x=2(70+25x)6.小明的爸爸三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮他算一算这种储蓄的年利率.若年利率为x%,则可列方程_______________.(年存储利息=本金×年利率×年数)7.小明同学存入300元的活期储蓄,存满3个月时取出,共得本息和302.16元(不计利息税),则此括期储蓄的月利率是( )A.0.24% B.0.72% C.0.24 D.0.728.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%则至少可以打( )A.6折B.7折C.8折D.9折9.已知住房公积金贷款在5年内的年利率为3.6%,普通住房贷款5年期的年利率为4.77%.王老师购房时共贷款25万,5年付清.第一年需付息10170元,问王老师贷了住房公积金贷款多少元、普通住房贷款多少元?《实践与探索》习题31.做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,问:①甲做1小时完成全部工作量的几分之几?②乙做1小时完成全部工作量的几分之几?③甲、乙合做1小时完成全部工作量的几分之几?④甲做x小时完成全部工作量的几分之几?⑤甲、乙合做x小时完成全部工作量的几分之几?⑥甲先做2小时完成全部工作量的几分之几?乙后做3小时完成全部工作量的几分之几?甲、乙再合做x小时完成全部工作量的几分之几?三次共完成全部工作量的几分之几?2.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( )A.60秒B.50秒C.40秒D.30秒3.父子二人早上去公园晨练,父亲从家跑步到公园需30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需( )A.8分钟B.9分钟C.10分钟D.11分钟4.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是( )A.2或2.5 B.2或10C.10或12.5 D.2或12.55.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要______天完成.6.甲、乙两人骑自行车同时从相距80千米的两地出发,相向而行,2小时后相遇,已知甲每小时比乙多走2.4千米,求甲、乙每人每小时走多少千米.7.小明与小彬骑自行车去郊外游玩,事先决定早8时出发,预计每小时骑7.5千米,上午10时可到达目的地,出发前他们决定上午9时到达目的地,那么每小时要骑多少千米?8.某行军纵队以7千米/时的速度行进,队尾的通讯员以11千米/时的速度赶到队伍前送一封信,送到后又立即返回队尾,共用13.2分钟,求这支队伍的长度.9.一项工程,甲独做7.5小时完成,乙独做5小时完成,若两人合作1小时,剩下的由乙独做,问:(1)乙还需几小时完成?(2)若此项工程共得报酬600元,那么按工作量怎样分配?。
2实践与探索1PPT课件(华师大版)
基础扫描
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它
的对称轴是 直线x=h ,顶点坐标是 (h,k) .
2 . 二次函数y=ax2+bx+c的图象是一条 抛物线,它的对
称轴是
直线x b 2a
,顶点坐标是
b 2a
,
4ac b2 4a
. 当a>0时,
4ac b2
抛物线开口向 上 ,有最 低 点,函数有最 小 值,是 4a ;
当 a<0时,抛物线开口向 下 ,有最 高 点,函数有最_大__
4ac b2
值,是 4a 。
基础扫描
3. 二次函数y=2(x-3)2+5的对称轴是 直线x=3 , 顶点坐标是 (3 ,5) 。当x= 3 时,y的最小 值 是5 。
4. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 , 顶点坐标是 (-4 ,-1) 。当x=-4 时,函数有最 大 值 -1 。
元;设销售单价上调了x元,那么每件商品
的利润可表示为(20+x)元,每周的销售
量可表示(为300-10x) 件,一周的利润
可表示(2为0+x)( 300-10x)
元,要想获
得6090元利润可列(20方+x)( 300-10x) =6090
程
。
已知某商品的进价为每件40元,售价是每 件 60元,每星期可卖出300件。市场调查反 应:如果调整价格 ,每涨价1元,每星期要少卖 出10件。要想获得6090元的利润,该商品应定 价为多少元?
2.(09中考)某超市经销一种销售成本为每 件40元的商品.据市场调查分析,如果按每 件50元销售,一周能售出500件;若销售单 价每涨1元,每周销量就减少10件.设销售单 价为x元(x≥50),一周的销售量值范围) (2)设一周的销售利润为S,写出S与x的函数关系式, 并确定当单价在什么范围内变化时,利润随着单 价的增大而增大?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金塔县金塔镇中学
初三备课组
22.3 .2实践与探索(二
)
【教学目标】:
1、使学生利用一元二次方程的知识解决实际问题,学会将实际问题转化为数学模型。
2、让学生经历由实际问题转化为数学模型的过程,领悟数学建模思想,体会如何寻找实际问题中等量关系来建立一元二次方程。
3、通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神。
【重点难点】:
1、重点:列一元二次方程解决实际问题。
2、难点:寻找实际问题中的相等关系。
课前热身
一、考考你
1、有一个两位数,它的十位上的数学字比个位上的数字大3,这两个数位上的数字之积等于这两位数的
2
,求这个两位数。
7
2、如图,一个院子长10㎝,宽8㎝,
要在它的里沿三边辟出宽度相等的花
圃,使花圃的面积等于院子面积的
30%,试求这花圃的宽度。
创设问题情境
阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?
尝试探索,合作交流,解决问题
1、翻一番,你是如何理解的?
(翻一番,即为原净收入的2倍,若设原值为1,那么两年后的值就是2)
2、“平均年增长率”你是如何理解的。
(“平均年增长率”指的是每一年净收入增长的百分数是一个相同的值。
即每年按同样的百分数增加,而增长的绝对数是不相同的)
3、独立思考后,小组交流,讨论。
4、展示成果,相互补充。
2(1)2
x +=12
x +=±121
x =-221x =--10.414x =2 3.414
x =-41.4%
解:设平均年增长率应为x ,依题意,得
因为增长率不能为负数
所以增长率应为解这个方程,得
尝试探索,合作交流,解决问题
小结
关于量的变化率问题,不管是增加还是减少,都是变化前的数据为基础,每次按相同的
百分数变化,若原始数据为a,设平均变化率为
x,经第一次变化后数据为a(1±x);经第二次变化后数据为a(1±x)2。
在依题意列出方程并解
得x值后,还要依据0<x<1的条件,做符合题
意的解答。
作业
P42 习题2、3、5。
P44复习题A组 5。